北师大版七年级数学上册第三章知识点整理
- 格式:docx
- 大小:15.86 KB
- 文档页数:3
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数北师大版七年级上册数学各章节知识点总结 2017。
1.4第一章 丰富的图形世界1、点、线、面、体:点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面.体:几何体也简称体。
点动成线,线动成面,面动成体.2、生活中的立体图形圆柱柱生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥 圆锥棱锥3、棱柱:n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点。
4、正方体的平面展开图:(一四一)中间四个面,上下各一面;(二三一)中间三个面,一二隔河见;(二二二)中间两个面,楼梯三层见;(三三)中间没有面,三,三连一线。
5、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形(平行四边形,长方形,正方形,梯形),五边形,六边形。
6、三视图:从正面看,从左面看,从上面看7、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形.从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n —2)个三角形.8、弧:圆上A 、B 两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章 有理数及其运算1.有理数的分类:2。
数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数.如∏)3.相反数:(1)如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
北师大版七年级上册数学知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章有理数及其运算1、有理数的分类正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
北师大版七年级上册数学各章节知识点归纳第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥:三菱锥、四凌锥、五菱锥、……4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
第三单元章末复习
必背知识
1.代数式:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连接而成
的式子叫做代数式。
2.代数式求值:根据问题的要求,用具体数值代替代数式的字母,就可以求出代数式的值。
代数式的求值的步骤:第一步,代入(或先化简再代入);第二步,计算。
3.同类项:在代数式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
判断是否是同类项的条件有两个:○1含有相同字母;○2相同字母的指数分别相同。
这两个条件却一不可。
4.合并同类项的定义:把同类项合并成一项叫做合并同类项。
合并同类项的法则:在合并同类项时,把同类项的系数相加,字母和字母的指数不变。
5.去括号法则:括号前是“+”号去掉后,原括号里各项的符号都不改变;括号前是“—”
号,把括号和它前面的“—”号去掉后,原括号里各项的符号都要改变。
6.观察数量变化,探索由特殊到一般的关系,联系实际生活,经常发现数量之间有一定的
特殊关系,可以用代数式表示出来,使其具有普遍性,这是数学中的规律。
必记公式
去括号法则:○1+(a+b+c)=a+b+c; ○2-(a+b+c)=-a-b-c。
北师大版七年级数学上册第三章知识点整理 北师大版七年级数学上册第三知识点整理 七上第三整式及其加减 1.字母表示数 1)字母表示运算律 2)字母表示计算公式 字母可以表示任何数 2.代数式 1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等. 2)书写要求:①字母与字母相乘时,乘号通常简写作“ ”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”. ②除法一般写成分数形式 ③如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起再写单位。
3.整式 1)单项式:表示数字和字母的积,单独的一个数或一个字母也是单项式. ①系数:单项式中的数字因数(包括其前面的符号) ②次数:单项式中,所有字母的指数的和;单独的数字是0次单项式. 注意:(1)单项式中数与字母之间都是乘积关系,凡字母出现在分母中的式子一定不是单项式,如1/x不是单项式;(2)单项式中不含加减运算;(3)π是常数,在单项式中相当于数字因数;(4)定义中的“数”可以是小数,也可以是分数、整数. 2)多项式:几个单项式的和;在多项式中,每个单项式叫做多项式的项,不含字母的项叫常数项;一个多项式含有几项,就叫几项式; 次数:多项式里,次数最高项的次数,是多项式的次数; 注意:(1)确定多项式的项时,不要忽略它的符号;(2)关于某个字母的n次项式,要求是合并同类项后的最简多项式. 3) 整式:单项式和多项式统称为整式. 4)同类项:①概念:所含字母相同,并且相同字母的指数也相同的项;与它们的系数大小无关,与字母顺序无关;几个常数也是同类项. ②合并同类项法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 4.整式的加减: 1)整式加减是求几个整式的和或差的运算,其实质是去括号,合并同类项 2)法则:几个整式相加减,用括号把每一个整式括起,再用加减号连接,然后去括号,合并同类项. 3)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果. 5.探索与表达规律:图形中的规律、数字中的规律、算式中的规律.。
七(上)第三章整式及其加减整式3.3 整式:1、单项式:(1)单项式的定义:数与字母的乘积组成的代数式为单项式,单独一个数或一个字母也是单项式,如 6,a都是单项式.因此,单项式只能含有乘法以及以数字为除数的除法运算,不能含有加减运算,更不能含有以字母为除式的除法运算.(2)单项式的系数:单项式中的数字因数叫单项式的系数,如-2xy2的系数为-2.单项式的系数为1或-1时,通常省略不写,但“-”号不能省略.如1ab写成ab,-1ab写成-ab.(3)单项式的次数一个单项式,所有字母的指数的和叫做这个单项式的次数.如5x2y4的次数为6(2+4=6).一个单项式的次数是几,习惯上又称作这个单项式是几次单项式.如5x2y4是六次单项式.单项式中字母的指数为1时,1省略不写,但计算单项式次数时不能丢掉,或误认为是0.如5xy2的次数是1+2=3,而不是2.练习:1、下列代数式是否都是单项式?13r2h ,2πr,0,a+b,xy,abc ,-m ,6,a 。
2、13r2h的系数是____,次数是___; abc的系数是___ , 次数是___;-m的系数是___, 次数是___;54x2yz的系数是___, 次数是___。
3、指出下列多项式的项和次数:(1) a3-a2b+ab2-b3 (2) 3n4-2n2+14、x3-x+1是一个次项式;x3-2x2y2+3y2是一个次项式。
注意:(1)单项式只能含有乘法运算以及以数字为除数的除法运算,不能含有加减运算,更不能含有以字母为除式的除法运算。
(2)多项式中含有加减运算,也可以含有乘方、乘除运算,但不能含有以字母为除式的除法运算。
如,2a+b-1不是多项式。
(3)单项式只含有字母的,它的系数是1或-1,1可以不写;单项式的系数包括它前面的符号;单项式的系数是带分数时,通常写成假分数.单项式中的某个字母没有写指数,则次数是1;单独一个非零数的次数是0;单项式的次数仅与字母有关,而与系数指数无关。
七年级数学上册知识点总结(北师大版)第一章丰富的图形世界1、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥2、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
3、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
4、正方体的平面展开图:11种圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形。
5、截一个几何体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
如果用一个平面截掉一个正方体的一个角,剩下的几何体有几个顶点?几条棱?几个面?中点组成的面时,剩余几何体有10个顶点、15条棱、7个面.解答:解:剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:6、从三个方向看物体的形状三个方向分别是:正面、左面和上面。
从正面看到的图,叫做从正面看。
从左面看到的图,叫做从左面看。
从上面看到的图,叫做从上面看。
第二章有理数及其运算1、有理数的分类(整数与分数统称为有理数。
)正整数整数零负整数有理数正分数分数负分数正有理数也可按有理数零进行分类。
负有理数2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
解题时要真正掌握数形结合的思想,并能灵活运用。
数轴上两点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
3、相反数:如果两个数只有符号不同,那么称其中一个数为另一个的相反数,也称这两个数互为相反数,零的相反数是零4、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
北师大版七年级数学上册第三章知识点整
理
七上第三章整式及其加减
字母表示数
)字母表示运算律2)字母表示计算公式
字母可以表示任何数
代数式
)概念:像4+3,x+x+,a+b,ab,2,s/t等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等.
)书写要求:①字母与字母相乘时,乘号通常简写作“”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”.
②除法一般写成分数形式
③如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起来再写单位。
整式
)单项式:表示数字和字母的积,单独的一个数或一个字母也是单项式.
①系数:单项式中的数字因数
②次数:单项式中,所有字母的指数的和;单独的数字是0次单项式.
注意:单项式中数与字母之间都是乘积关系,凡字母出现在分母中的式子一定不是单项式,如1/x不是单项式;单项式中不含加减运算;π是常数,在单项式中相当于数字因数;定义中的“数”可以是小数,也可以是分数、整数.
)多项式:几个单项式的和;在多项式中,每个单项式叫做多项式的项,不含字母的项叫常数项;一个多项式含有几项,就叫几项式;
次数:多项式里,次数最高项的次数,是多项式的次数;
注意:确定多项式的项时,不要忽略它的符号;关于某个字母的n次项式,要求是合并同类项后的最简多项式.
)整式:单项式和多项式统称为整式.
)同类项:①概念:所含字母相同,并且相同字母的指数也相同的项;与它们的系数大小无关,与字母顺序无关;几个常数也是同类项.
②合并同类项法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
整式的加减:
)整式加减是求几个整式的和或差的运算,其实质是去括号,合并同类项
)法则:几个整式相加减,用括号把每一个整式括起来,
再用加减号连接,然后去括号,合并同类项.
)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果.
探索与表达规律:图形中的规律、数字中的规律、算式中的规律.。