响应面法和实验设计软件Minitab 及 Design-Expert简介
- 格式:ppt
- 大小:4.19 MB
- 文档页数:66
Design-Expert 使用教程qibk@2008-07-19z Design-Expert是全球顶尖级的实验设计软件。
z Design-Expert 是最容易使用、功能最完整、界面最具亲和力的软件。
在已经发表的有关响应曲面(RSM)优化试验的论文中,Design-Expert是最广泛使用的软件。
z Plackett–Burman(PB)、Central Composite Design (CCD)、Box-Behnken Design(BBD)是最常用的实验设计方法。
z本教程以BBD为例说明Design-Expert的使用,CCD,PB与此类似。
点击new design选项卡点击Respose Surface 选项卡选中 Box-Behnken项选择要考察的因素数默认值 0要考察的因素名称因素的单位因素的低值因素的高值默认值默认值设置完后,点击Continue选择响应值即因变量的数量因变量的单位因变量的名称设置完成后,点击Continue各因素均为实际值的的试验设计各因素的实际值转变为编码制的操作过程各因素转变为编码制按照试验设计进行试验,记录每组因素组合的试验结果,填在Response 列。
点击 Analysis下的 Yield (Analysed)1,Transform 选项卡,取默认值2,点击 Fit summary选项卡了解一下Fit summary各项,再点击下一个Model选项卡Model选项卡取默认值,再点击ANOVA选项卡再点击Diagnostics选项卡方差分析(ANOVA),方程的显著性检验、系数显著性检验、及回归方程。
参差的正态概率分布图,应在一条直线上Residuals vs Predicted 图,应分布无规律Predicted vs Actual 图应尽可能在一条直线上1. 点击 Influence 选项卡再点击 Report 选项卡再点击 Model graphs实际实验值方程预测值等高线图点击View下的3D surface 看三维响应曲面图三维响应曲面图点击此处选择其它因素间的等高线图选中文字点击右键,修改坐标名称把响应曲面图及 等高线图 导入WORD中的步骤 File下的Export Graph to file选择投稿最常用的TIFF文件格式把上面保存的TIF格式图片复制到word中,用图片工具栏中的裁剪功能对 图片进行裁剪裁剪后的效果图由RSM预测最优值选择 Optimization 下的Numerical 选项卡确定各因素的 取值范围确定响应值(因变量)的目标(最大值、最小值、范围值、目标值) 此实例中,是优化四个因素使响应值最大,选择Maximize低值取默认值高值项中输入一个尽可能大的无法达到的值点击Solutions 选项卡第一个方案即为各因素取最优值后的响应所能取到的最大值。
第一步,打开Design-Expert软件第二步,新建一个设计(File----New Design)画面变成下图:第三步,在左侧点击Response Surface,变成下图:一般响应面中Central Composite是5水平,而Box-Behnken是3水平,所以选Box-Behnken,即单击左侧的Box-Behnken设计方法,变成下图:第四步,由于是三因素三水平,所以在Numeric Factors这一栏选择“3”,表示3因素,并在下表中改好名字,填好单位;把-1水平和+1水平分别填上。
如皂土用量-1为2.5mL,+1为4.5mL。
如下图:注:其他所有选项都不需要改。
第五步,点击右下角“continue”键,进入下一页面:这里是响应值,对应本次实验里的透光率,把名字改好,单位填上,如图:第六步,点击“continue”键,进入实验设计表格:根据具体的实验条件将实验值一个一个地填上(实验值也就是从对应的实验条件下获得的真实数据),得到第七步,对数据进行分析。
对我们有用的是左侧的“Analysis”项,点击它,得到:可以先大致看一下,然后点响应值“透光率”,也就是“Analysis”的子菜单。
得到图:不管,点击第二个“summary”,得到:这里有一些数据模型的基本信息,基本上不怎么用得到,可以看一下。
然后继续点击“Model”,得到:基本上也不用管,继续点击“ANOVA”,得到:这里才有我们需要的东西,比如显著性,数学模型等等,很多论文中的表格、方差分析都是从这里来的,这一项很有用,可以慢慢看。
然后再继续,点击“Diagnostics”,这里基本上是关于数据分散性的,用处不大。
有3D图和等高线图的地方。
如图:如果点击“Model Graphs”没有出现3D图,可以点击菜单栏的view,找出“3D Surface”,点击,就可以出来了。
同理,要想出等高线图,可以在菜单栏的view中找出“Contour”,点击即可,即:以上是响应面的基本信息及基本出图,下面是如何用响应面做最优条件的选择。
DesignExpert响应⾯分析实验设计案例分析学校⾷品科学研究中实验设计的案例分析—响应⾯法优化超声波辅助酶法制备燕麦ACE抑制肽的⼯艺研究摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波⽔浴温度(X3)和酶解时间(X4),进⾏四因素三⽔平的响应⾯分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波⽔浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。
与参考⽂献SAS软件处理的结果中⽐较差异很⼩。
关键字:Design-Expert 响应⾯分析1.⽐较分析表⼀响应⾯试验设计因素⽔平-1 0 1超声波处理时间X1(min) 20 30 40超声波功率X2(W) 132 176 220超声波⽔浴温度X3(℃) 50 55 60酶解时间X4(h) 1 2 32.Design-Expert响应⾯分析分析试验设计包括:⽅差分析、拟合⼆次回归⽅程、残差图等数据点分布图、⼆次项的等⾼线和响应⾯图。
优化四个因素(超声波处理时间、超声波功率、超声波⽔浴温度、酶解时间)使响应值最⼤,最终得到最⼤响应值和相应四个因素的值。
利⽤Design-Expert软件可以与⽂献SAS软件⽐较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。
2.1 数据的输⼊图 1 2.2 Box-Behnken响应⾯试验设计与结果图 2 2.3 选择模型2.4 ⽅差分析在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。
由图4知其⾃变量⼀次项A,B,D,⼆次项AC,A2,B2,C2,D2显著(p<0.05)。
失拟项⽤来表⽰所⽤模型与实验拟合的程度,即⼆者差异的程度。
本例P值为0.0861>0.05,对模型是有利的,⽆失拟因素存在,因此可⽤该回归⽅程代替试验真实点对实验结果进⾏分析。
Minitab 实验之试验设计实验目的:本实验主要引导学生利用Minitab 统计软件进行试验设计分析,包括全因子设计、部分因子设计、响应曲面设计、混料设计、田口设计以及响应优化,并能够对结果做出解释。
实验仪器:Minitab 软件、计算机 实验原理:“全因子试验设计”的定义是:所有因子的所有水平的所有组合都至少要进行一次试验的设计。
由于包含了所有的组合,全因子试验所需试验的总次数会比较多,但它的优点是可以估计出所有的主效应和所有的各阶交互效应。
所以在因子个数不太多,而且确实需要考察较多的交互作用时,常常选用全因子设计。
一般情况下,当因子水平超过2时,由于试验次数随着因子个数的增长而呈现指数速度增长,因而通常只作2水平的全因子试验。
进行2水平全因子设计时,全因子试验的总试验次数将随着因子个数的增加而急剧增加,例如,6个因子就需要64次试验。
但是仔细分析所获得的结果可以看出,建立的6因子回归方程包括下列一些项:常数项、主效应项有6项、二阶交互作用项15项、三阶交互项20项,…,6阶交互项1项,除了常数项、主效应项和二阶交互项以外,共有42项是3阶以及3阶以上的交互作用项,而这些项实际上已无具体的意义了。
部分因子试验就是在这种思想下诞生的,它可以使用在因子个数较多,但只需要分析各因子和2阶交互效应是否显著,并不需要考虑高阶的交互效应,这使得试验次数大大减少。
在实际工作中,常常要研究响应变量Y 是如何依赖于自变量,进而能找到自变量的设置使得响应变量得到最佳值(望大、望小或望目)。
如果自变量的个数较少(通常不超过3个),则响应曲面方法(response surface methodology ,RSM )是最好的方法之一,本方法特别适合于响应变量望大或望小的情形。
通常的做法是:先用2水平因子试验的数据,拟合一个线性回归方程(可以包含交叉乘积项),如果发现有弯曲的趋势,则希望拟合一个含二次项的回归方程。
其一般模型是(以两个自变量为例):22011221112221212y b b x b x b x b x b x ε=++++++这些项比因子设计的模型增加了各自的变量的平方项。
响应面软件使用教程一、介绍和安装响应面软件是一种统计学工具,用于分析实验数据,并基于数学模型进行预测和优化。
许多软件包可以用于执行响应面分析,例如Design-Expert、Minitab、JMP等。
在本教程中,我们将使用Design-Expert软件进行示范。
请确保您已成功安装并启动该软件。
二、数据导入和预处理首先,需要将实验结果数据导入软件。
在Design-Expert中,可以通过选择“文件”菜单中的“数据导入”选项来完成。
请确保您的数据以表格形式存在,并按照特定的格式进行组织。
导入数据后,可以使用软件的数据处理功能进行必要的预处理。
例如,可以删除无用的列或行,处理缺失值,并对数据进行校正或转换。
三、构建数学模型在进行响应面分析之前,需要构建一个数学模型,以描述实验响应变量如何受到不同因素的影响。
Design-Expert提供了多种模型类型,例如线性模型、二次模型、三次模型等。
根据实验设计和实际情况,选择合适的模型类型,并使用软件的建模功能进行模型构建。
模型构建完成后,可以利用软件的模型诊断功能来评估模型的质量和拟合程度。
例如,可以检查模型的拟合优度指标、偏差分析和残差分析等。
四、响应面拟合和优化一旦模型构建完成并通过了严格的检验,可以使用软件的响应面拟合功能来对实验数据进行分析。
该功能通过最小二乘法或其他适当的拟合算法来拟合数据和模型。
在拟合完成后,软件将给出拟合参数、效应大小和模型的显著性等相关信息。
除了响应面拟合之外,软件还提供了优化功能,可以帮助用户找到最佳的实验参数组合。
用户可以通过设置最大化或最小化响应变量的目标值,来寻找最优的实验条件。
优化结果将以图形和数据的形式展示。
五、结果解读和报告最后,根据响应面拟合和优化的结果,可以对实验数据进行解读和报告。
可以使用软件的分析和图形功能来探索响应变量和因素之间的关系,并解释影响因子的作用机制。
Design-Expert软件还提供了丰富的报告功能,可以生成详细的结果报告和图表,以便于用户进行数据展示和交流。