激光加工课件
- 格式:doc
- 大小:1.35 MB
- 文档页数:8
激光加⼯课件资料讲解激光加⼯课件⼀、激光介绍1.1 激光的产⽣1.1.1光的物理状态㈠光的电磁学说:在⼀定波长范围内的电磁波。
λ——波长 C ——频率 V ——波速㈡光的量⼦说:光是在⼀定波长范围内的电磁波,⼀种具有⼀定能量的以光速运动的粒⼦流(光⼦)。
不同频率的光对应不同能量的光⼦。
E ——光⼦能量;v ——光的频率;h ——普朗克常数;1.1.2原⼦的发光㈠基态:电⼦在最靠近原⼦核的轨道上运动时,原⼦所处的能级状态称为基态。
㈡激发态:当外界传给原⼦⼀定的能量时,原⼦的内能增加,外层电⼦的轨道半径扩⼤,被激发到⾼能级,称为激发态(⾼能态)。
㈢跃迁:原⼦从⾼能级回到低能级的过程称为“跃迁”。
被激发到⾼能级的原⼦不是很稳定,总是⼒图回到能量较低的能级去。
具有亚稳态能级的原⼦和离⼦的存在是形成激光的重要条件。
㈣光辐射:当原⼦从⾼能级跃迁回到低能级或基态时,常常以光⼦的形式辐射出光能量。
㈤⾃发辐射:原⼦从⾼能级⾃发地跃迁到低能级⽽发光的过程称为⾃发辐射。
(⽇光灯发光)各受激原⼦跃迁回到基态的时序先后不⼀,且具有多个能级,因此⽅向性、单⾊性都很差。
㈥受激辐射:满⾜⼀定频率要求的⼀束光⼊射到具有⼤量激发态原⼦的系统中,刺激处在激发能级上的原⼦跃迁回到低能级,同时发出⼀束与⼊射光具有相同特性(频率、相位、传播⽅向、偏振⽅向等)的光。
1.1.3激光产⽣的条件㈠粒⼦数反转:具有亚稳态能级结构的物质,在⼀定外来光⼦能量激发条件下,吸收光能,使处于亚稳态(⾼能级)的原⼦数⽬⼤于处于基态(低能级)的原⼦数⽬的现象。
㈡受激辐射:在粒⼦数反转的状态下,⼀束光⼦⼊射该物体,当光⼦能量恰好等于两个能级相对应的能量差时,产⽣受激辐射,输出⼤量光能。
㈢激光具有⼀般光的共性(反射、折射、⼲涉等),也有其特性。
(受激辐射) c v λ=E hv =()1n v E E h =-强度、亮度和能量密度⾼:⼀台红宝⽯激光器的亮度是太阳表⾯亮度的两百多亿倍。
激光加工课件一、激光介绍1.1 激光的产生1.1.1光的物理状态㈠光的电磁学说:在一定波长范围内的电磁波。
λ——波长 C ——频率 V ——波速㈡光的量子说:光是在一定波长范围内的电磁波,一种具有一定能量的以光速运动的粒子流(光子)。
不同频率的光对应不同能量的光子。
E ——光子能量;v ——光的频率;h ——普朗克常数;1.1.2原子的发光㈠基态:电子在最靠近原子核的轨道上运动时,原子所处的能级状态称为基态。
㈡激发态:当外界传给原子一定的能量时,原子的内能增加,外层电子的轨道半径扩大,被激发到高能级,称为激发态(高能态)。
㈢跃迁:原子从高能级回到低能级的过程称为“跃迁”。
被激发到高能级的原子不是很稳定,总是力图回到能量较低的能级去。
具有亚稳态能级的原子和离子的存在是形成激光的重要条件。
㈣光辐射:当原子从高能级跃迁回到低能级或基态时,常常以光子的形式辐射出光能量。
㈤自发辐射:原子从高能级自发地跃迁到低能级而发光的过程称为自发辐射。
(日光灯发光)各受激原子跃迁回到基态的时序先后不一,且具有多个能级,因此方向性、单色性都很差。
㈥受激辐射:满足一定频率要求的一束光入射到具有大量激发态原子的系统中,刺激处在激发能级上的原子跃迁回到低能级,同时发出一束与入射光具有相同特性(频率、相位、传播方向、偏振方向等)的光。
1.1.3激光产生的条件㈠粒子数反转:具有亚稳态能级结构的物质,在一定外来光子能量激发条件下,吸收光能,使处于亚稳态(高能级)的原子数目大于处于基态(低能级)的原子数目的现象。
㈡受激辐射:在粒子数反转的状态下,一束光子入射该物体,当光子能量恰好等于两个能级相对应的能量差时,产生受激辐射,输出大量光能。
㈢激光具有一般光的共性(反射、折射、干涉等),也有其特性。
(受激辐射)c v λ=E hv =()1n v E E h =-强度、亮度和能量密度高:一台红宝石激光器的亮度是太阳表面亮度的两百多亿倍。
空间上和时间上的集中。
激光加工课件一、激光介绍1.1 激光的产生1.1.1光的物理状态㈠光的电磁学说:在一定波长范围内的电磁波。
λ——波长 C ——频率 V ——波速 ㈡光的量子说:光是在一定波长范围内的电磁波,一种具有一定能量的以光速运动的粒子流(光子)。
不同频率的光对应不同能量的光子。
E ——光子能量;v ——光的频率;h ——普朗克常数;1.1.2原子的发光㈠基态:电子在最靠近原子核的轨道上运动时,原子所处的能级状态称为基态。
㈡激发态:当外界传给原子一定的能量时,原子的内能增加,外层电子的轨道半径扩大,被激发到高能级,称为激发态(高能态)。
㈢跃迁:原子从高能级回到低能级的过程称为“跃迁”。
被激发到高能级的原子不是很稳定,总是力图回到能量较低的能级去。
具有亚稳态能级的原子和离子的存在是形成激光的重要条件。
㈣光辐射:当原子从高能级跃迁回到低能级或基态时,常常以光子的形式辐射出光能量。
㈤自发辐射:原子从高能级自发地跃迁到低能级而发光的过程称为自发辐射。
(日光灯发光)各受激原子跃迁回到基态的时序先后不一,且具有多个能级,因此方向性、单色性都很差。
㈥受激辐射:满足一定频率要求的一束光入射到具有大量激发态原子的系统中,刺激处在激发能级上的原子跃迁回到低能级,同时发出一束与入射光具有相同特性(频率、相位、传播方向、偏振方向等)的光。
1.1.3激光产生的条件㈠粒子数反转:具有亚稳态能级结构的物质,在一定外来光子能量激发条件下,吸收光能,使处于亚稳态(高能级)的原子数目大于处于基态(低能级)的原子数目的现象。
㈡受激辐射:在粒子数反转的状态下,一束光子入射该物体,当光子能量恰好等于两个能级相对应的能量差时,产生受激辐射,输出大量光能。
㈢激光具有一般光的共性(反射、折射、干涉等),也有其特性。
(受激辐射) c v λ=E hv=()1n v E E h =-强度、亮度和能量密度高:一台红宝石激光器的亮度是太阳表面亮度的两百多亿倍。
空间上和时间上的集中。
单色性好:具有很窄的谱线宽度,波长一致。
相干性好:单色性越好,相干长度越长。
相干时间:光源先后发出的两束光能够产生干涉现象的最大时间间隔;相干长度:在相干时间内光所走的路程(称为光程);波长一致性越好,相干长度就越长,相干性就越好。
方向性好:具有很小的发散角。
1.2激光加工(Laser Beam Machining,简称LBM)1.2.1激光加工原理:利用高强度、方向性好、单色性好的相干光,获得极高的能量密度(108~1010W/cm2)和10000℃以上的高温,使材料在极短的时间内(千分之几秒甚至更短)熔化甚至气化,以达到去除材料的目的。
1.2.2激光加工特点:①聚焦微小,输出功率可调整。
聚焦后,激光加工的功率密度非常高,光能转化为热能几乎可以熔化、气化任何材料。
②激光光斑可以聚焦到微米级,输出功率可调,能够实现精密微细加工。
③非接触式加工,无机械力,无工具损耗,易实现加工过程自动化。
加工速度快,热影响区域很小。
④与其他高能束加工比较,加工装置比较简单。
⑤高功率密度,可高达108~1010W/cm2。
⑥加工重复精度和表面粗糙度不容易保证。
对光反射敏感的材料,必须在加工前另加处理;⑦加工产生废气、废物,必须及时排除。
操作人员应有一定安全防护要求。
1.2.3激光加工的基本设备包括以下四部分:激光器:将电能转变成光能。
电源:为激光器提供能量和控制功能。
光学系统:聚焦系统和观察瞄准系统。
机械系统:床身、工作台、机电控制系统。
1.2.4激光器的分类按激活介质的种类:固体激光器和气体激光器按工作方式:连续激光器和脉冲激光器㈠固体激光器的基本组成:工作物质、光泵、滤光液、冷却水、聚光器、谐振腔。
固体激光器的分类:红宝石激光器、钕玻璃激光器、掺钕钇铝石榴石(Y AG)激光器。
㈡气体激光器二氧化碳激光器:以二氧化碳气体为工作物质的分子激光器,目前连续输出功率最高的气体激光器。
氩离子激光器。
二、激光加工工艺2.1激光打孔2.1.1激光打孔原理:基于聚焦后的激光具有极高的功率密度使得工件材料融化、气化等热物理现象综合的结果。
2.1.2激光打孔特点:①几乎可以在任何材料上打微型小孔;(直径10µm的精密微孔,机械加工很难达到0.25mm);②适合于自动化连续打孔,加工效率高;③直径可小到0.01um以下,深径比可达50:1;④速度快,效率高,尤其高密度群孔加工;⑤可加工硬脆软材料和可在难加工材料上加工斜孔2.1.3激光打孔的主要影响因素①输出功率与照射时间:输出功率大,光照时间长,则工件获得的激光能量大。
照射时间为几分之一到几毫秒,时间不能太短也不能太长。
②聚焦与发散角:尽可能减小激光的发散角,使其在聚焦以后获得很小的光斑和更高的功率密度,从而加工直径更小、深度更深的孔。
③焦点位置:焦点位置对于孔的形状和深度都有很大影响。
④光斑内的能量分布⑤激光的多次照射:激光照射一次,加工深度约为孔径的五倍,且锥度很大;多次照射则深度大大增加、锥度减小、孔径几乎不变。
⑥工件材料:各种工件材料吸收光谱不同,相当一部分能量将被反射或透射掉,必须根据工件材料的吸收光谱合理选择激光器。
对于高反射率和透射率的工件,采用打毛或黑化,增大对激光的吸收效率。
工件表面粗糙度值越小,吸收效率越低,打的孔也就愈浅。
2.2激光切割2.2.1激光切割原理:基于聚焦后的激光具有极高的功率密度使得工件材料瞬时气化蚀除。
工件和激光束具有相对移动(一般移动工件),一般采用高重复频率的脉冲激光器。
2.2.2激光切割的特点:①能够加工各种各样的材料,金属、玻璃、陶瓷、木材、布、纸张等;②适合于异形孔加工,精密零件的窄缝切割切割;③切割深宽比大;④切口质量良好,边缘平滑,无切割残渣,热影响区域小;⑤具有较高的加工效率,加工成本可显著降低(国外汽车70%的部件切割焊接采用激光加工)。
2.3激光焊接2.3.1激光焊接:利用聚焦后的激光,将工件的加工区“烧熔”,使其粘合在一起。
所需能量密度较低,功率密度一般为105~106W/cm2。
2.3.2激光焊接的特点:①激光照射时间短,焊接过程极为迅速,不仅有利于生产率的提高,而且被焊材料不易氧化,热影响区域小。
②可以透过透明体进行焊接,防止杂质污染和腐蚀,适宜于精密仪表、真空仪器元件的焊接。
③具有熔化净化效应,能纯净焊缝金属,无焊渣,无需去除工件的氧化膜,焊缝的机械性能在各方面都相当于甚至优于母材。
2.3.3激光焊接的优势:①速度快、效率高、深度大、变形小;②大深宽比,5:1,最大10:1;③可焊接难熔材料和可进行微型焊接。
2.4激光淬火2.4.1激光淬火原理:采用功率密度为103~105W/cm2的激光,短时间(10-2min)照射材料表面,使得材料表面迅速升温(升温速度可达105~106℃/s )达到相变温度。
激光束移开后,热量从材料表面迅速向内部传导,冷却速度可达104℃/s ,在急热急冷过程中,实现快速自冷淬火。
2.4.2激光淬火特点:①高速加热,高速自冷②硬度高,比常规高5-20%③淬火应力与变形小2.5激光表面合金化:在高能量密度激光束的照射下,将外加合金元素熔化在工件表面的薄层内,从而改变工件表面层的化学成分,形成具有特殊性能的合金化层,以提高工件表面的耐磨性、耐腐蚀性合抗高温氧化等特性,达到材料局部表面改性的目的。
2.6激光标记刻印用途:①便于对原材料、半成品、在制品、产品进行分类;②便于使用、防止假冒激光标记特点;③可标记条形码、数字符号图案。
用激光加工设备,在水晶材料内聚焦产生爆炸微点,这些数以万计的微点,在水晶内组成精美图案(如建筑物、人物、动物和各种物体)。
三、激光在模具行业的应用3.1目前,用于激光加工的工业激光器主要有两大类:固体激光器和气体激光器。
其中,固体激光器以Nd:Y AG激光器为代表;而气体激光器则以CO2激光器为代表。
随着激光技术的发展,目前人们也开始在某些加工应用场合使用大功率光纤激光器和大功率半导体激光器。
3.1.1 Nd:YAG激光器Nd:YAG激光器的激光工作物质为固态的Nd:YAG棒,其激光波长为1.06μm。
由于该种激光器的激光转换效率较低,同时受到YAG棒体积和导热率的限制,其激光输出平均功率不高。
但由于Nd:YAG激光器可以通过Q开关压缩激光输出的脉冲宽度,在以脉冲方式工作时可获得很高的峰值功率(108W),适用于需要高峰值功率的激光加工应用;其另一大优点是可以通过光纤传输,避免了复杂传输光路的设计制作,在三维加工中非常有用。
此外,还可以通过三倍频技术将激光波长转换为355nm(紫外),在激光立体造形技术中得到应用。
3.2.2 CO2激光器CO2激光器的激光工作物质为CO2混合气体,其主要应用的激光波长为10.6μm。
由于该种激光器的激光转换效率较高,同时激光器工作产生的热量可以通过对流或扩散迅速传递到激光增益区之外,其激光输出平均功率可以做到很高的水平(万瓦以上),满足大功率激光加工的要求。
国内外用于激光加工的大功率CO2激光器,主要是横流、轴流激光器。
①横流激光器:横流激光器的光束质量不太好,为多模输出,主要用于热处理和焊接。
我国目前已能生产各种大功率横流CO2激光器系列,可满足了国内激光热处理和焊接的需求。
②轴流激光器:轴流激光器的光束质量较好,为基模或准基模输出,主要用于激光切割和焊接,我国激光切割设备市场主要由国外轴流激光器所占领。
尽管国内激光器厂商在国外轴流激光器上做了许多工作,但由于主要配件还需进口,产品价格难以大幅度下降,普及率低。
3.2模具激光制造3.2.1激光间接成模工艺①立体光造形(StereoLithographyApparatus,简称SLA)工艺是利用紫外激光束逐层扫描光固化胶的方法形成三维实体工件的。
1986年美国3DSystems公司推出了商品化样机SLA-1。
SLA工艺的最高加工精度能达到0.05mm。
②薄层叠片制造(LaminatedObjectManufacturing,简称LOM)工艺采用薄片材料,如纸、塑料薄膜等,由美国Helisys公司于1986年研制成功。
通过反复CO2激光器切割和材料粘贴,得到分层制造的实体工件。
LOM工艺的特点是适合制造大型工件,其精度达到0.1mm。
③选择性激光烧结(SelectiveLaserSintering,简称SLS)工艺是利用粉末状材料成形的,由美国德克萨斯大学奥斯汀分校的于1989年研制成功,通过用高强度的CO2激光器逐层有选择地扫描烧结材料粉末而形成三维工件,SLS工艺最大的优点在于选材较为广泛。
上述三种激光快速成形技术由于发展时间长,技术相对比较成熟,在国内外都得到了较为广泛的应用。
但上述方法形成的三维工件都不能直接作为模具使用,需要进行后续的处理,所以称之为激光间接成模工艺。