超静定结构的内力计算
- 格式:ppt
- 大小:2.45 MB
- 文档页数:53
1、超静定结构的特性:与静定结构比较,超静定结构有如下特性:内力超静定,约束有多余,是超静定结构区别于静定结构的基本特点。
2、超静定次数的确定:结构的超静定次数为其多余约束的数目,因此上,结构的超静定次数等于将原结构变成静定结构所去掉多余约束的数目。
在超静定结构上去掉多余约束的基本方式,通常有如下几种:(1)断一根链杆、去掉一个支杆、将一刚接处改为单铰联接、将一固定端改为固定铰支座,相当于去掉一个约束。
举例(2)断一根弯杆、去掉一个固定端,相当于去掉三个约束。
举例(3)开一个单铰、去掉一个固定铰支座、去掉一个定向支座,相当于去掉两个约束。
举例返回顶部3、几点注意:①由图10-1结构的分析可得出结论:一个无铰闭合框有三个多余约束,其超静定次数等于三。
对于无铰闭合框结构其超静定次数=3×闭合框数。
如图10-2所示结构的超静定次数为3×5=15次;对于带铰闭合框结构其超静定次数=3×闭合框数-结构中的单铰数(复铰要折算成单铰)如图10-3所示结构的超静定次数为3×5-(1+1+3)=15次。
D点是连接四个刚片的复铰,相当于(4-1)=3个单铰。
②一结构的超静定次数是确定不变的,但去掉多余约束的方式是多种多样的。
如图10-1结构。
③在确定超静定次数时,要将内外多余约束全部去掉。
如图10-4结构外部1次超静定,内部6次超静定,结构的超静定次数是7。
④在支座解除一个约束,用一个相应的约束反力来代替,在结构内部解除约束,用作用力和反作用力一对力来代替。
如图10-1结构所示。
⑤只能去掉多余约束,不能去掉必要的约束,不能将原结构变成瞬变体系或可变体系。
如图10-4结构中A点的水平支杆不能作为多余约束去掉。
如图10-5结构中支杆a,b和链杆c不能作为多余约束去掉,否则就将原结构变成了瞬变体系。
返回顶部1、超静定结构的求解思路:欲求解超静定结构,先选取一个便于计算结构作为基本体系,然后让基本体系与原结构受力一致,变形一致即完全等价,通过这个等价条件去建立求解基本未知量的基本方程。
超静定结构内力计算首先,需要明确的是,超静定结构与静定结构的计算方法基本相同,都是通过力平衡和力矩平衡方程来计算结构内力。
下面以一简支梁为例,介绍超静定结构内力计算的方法。
假设有一简支梁,梁长为L,受到均布载荷q,支座A、B处有横向支撑。
我们需要计算梁上任意一点x处的弯矩和剪力。
首先,对于简支梁,力平衡方程可得:∑Fx=0=>RA+RB=0(1)∑Fy=0=>VA+VB-qL=0(2)力矩平衡方程可得:∑Mz=0=>-qLx+VBx=0(3)(x为横坐标)由以上方程可以得到:RA=-RB=-qL/2,VA=-VB=qL/2接下来,我们可以使用能量方法计算结构内力。
能量方法是利用结构所受外界实际工作等于内力做的虚功,通过对外界做功和结构内工作的平衡,求解得到内力。
我们将简支梁分解为多个力学小段,每一小段的长度为Δx。
考虑梁上一小段AB,以A点为起点,Δx位置为B点。
对这一小段,外界对结构所做的虚功为:δWext = -VAdy (4) (dy为小段长度)其中,结构内力V由能量方法得到。
结构内力杆件AB的内工作为:dU = VAdy (5)因为外界做的虚功等于内工作,可得:-δWext = dU将式(4)和式(5)代入上式,得:VAdy = -VAdy对上式进行积分,得:∫VAdy = -∫VAdy∫VAdy = -(∫VAdy)由于简支梁内力为常数,所以可以将其从积分符号中移出,得:V∫Ady = -V∫Ady即:VAΔy=-VAΔy可以看出,对于简支梁而言,外界虚功和结构内工作的积分是相等的。
通过上述分析,我们可以发现,能量方法实际上是在计算外界对结构做的虚功,而虚功就是外界力对结构的作用力乘以作用距离的积分。
所以能量方法的基本思想是通过积分计算外界对结构的虚功,然后根据虚功等于内工作的原理,推导出结构的内力。
总结起来,超静定结构的内力计算方法主要是使用力平衡和力矩平衡方程,利用能量方法计算结构内力。