α-2受体激动剂作用机制及应用资料
- 格式:ppt
- 大小:433.00 KB
- 文档页数:69
受体激动剂与细胞信号转导的研究进展与应用研究随着科学技术的不断发展,受体激动剂与细胞信号转导的研究也得到了很大的发展。
这是一个非常重要的领域,因为它涵盖着细胞的基本生理功能,包括代谢调节、细胞增殖、细胞分化、细胞凋亡等等。
在本文中,我们将探讨受体激动剂与细胞信号转导的最新研究进展以及其应用研究。
一、受体激动剂的作用机制受体激动剂是指能够与细胞表面上的受体结合并引起相应的生物效应的化合物。
目前,已发现的受体激动剂类型非常多,包括激素、神经递质、细胞因子、药物等。
它们能够通过两种机制来引起细胞反应,即离子通道机制和二级信使机制。
离子通道机制是指受体与激动剂结合后,离子通道会发生打开或关闭的变化,从而导致细胞内离子浓度发生改变,进而引起细胞反应。
二级信使机制是指受体激动剂结合后启动不同的信号转导通路,最终导致蛋白质激酶(如丝裂原激酶)的激活,从而引起细胞反应。
二、细胞信号转导的作用机制细胞信号转导是指受体激动剂通过信号递送通路(包括激酶、磷酸酶等)将信息传递到细胞内,最终导致特定的细胞反应。
这是一个非常重要的过程,因为它调节着细胞内代谢、生长、分化、凋亡等重要生理途径。
细胞信号转导的分子机制非常复杂,包括多个节点和信号通路。
其中最常见的信号传递通路有以下几个:1. MAPK通路(丝裂原激酶通路):MAPK通路被广泛地应用于显微镜、生物医学工程、药物筛选等领域。
2. PI3K/AKT通路:PI3K/AKT通路是一个非常重要的细胞生长和分化途径。
3. Wnt通路:Wnt通路被认为是肿瘤细胞中最常见的信号通路之一。
三、受体激动剂与细胞信号转导的应用研究受体激动剂与细胞信号转导在许多不同领域中都有着广泛的应用。
以下是一些应用举例:1. 研究药物靶点:研究药物靶点是药物发现的一个重要领域。
通过运用受体激动剂与细胞信号转导系统,科学家们可以发现并验证新的药物靶点。
2. 肿瘤研究:受体激动剂与细胞信号转导在肿瘤研究中有着广泛的应用。
第四节α2激动剂第四节α-肾上腺素受体激动剂(Alpha-Adrenergic Agonists)⼀、盐酸可乐定(clonidine Hydrochloride)可乐定是中枢α2-去甲肾上腺素受体激动剂,可以优先激动下丘脑及延脑的中枢突触前α2受体,抑制⼤脑的内源性去甲肾上腺素释放。
减少中枢交感神经冲动传出,从⽽抑制外周交感神经活动。
近年来的⼀些研究认为脑内去甲肾上腺素系统在注意缺陷多动障碍的病理机制中具有重要作⽤。
(⼀)药代动⼒学本品⼝服后70%~80%吸收,并很快分布到各器官,组织内药物浓度⽐⾎浆中⾼,能通过⾎脑屏障蓄积于脑组织。
蛋⽩结合率为20%~40%。
⼝服本品后半⼩时到1⼩时发挥作⽤,3~5⼩时⾎药浓度达峰值,⼀般为1.35ng/ml,作⽤持续时间6~8⼩时。
消除半衰期为12.7(6~23)⼩时,肾功能不全时延长。
在肝脏代谢,约50%吸收的剂量经肝内转化。
40%~60%以原形于24⼩时内经肾排泄,20%经肝肠循环由胆汁排出。
(⼆)禁忌症对可乐定过敏者禁⽤。
有⼼⾎管疾病者是相对禁忌症,使⽤时需要进⾏密切监测。
不能⽤于有抑郁症状或抑郁症病史、抑郁症家族史或双向情感障碍家族史的⼉童少年。
(三)药物相互作⽤1.与⼄醇、巴⽐妥类或镇静药等中枢神经抑制药合⽤,可加强中枢抑制作⽤。
2.与其他降压药合⽤可加强降压作⽤。
3.与β受体阻滞剂合⽤后停药,可增加可乐定的撤药综合征危象,故宜先停⽤β受体阻滞剂,再停可乐定。
4.与三环类抗抑郁药合⽤,减弱可乐定的降压作⽤。
可乐定须加量。
5.与⾮甾体类抗炎药合⽤,减弱可乐定的降压作⽤。
可乐定与哌甲酯合⽤1995年美国媒体报道了3名⼉童服⽤哌甲酯与可乐定后死亡,但美国⾷品药品管理局并未将此事通知临床医师,Popper认为这两者间的关系⾮常不能确定。
之后有许多报道,均认为没有令⼈信服的证据说明两者间的关系。
Popper (1995)和Swanson(1995)都认为可乐定与哌甲酯联合⽤于治疗ADHD是安全的,但还缺乏系统的研究。
右美托咪啶的药理作用及在小儿中的应用【摘要】右美托咪啶为高效、高选择性的α2-肾上腺素能受体激动剂,具有剂量依赖性的镇静、镇痛、抗焦虑、交感神经抑制等作用,呼吸抑制和药物依赖的发生率较低,美国食品和药品管理局(FDA)在1999年批准其用于成年人24 h内的短期镇静。
2008年FDA批准操作镇静,用于非插管患者在手术和其他操作过程的镇静。
2009年6月中国食品和药品管理局(SFDA)批准用于全麻患者气管插管和机械通气时的镇静。
广泛用于术前用药、全麻辅助药、术后镇痛、治疗撤药反应等诸多临床实践,获得成功应用。
现就其药理作用及小儿中的应用作一综述。
【关键词】右美托咪啶;药理学;小儿在上世纪60年代初,第一代α2-肾上腺素受体激动剂合成。
其最初被用作消除鼻粘膜充血。
早期应用的新物质,即现在的可乐定,意外发现镇静催眠作用和严重心血管抑制症状等副作用。
随后的一系列试验,导致可乐定在1966年作为抗高血压药物应用。
多年来,可乐定不仅作为抗高血压药物,而且用于酒精和毒品戒断治疗,心肌缺血、疼痛及鞘内注射麻醉的辅助药[1]。
将α2-肾上腺素受体激动剂作为麻醉剂使用并不是最早应用于人类。
兽医行业在很长一段时间就使用地托咪啶等用于动物的镇痛和镇静。
我们前期的大部分知识都是从这一应用得到的[2]。
随着时代的进步,古老的地托咪啶镇痛镇静麻醉可能通过采用新的、更有效的α2受体激动剂,如美托咪啶及其立体异构体—右美托咪啶所替代。
右美托咪啶是α2-肾上腺素受体激动剂美托咪啶的右旋异构体。
高选择性激动α2-肾上腺素受体,对α2-肾上腺素受体的选择性(α2:α1=1620:1)是可乐定(α2:α1=220:1)的8倍[3]。
具有剂量依赖性的镇静、镇痛、抗焦虑、交感神经抑制等作用,呼吸抑制和药物依赖的发生率较低,FDA在1999年批准右美托咪啶用于成年人24 h内的短期镇静。
2008年FDA批准用于操作镇静,用于非插管患者在手术和其他操作过程的镇静。
α2受体激动剂在围术期的应用进展α2受体激动剂与中枢及外周神经系统α2受体特异性结合后产生多种生理效应,以可乐定(clonidine)或美托咪啶(medetomidine)作为代表药物,其具有降压、镇静、镇痛、抗焦虑等多重作用,临床围术期的应用越来越广泛。
现就α2受体激动剂在围术期的应用进展做一综述。
一、α2受体及其亚型α2受体属于α受体亚型,广泛分布于中枢神经系统和外周组织【1】,通过药理学和分子生物学的进一步研究发现,α2受体又可以分成多种亚型,如α2A、α2B 、α2C和α2D等,这些亚型广泛分布在中枢神经系统。
由于α2受体的多样性,以及在动物和人体内各个组织器官的分布多样性,使药物作用于受体产生不同的结果。
临床上最重要的α2受体亚型是α2A和α2B亚型,α2A主要分布于脑干,参与调解知觉、觉醒、和警觉的状态。
α2B亚型主要调解外周血管的紧张度。
物种多样性决定了α2受体亚型在脑干的作用特性。
在犬和鼠的脑干以α2A亚型分布为主,而在绵羊的脑干以α2D 亚型为主【2】。
α2受体激动可以产生镇静和镇痛效应,这种效应不仅和受体所在部位、分布密度以及亚型有关,还与α1、α2和药物的亲和力有关。
目前临床使用的α2受体激动剂均有不同程度的激动α1的作用,因此均有不同程度的α1激动效应【3】。
中枢α1刺激,可以拮抗强效α2受体激动剂产生的催眠作用【4】,而且增加α2受体激动剂药物剂量或达到中毒剂量时,α1激动效应将占优势。
临床使用的α2受体激动剂,其受体选择性越高,其作用效应越显著,因此使用较低的剂量,或者增加药物使用剂量时只需要增加较低的剂量,即可达到预期效应。
下列药物α2/α1受体的选择性如下:美托咪啶(1620:1);地托咪啶(detomidine)(260:1);可乐定(220:1);赛拉嗪(xylazine)(160:1)【5】。
二、α2受体激动剂生理效应α2受体激动可以产生多种效应,包括对意识、循环、呼吸、骨骼肌的影响等等。
α2肾上腺素能受体激动剂在疼痛治疗中的使用从1970年开始,α2肾上腺素能受体激动剂在临床上被用来治疗高血压和药物及乙醇的戒断症状。
这类药物能产生抗焦虑、镇静、抗交感及镇痛等多种作用,因此可以用于手术期间以满足不同的需要。
目前在西方国家中有3种α2肾上腺素能受体激动剂在临床中使用,它们分是可乐定、右美托咪啶和替扎尼定,但在中国右美托咪啶尚未上市。
因此还是有必要就这类药物向中国的疼痛学专家作个简要介绍。
α2肾上腺素能受体在体内分布广泛,当α2肾上腺素能受体激动剂与其结合后就能产生临床效应。
α2肾上腺素能受体有3种亚型,分别是α2a, α2b andα2c,α2肾上腺素能受体激动剂结合每种不同的亚型都能产生独特的效应,例如α2a受体能产生麻醉、镇痛及抗交感作用(低血压和心动过缓),α2b受体有间接升高血压的作用(血管收缩),α2c受体与感觉与运动门控欠缺有关,如精神分裂症, 注意力缺乏及过动症,创伤后功能障碍和停药反应(调节多巴胺的活性)。
在中枢神经系统中α2受体亚型有不均匀的分布,3种受体中α2a受体最普遍且到处存在,α2b 受体仅存在于少数部位。
所有的α2肾上腺素能受体激动剂都是不同程度地作用于各受体亚型,所有的受体亚型都是通过结合G蛋白而产生细胞效应,尤其是对百日咳-毒素易感的G蛋白:Go和G1。
因为没有选择性亚型受体激动剂可供使用,所以想只产生单一所需要的α2肾上腺素能效应可能是不行的,如只是产生镇痛作用,而不会产生其他不利作用如低血压等。
激活α2肾上腺素能受体可抑制腺苷酸环化酶,导致cAMP生成减少,cAMP是许多细胞作用的重要调节剂,它能通过cAMP 依赖的蛋白激酶而控制调节蛋白的磷酸化状态。
另外α2肾上腺素能受体兴奋导致了神经递质释放受到抑制,这是通过在电压门控钙离子通道中钙离子的减少而介导的,这个过程需要结合一个Go蛋白。
激活α2肾上腺素能受体还可加速Na+-H+的交换,引起血小板内部碱化,刺激磷脂酶A2活性的增加,最终导致血栓素A2的生成增多。
抗高血压药神经调节交感神经系统中枢可乐定降压作用中等偏强,α2和咪唑啉受体激动剂药理作用降压激动孤束核突触前膜α2受体一NE↓激动延髓嘴端腹外侧区咪唑啉Ⅰ1受体→外周交感神经活性↓镇痛镇静激动蓝斑核α2受体→嗜睡临床应用中度高血压高血压危象不良反应常见口干、便秘久用可致水钠潴留一合用利尿药血压反跳性增高一合用酚妥拉明莫索尼定选择性作用于Ⅰ1咪唑啉受体适用于轻、中度高血压神经节樟磺咪芬、美卡拉明末梢递质释放利血平与去甲肾上腺素能神经末梢囊泡膜上的胺泵呈难逆性结合并抑制其活性,抑制NA的贮存和释放,使递质耗竭而发挥降压作用胍乙啶用于重症高血压突触后膜α1受体药理作用降低动脉血管阻力、增加静脉容量和肾素活性哌唑嗪药理作用阻断α1受体,扩张动静脉增加患者HDL,降低LDL、甘油三脂和总胆固醇缓解前列腺增生病人的排尿困难临床应用轻中度伴有高血脂或前列腺肥大的高血压患者不良反应首剂现象(低血压)血管平滑肌硝普纳(NO供体药)直接扩张动静脉、降低心脏的前后负荷,改善心功能常用抗高血压药物利尿药机制初期:减少细胞外液容量及心输出量长期:扩血管1、动脉平滑肌细胞内Na↓→Na-Ca交换↑→细胞内Ca↓→平滑肌舒张2、胞内Ca减少,平滑肌对NA、血管紧张素等缩血管物质反应性降低3、诱导血管壁产生扩血管物质,如激肽、前列腺素氢氯噻嗪降压特点口服吸收良好、降压作用温和,持久不良反应多高血脂、高血糖、高尿酸 水钠潴留、耐受性吲达帕胺(寿比山)不具有传统利尿药造成代谢异常的副作用钙通道阻滞药降压机制抑制胞外Ca内流→胞内Ca↓→血管平滑肌松弛、血管扩张、血压下降药理作用抑制心脏舒张血管短效硝苯地平临床应用适用于轻、中、重度高血压伴心绞痛、肾脏疾病、糖尿病、哮喘、高血脂的患者目前推荐使用硝苯地平缓释片(伲福达),减轻迅速降压造成的反射性交感神经活性增加中效尼群地平扩血管作用强于硝苯地平长效氨氯地平起效慢、作用时间长、生物利用度高、靶器官保护作用β肾上腺素受体阻断药普萘洛尔(心得安)药理机制心脏β1受体→心输出量↓肾肾小球旁器细胞β1→分泌肾素↓→RAAS↓→血管紧张素↓中枢下丘脑、延髓β→中枢兴奋性神经元↓→外周交感神经张力↓→血管阻力↓降低外周交感神经活性突触前膜β2↓→正反馈↓递质↓压力感受器敏感性↓;PGI2↑临床应用各种原发性高血压对肾素活性高和心输出量高的年青高血压患者疗效好尤其适用于高血压伴心绞痛和心律失常以及伴脑血管病变的患者肾素-血管紧张素系统抑制药血管紧张素转化酶抑制剂(ACEI)卡托普利药理作用降压抑制ACE→使AngⅠ转变为AngⅡ减少→血管舒张减少醛固酮分泌抑制激肽酶→缓激肽降解→血管扩张通过缓激肽-NO途径保护心血管特异性肾血管扩张增加机体对胰岛素敏感性减缓或逆转心血管重构保护靶器官临床应用适用于各型高血压尤其适用于合并糖尿病及胰岛素抵抗、左心室肥厚、心衰、急性心梗的高血压患者与利尿药合用于重型或顽固性高血压依那普利长效、高效(卡的10倍)不含-SH无皮疹、嗜酸细胞增加等不良反应血管紧张素工受体(AT1)阻断药氯沙坦药理作用拮抗AngⅡ的缩血管作用减缓或逆转心血管重构保护靶器官临床应用各型高血压,改善左心室肥厚充血性心衰高血压药物治疗的新概念有效治疗与终身治疗、保护靶器官、平稳降压、联合用药信号传递。