第5章控制器局域网CAN总线技术规范
- 格式:ppt
- 大小:634.50 KB
- 文档页数:57
Controller Area Network,控制器局域网.CAN被设计作为汽车环境中的微控制器通讯,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。
优点是将所有的线束由电脑集中控制,所有的控制指令由电脑变成数字信号,明显减少了各系统的的线束量,接头数量也相应减少,降低了故障率,提高了自动化程度。
现代汽车中所使用的电子控制系统和通讯系统越来越多,如发动机电控系统。
自动变速器控制系统。
防抱死制动系统(ABS).自动巡航系统(ACC)和车载多媒体系统等,这些系统之间。
系统和汽车的显示仪表之间,系统和汽车故障诊断系统之间均需要进行数据交换,如此巨大的数据交换量,如仍然采用传统数据交换的方法,即用导线进行点对点的连接的传输方式将是难以想象的,据统计,如采用普通线索,一个中级轿车就需要线索插头300个左右,插针总数将达到2000个左右,线索总长超过1. 6Km,不但装配复杂而且故障率会很高。
因此,用串行数据传输系统取而代之就成为必然的选择。
数据在串联总线上可以一个接一个的传送,所有参加CAN总线的分系统都可以通过其控制单元上的CAN总线接口进行数据的发送和接收,CAN总线是一个多路传输系统,当某一单元出现故障时不会影响其他单元的工作,CAN总线对不同数据的传输速率不一样,对发动机电控系统和ABS等实时控制用数据实施高速传输,速率为1 25K波特-–1M波特,对车身调节系统(如空调)的数据实施低速传输,传输速率在1 0—1 25K波特,其他如多媒体系统和诊断系统则为中速传输,速率在两者之间,这样的区分提高了总线的传输效率。
数据总线如何能实现多路传输的呢?原来数据总线有三部分组成:1)数据传输线,2)地址传输线,3)发送单元和接收单元之间的传送控制线。
数据按CPU的指令以一定的模式传输到指定的地址,而传输模式是由软件控制的。
CAN总线式汽车仪表总成功能简介慧聪网2005年4月29日14时0分一、技术背景在当今的中高档汽车中都采用了汽车总线技术。
一、CAN总线简介CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准(ISO11898)。
是国际上应用最广泛的现场总线之一。
在建立之初,CAN总线就定位于汽车内部的现场总线,具有传输速度快、可靠性高、灵活性强等优点。
上世纪90年代CAN总线开始在汽车电子行业内逐步推广,目前已成为汽车电子行业首选的通信协议,并且在医疗设备、工业生产、楼宇设施、交通运输等领域中取得了广泛的应用。
二、CAN总线技术及其规范2.1性能特点(1)数据通信没有主从之分,任意一个节点可以向任何其他(一个或多个)节点发起数据通信,通信方式灵活,且无需站地址等节点信息;(2)CAN网络上的节点信息分成不停的优先级,可满足不同的实时要求,高优先级节点信息最快可在134μs内得到传输;(3)采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低的节点会主动退出发送,而高优先级的节点可不受影响的继续发送数据,从而大大节省了总线冲突仲裁时间。
尤其是在网络负载很重的情况下也不会出现网络瘫痪的情况;(3)通信距离最远可达10KM(速率低于5Kbps)速率可达到1Mbps(通信距离小于40M);(4)通信的硬件接口简单,通信线少,传输介质可以是双绞线,同轴电缆或光缆。
CAN总线适用于大数据量短距离通信或者长距离小数据量,实时性要求比较高,多主多从或者各个节点平等的现场中使用。
(5)采用短帧结构,传输时间短,受干扰概率低,每帧信息都有CRC校验及其他检验措施,数据出错率极低;(6)节点在严重错误的情况下具有自动关闭输出的功能,以使总线上其他节点的操作不受影响。
(7)CAN总线使用两根信号线上的差分电压传递信号,显性电平可以覆盖隐形电平。
2.2技术规范2.2.1CAN的分层结构图1 CAN的分层结构逻辑链路控制子层(LLC)的功能:为数据传送和远程数据请求提供服务,确认由LLC子层接收的报文实际上已被接收,为恢复管理和通知超载提供信息。
CAN技术规范篇一:CAN介绍及其技术规范CAN总线介绍及其技术规范CAN总线CAN(Controller Area Network)即控制器局域网,可以归属于工业现场总线的范畴,通常称为CAN bus,即CAN总线,是目前国际上应用最广泛的开放式现场总线之一。
CAN 最初出现在汽车工业中,80年代由德国Bosch公司最先提出。
最初动机是为了解决现代汽车中庞大的电子控制装置之间的通讯,减少不断增加的信号线。
与一般的通信总线相比,CAN总线的数据通信具有突出的可靠性、实时性和灵活性,它在汽车领域上的应用最为广泛,世界上一些著名的汽车制造厂商,如BENZ(奔驰)、BMW(宝马)、volkswagen (大众)等都采用了CAN总线来实现汽车内部控制系统与各检测和执行机构间的数据通信。
1993年CAN 成为国际标准ISO11898(高速应用)和ISO11519(低速应用)。
CAN的规范从CAN 1.0 规范(标准格式)发展为兼容CAN 1.2 规范的CAN2.0规范(CAN2.0A为标准格式,CAN2.0B为扩展格式),目前应用的CAN器件大多符合CAN2.0规范。
由于CAN总线的特点,得到了Motorola,Intel,Philip,Siemence,NEC等公司的支持,它广泛应用在离散控制领域,其应用范围目前已不仅局限于汽车行业,已经在自动控制、航空航天、航海、过程工业、机械工业、纺织机械、农用机械、机器人、数控机床、医疗器械及传感器等领域中得到了广泛应用。
CAN的工作原理、特点CAN总线标准包括物理层、数据链路层,其中链路层定义了不同的信息类型、总线访问的仲裁规则及故障检测与故障处理的方式。
当CAN 总线上的一个节点(站)发送数据时,它以报文形式广播给网络中所有节点。
每组报文开头的11位字符为标识符(CAN2.0A),定义了报文的优先级,这种报文格式称为面向内容的编址方案。
当一个节点要向其它节点发送数据时,该节点的CPU 将要发送的数据和自己的标识符传送给本节点的CAN芯片,并处于准备状态;当它收到总线分配时,转为发送报文状态。
CAN总线的技术规范与控制器类型随着微处理器及控制器的效能提升、价格降低及稳定性增高等因素的产生,汽车产业中也开始导入电子组件和装置来取代传统的纯机械式产品,例如用电控燃油喷射系统来取代化油器,急刹车缓冲装置采用高速的微处理器来达成实时的反应速度等,这在安全气囊及座椅安全带方面也有所体现。
另外在汽车中也加装了许多传感器,用来追踪不同装置在温度和压力上的改变,并在出现异常时提醒控制系统及早做出处置。
为了让汽车更安全、更有效率、更可靠和更容易操控,一台车体中采用的电子控制单元已越来越多。
在这种情况下,各个单元间的通信通力也就越来越重要。
传统的配线方式已显得过于复杂,而且会增加车体重量和配线成本。
这时就出现了对先进车载总线技术的使用需求,以对复杂的电子控制单元及行车信息提供整合控制,进而实现线传控制系统的理想境界。
在汽车中的电子化功能主要是要对车体中的各个零件及安全装置进行控制,以及为驾驶提供行车或娱乐性的信息。
不同的应用有不同的传输速率及控制机制的要求。
目前业界常见或在发展中的几项代表性的总线技术如图1 所示。
图1 不同总线技术的速度及应用定位CAN 的技术特色CAN 协议具有许多优势,包括它能让设计者很容易地为CAN 系统新增或移除网络中的节点,而且不会影响其他网络。
CAN 系统中的分散性微控制器无需依赖中央的主控制器就能收发信号,从而让信号的流量管理更有效率,也有助于减少内部线路的需求。
在CAN 系统中,每个节点的地位是相同的,也就是说只要总线处于闲置状态,每个控制器节点都可以传送信号给任何其他的控制器。
控制器所发出的每个信号都有自己的识别码,因此各个节点会接收与自己相关的信号,并忽略不相关的信号。
更重要的是,在此机制中,当任何控制器出现故障时,系统中的其他装置仍然能够正常运作,并能。
控制器局域网总线一CAN什么是CAN ?•:・CAN全称为Controller Area Network即控制器局域网,是国际上应用最广泛的现场总线之一;・:・最初CAN被设计作为汽车环境中的微控制器通讯在车載各电子控制装置ECU之间交换信息形成汽车电子控制网络比如发动机管理系统变速箱控制器仪表装备电子主干系统中均嵌入CAN控制装置;・:・一个由CAN总线构成的单一网络中理论上可以挂接无数个节点,实际应用中节点数目受网络硬件的电气特性所限制.例如当使用Philips P82C250作为CAN收发器时同一网络中允许挂接110个节点;•:- CAN可提供高达IMbit/s的数据传输速率这使实时控制变得非常容易,另外硬件的错误检定特性也增强了CAN的抗电磁干扰能力.CAN是怎样发展起来的?❖CAN最初出现在80年代末的汽车工业中,由德国Bosch 公司最先提出.当时,由于消费者对于汽车功能的要求越来越多,而这些功能的实现大多是基于电子操作的,这就使得电子装置之间的通讯越来越复杂,同时意味着需要更多的连接信号线.提出CAN总线的最初动机就是为了解决现代汽车中庞大的电子控制装置之间的通讯,减少不断增加的信号线。
于是,他们设计了一个单一的网络总线,所有的外围器件可以被挂接在该总线上.1993年,CAN 已成为国际标准ISO11898(高速应用)和ISO11519(低速应用)・• CAN是一种多主方式的串行通讯总线,基本设计规范要求有高的位速率,高抗电磁干扰性, 而且能够检测出产生的任何错误.当信号传输距离达到lOKm时,CAN仍可提供高达50Kbit/s的数据传输速率. ・:•由于CAN总线具有很高的实时性能,因此,CAN已经在汽车工业、航空工业、工业控制、安全防护等领域中得到了广泛应用。
CAN总线的主要特点•:•它是一种多主总线.通信介质可以是双绞线、同轴电缆和光纤,通信距离最远可达10km (5kb/s),最高速率可达IMb/s(40m).•:- CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。
CAN总线控制器局域网CAN,全称为“CONtroller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。
最初,CAN被设计作为汽车环境中的微控制器通讯,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。
比如:发动机管理系统、变速箱控制器、仪表装备、电子主干系统中,均嵌入CAN控制装置。
一个由CAN 总线构成的单一网络中,理论上可以挂接无数个节点。
实际应用中,节点数目受网络硬件的电气特性所限制。
例如,当使用Philips P82C250作为CAN收发器时,同一网络中允许挂接110个节点。
CAN 可提供高达1Mbit/s的数据传输速率,这使实时控制变得非常容易。
另外,硬件的错误检定特性也增强了CAN的抗电磁干扰能力。
CAN总线特性o CA N具有十分优越的特点,使人们乐于选择。
这些特性包括:1、低成本;2、极高的总线利用率;3、很远的数据传输距离(长达10Km);4、高速的数据传输速率(高达1Mbit/s);5、可根据报文的ID决定接收或屏蔽该报文;6、可靠的错误处理和检错机制;7、发送的信息遭到破坏后,可自动重发;8、节点在错误严重的情况下具有自动退出总线的功能;9、报文不包含源地址或目标地址,仅用标志符来指示功能信息、优先级信息。
CAN总线特点o(1)它是一种多主总线,即每个节点机均可成为主机,且节点机之间也可进行通信。
(2)通信介质可以是双绞线、同轴电缆或光导纤维,通信速率可达1Mb/s。
(3)通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余校验、优先级判别等项工作。
(4)CAN协议的一个最大特点是废除了传统的站地址编码,雨代之以对通信数据块进行编码。
采用这种方法的优点是可使网络内的节点个数在理论上不受限制,数据块的标识码可由11位或29位二进制数组成,因此可以定义211或229个不同的数据块,这种数据块编码方式,还可使不同的节点同时接收到相同的数据,这一点在分步式控制中非常重要。
CAN总线技术协议规范一、CAN总线的通信模式CAN是一种有效支持分布式控制[3]或实时控制的串行通信网络,可实现全分布式多机系统;可以用点对点,一点对多点以及全局广播几种方式传送和接受数据;CAN总线直接通信距离最远可达10Km(此时传输速率可能达到5Kb/s),通信速率最高可达1Mb/s(此时传输距离可能达到40m);且理论上CAN总线通信网络的节点数不受限制(实际上受CAN收发器芯片驱动能力的限制)。
CAN总线基于下列5条基本规则进行通信协调:1.总线访问:CAN是共享媒体总线,他对媒体的访问机制类似于以太网的媒体访问机制,机采用载波监听多路访问的方式。
CAN控制器只能在总线空闲时发送,并采用硬同步,所有CAN控制器同步位于帧起始的前沿。
为避免异步时钟因累积误差而产生错位,CAN总线中用硬同步后满足一定条件的跳变进行重同步。
所谓总线空闲,就是网络上至少存在3个空闲位(隐性位)时网络的状态,也就是CAN 节点在侦听到网络上出现至少3个隐性位时,才开始发送。
2.仲裁:当总线空闲时呈隐性电平,此时任何一个节点都可以向总线发送一个显性电平作为一个帧的开始。
如果有两个或两个以上的节点同时发送,就会产生总线冲突。
CAN总线解决总线冲突的方法比以太网的CSMA/CD方法有很大的改进。
以太网是碰撞检测方式,即一旦检测到两个或多个节点同时发送信息帧时,即所有发送节点都退出发送,待随机时间后再发送。
而CAN是按位对标识符进行仲裁:各发送节点在向总线发送电平的同时,也对总线上得电平进行读取,并与自身发送的电平进行比较,如果电平相同则继续发送下一位,不同则说明网络上有更高优先级的信息帧正在发送,即停止发送,退出总线竞争。
剩余的节点则继续上述过程,直达总线上只剩下一个节点发送的电平,总线竞争结束,优先级最高的节点获得了总线的使用权,继续发送信息的剩余部分直至全部发送完毕。
3.编码/解码:帧起始域、总裁域、控制域,数据域和CRC序列均使用位填充技术进行编码。