“集中型”馈线自动化动作原理讲解共26页文档
- 格式:ppt
- 大小:2.64 MB
- 文档页数:26
许继电气配网事业部FA-1000馈线自动化技术介绍调度MIS 100M 以太网配网GIS/维护工作站主服务器备服务器WEB 服务器通信前置机··················通信前置机控制LAN 网SPS 打印服务器配网调度工作站配网管理工作站配电子站变电站智能型电缆分支箱智能环网柜监控终端WPZD-130WPZD-140PVS 配电线通信线RTU 配网自动化系统整体构成示意图变电站馈线自动化原理假设分段开关延时为7s ,联络开关延时为45s ,站内重合闸时间为5s 。
1、瞬时性故障—保护跳闸—一次重合—PVS 逐级关合—重合成功;2、永久性故障—保护跳闸(环网时联络开关计时)—一次重合—PVS 逐级关合—合至故障点—再次跳闸—故障段被隔离—二次重合—PVS 逐级关合,恢复电源侧正常区段供电(—联络开关计时完毕并关合—完成负荷转供)全部过程不到1分钟RTU RTU RTU RTU RTU FCB1PVS1PVS2PVS3PVS4PVS5A BCDEF7s 7s7s45s7s5sFCB25sRTU 功能分段点RTU 的功能(S 模式)1、“四遥”功能2、延时关合3、X —闭锁4、Y —闭锁5、瞬时加压闭锁6、两侧电压闭锁联络点RTU 的功能(L 模式)1、“四遥”功能2、延时关合3、Y —闭锁4、瞬时加压闭锁5、两侧电压闭锁RTU RTU RTU RTU RTU FCB1PVS1PVS2PVS3PVS4PVS5A BCDEF7s 7s7s45s7s5sFCB25sA.通过终端延时错开S 侧和L 侧供电的时间(X 延时、Y 延时);B.在S 侧的供电时间里重合失败则判定故障在S 侧,启动X —闭锁,或瞬时加压闭锁;C.在L 侧的供电时间里重合失败则判定故障在L 侧,启动Y —闭锁;D.若在延时关合过程中,另一侧也来电,则启动两侧电压闭锁。
集中型馈线自动化模式集中型馈线自动化是指通过配电主站和配电终端的配合,借助通信网络,将故障后的配电终端信息汇集到配电主站,由配电主站对各种故障信息进行研判,实现配电线路的故障定位、故障隔离和恢复非故障区域供电的馈线自动化处理模式。
可分为全自动和半自动2种实现方式:全自动方式:线路发生故障后,配电主站通过快速收集区域内配电终端的信息,判断配电网运行状态,集中进行故障识别、定位,配电主站根据故障处理策略自动完成故障隔离和非故障区域恢复供电。
半自动方式:线路发生故障后,配电主站通过收集区域内配电终端的信息,判断配电网运行状态,集中进行故障识别、定位,由人工介入完成故障隔离和非故障区域恢复供电。
按供电区域划分属于A+、A类、B类区域的供电线路,馈线自动化处理模式应采用主站集中型馈线自动化方式进行故障处理。
“三遥”自动化终端优先采用光纤通信方式,配置一条具备自愈功能的专线通道或网络通道,配电自动化光纤通信终端宜采用工业以太网交换机。
对已实现光纤通信的三遥终端线路采用集中型馈线自动化处理模式。
变电站出线开关开关分段开关联络开关分段开关分段开关变电站出线开关终端DTU/FTU配网主站故障处理的相关遥控命令等1. 集中型馈线自动化设备建设配置方案1.1.柱上开关配置方案:新建柱上开关按弹簧储能型柱上断路器建设,柱上断路器额定电流630A ,短路电流容量不应低于20kA ;断路器可实现电动手动操作,能实现就地及远方分、合闸操作。
断路器配置PT ,接线形式为VV 接线,可采集线电压及提供工作电源。
内置A 、C 两相CT 和零序CT ;开关控制回路电压与储能电压相同,采用直流24V 电压;断路器具有自动化信号输入/输出接口;10kV 断路器需提供至少2常开2常闭开关位置辅助触点、SF6气压低、机构未储能等报警与闭锁节点;各遥测、遥信及电源用专用插头(防水、防尘)与FTU 连接。
对不具备自动化接口的老旧柱上开关,按上述柱上开关配置原则进行更换。
“集中型”馈线自动化动作原理讲解馈线自动化是一种用于电力系统中的自动控制技术,用于实现对馈线的保护和控制。
其中,“集中型”馈线自动化是一种常见的馈线保护方案,它具有以下原理和特点。
首先,集中型馈线自动化是指将馈线的保护和控制任务集中到一个中央设备上进行处理。
这个中央设备通常是一个数字化继电保护装置,它具有高性能的硬件和软件系统,能够实现对馈线电流、电压、频率等各种参数的监测和分析。
其次,集中型馈线自动化的原理是基于保护信号的传输和处理。
在电力系统中,通常会引入一些传感器和测量装置,用于实时监测馈线的各种参数。
这些参数的测量结果会被传输到中央设备进行处理,根据预设的保护参数和逻辑,对馈线进行保护动作。
另外,集中型馈线自动化还可以实现对馈线的远程监测和控制。
中央设备通常与电力系统的远动终端相连接,可以通过通信网络实现对馈线的监测和控制功能。
例如,可以远程对馈线进行开关操作、故障定位、数据采集等操作,提高了对馈线运行状态的实时监测和远程控制能力。
在实际应用中,集中型馈线自动化通常包括以下几个关键环节:1.信号采集和传输:通过传感器和测量装置对馈线的各种参数进行实时采集,例如电流、电压、频率、功率等。
采集到的数据通过通信网络传输到中央设备。
2.保护参数设置:中央设备根据系统要求和设计要求,对馈线的保护参数进行设置。
这些参数包括保护元件的整定值、保护逻辑等。
3.保护逻辑和分析:中央设备对采集到的数据进行逻辑判断和分析,根据预设的保护参数和逻辑,判断馈线是否存在故障,并确定采取何种保护动作。
4.保护动作:一旦中央设备判断出馈线存在故障,会触发相应的保护动作。
这些动作可以是对故障线路进行断开、对故障线路进行隔离或切换、对其他线路进行接入或切换等。
总之,集中型馈线自动化通过集中保护和控制功能于一个中央设备进行处理,实现对馈线的自动保护和控制。
它的核心原理是基于保护信号的传输和处理,通过采集和分析馈线的参数,以实现对馈线的保护动作。