圆柱圆锥练习题以及答案
- 格式:docx
- 大小:3.32 KB
- 文档页数:2
圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。
7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。
8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。
9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。
三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。
11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。
四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。
13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。
答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。
11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。
人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。
A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。
A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。
11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。
13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。
圆柱和圆锥练习一、单选题(每道小题 5分共 20分 )1.、等底等高的圆柱、正方体、长方体的体积相比较. [ ]A.正方体体积大 B.长方体体积大C.圆柱体体积大 D.一样大2、圆柱体的体积和底面积与一个圆锥体相等, 圆柱体的高是圆锥体的[ ]3.、24个铁圆锥, 可以熔铸成等底等高的圆柱体的个数是: [ ]A.12个B.8个 C.36个 D.72个4. 圆柱体的底面半径和高都扩大3倍, 它的体积扩大的倍数是: [ ]A.3B.6C.9D.27二、填空题1. 用一张边长是20厘米的正方形铁皮, 围成一个圆柱体, 这个圆柱体的侧面积是().2. 直圆柱的底面周长6.28分米, 高1分米, 它的侧面积是( )平方分米, 体积是()3. 一个圆柱体的底面直径和高都是0.6米, 它的体积是( )立方分米.4. 一个圆锥体和它的等底等高的圆柱体的体积相差12立方厘米, 圆锥体的体积是()。
5. 一个圆柱形铅块, 可以熔铸成( )个和它等底等高的圆锥形零件.6. 做一个圆柱体, 侧面积是9.42平方厘米, 高是3厘米, 它的底面半径是()。
7. 一个圆锥体体积是2立方米, 高是4分米, 底面积是( ).8. 一个圆柱体和一个圆锥体的体积与高都相等, 圆柱的底面积是18平方厘米, 圆锥的底面积是( )平方厘米.9. 一个圆柱体和一个圆锥体的底面积和高都相等.已知圆锥体的体积是7.8立方米, 那么圆柱体的体积是( ).10. 一个圆锥的体积是76立方米, 底面积是19平方米, 这个圆锥的高是()。
11. 把一个高6厘米的圆柱体削成最大圆锥体, 这个圆锥的体积是9.42立方厘米, 它的底面积是( ).12. 一个圆锥的体积是62.4立方厘米, 它的体积是另一个圆锥的4倍.如果另一个圆锥的高是2.5厘米, 这个圆锥的底面积是( ).14. 一个圆柱体削成一个与它等底等高的圆锥体, 削去的部分是圆锥体的()%。
15. 等底等高的圆柱体和圆锥体, 其中圆锥体的体积是126立方厘米, 这两个形体的体积之和是( ).三、应用题1. 一个圆锥形砂堆, 底面周长是31.4米, 高3米, 每方砂重1.8吨, 用一辆载重4.5吨的汽车, 几次可以运完? (得数保留整数)(5分)2. 一个圆形水池, 它的内直径是10米, 深2米, 池上装有5个同样的进水管, 每个管每小时可以注入水7.85立方米, 五管齐开几小时可以注满水池?3. 一个圆锥形的稻谷堆, 底周长12.56米, 高1.5米, 把这堆稻谷装进一个圆柱形粮仓, 正好装满.这个粮仓里面的底直径为2米, 高是多少米?4. 把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长是5厘米的正方体铁块, 熔铸成一个圆柱体, 这个圆柱体的底面直径是20厘米, 高是多少厘米?5. 一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?6. 一个圆柱体底面半径是2分米, 圆柱侧面积是62.8平方分米, 这个圆柱体的体积是多少立方分米?7. 用一张长2.5米, 宽1.5米的铁皮做一个圆柱形烟筒, 这个烟筒的侧面积是多少? (接口处忽略不计) 8. 一个无盖的圆柱形铁皮水桶, 高50厘米, 底面直径30厘米, 做一对水桶大约需用多少铁皮? (得数保留整数)9. 一个圆柱形水池, 底面半径3米, 池高1.5米, 这个水池最多可盛水多少吨? (1立方米的水重1吨)10. 晒谷场上有一个近似圆锥形的小麦堆, 测得底面周长为12.56米, 高1.2米.每立方米小麦约重730千克. 这堆小麦大约有多少千克? (得数保留整千克)。
【精品】圆柱与圆锥练习题(培优)一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。
【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。
2.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。
大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。
【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。
【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.4.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。
六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。
解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。
其中r为底面半径,h为高度。
先求出底面半径r = 8/2 = 4厘米。
体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。
解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。
先求出底面半径r = 6厘米。
体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。
解:首先计算底面半径r = 12.6/2 = 6.3厘米。
体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。
解:先计算底面半径r = 9.8/2 = 4.9厘米。
体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。
解:底面半径r = 5厘米。
体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。
六年级数学《圆柱和圆锥》同步练习题及答案一、填空(1)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( ).(2)一个圆柱底面半径是1厘米,高是2.5厘米。
它的侧面积是 ( )平方厘米。
(3)一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是 ( )厘米。
(4)底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是( )立方米,圆锥的体积是( )立方米。
(5)一个圆锥体的底面周长是12.56分米,高是6分米,它的体积是( )立方分米。
(6)一个圆锥体底面直径和高都是6厘米,它的体积是( )立方厘米。
(7)一根长2米的圆木,截成两同样大小的圆柱后,表面积增加48平方厘米,这根圆木原来的体积是( )立方厘米。
(8)一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是( )立方厘米。
(9)圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是( )厘米。
(10) 圆锥的底面半径是6厘米,高是20厘米,它的体积是( )立方厘米。
(11) 一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。
这个圆锥体的高是( )分米。
(12) 把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重( )千克.(13) 一个圆锥的体积是7.2立方米,与它等底等高的圆柱的体积是( )立方米.(14) 一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是( )分米。
圆锥的高是( )厘米.(16) 一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( ).(17) 一个直圆柱底面半径是1厘米,高是2.5厘米。
它的侧面积是 ( )平方厘米。
(18) 一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是 ( )厘米。
圆柱圆锥练习题以及答案一、选择题1. 一个圆柱的底面半径为3厘米,高为5厘米,其体积为:A. 141.3立方厘米B. 282.6立方厘米C. 94.2立方厘米D. 47.1立方厘米2. 一个圆锥的底面半径为4厘米,高为9厘米,其体积为:A. 75.36立方厘米B. 100.48立方厘米C. 50.24立方厘米D. 37.68立方厘米3. 圆柱的侧面积公式是:A. 2πr²B. πr²C. 2πrhD. πrh4. 圆锥的侧面积公式是:A. πr²B. πrlC. πr²+πrlD. 2πrh二、填空题1. 一个圆柱的底面直径为6厘米,高为10厘米,其侧面积为______平方厘米。
2. 一个圆锥的底面半径为5厘米,高为12厘米,其体积为______立方厘米。
三、解答题1. 一个圆柱形水桶的底面直径为40厘米,高为60厘米,求这个水桶的容积。
2. 一个圆锥形沙堆,底面半径为3米,高为4米,如果每立方米沙重1.5吨,求这堆沙的重量。
四、计算题1. 一个圆柱形油桶,底面直径为50厘米,高为80厘米,求油桶的表面积。
2. 一个圆锥形粮仓,底面直径为20米,高为15米,如果每立方米粮食重750千克,求粮仓的容积以及能装多少千克的粮食。
答案:一、选择题1. B2. B3. C4. C二、填空题1. 376.82. 188.4三、解答题1. 水桶的容积为:V=πr²h=π×(20)²×60=37680立方厘米。
2. 圆锥形沙堆的体积为:V=1/3πr²h=1/3×π×(3)²×4=12.56立方米。
沙堆的重量为:12.56×1.5=18.84吨。
四、计算题1. 油桶的表面积为:A=2πr(h+r)=2π×25(80+25)=4712.5平方厘米。
2. 圆锥形粮仓的体积为:V=1/3πr²h=1/3×π×(10)²×15=1570立方米。
范文 .范例 .参考(四)例 1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?圆柱圆锥底两个底面完全相同,都是圆一个底面,是圆形。
面形。
曲面,沿高剪开,展开后是曲面,沿顶点到底面圆周上的一条线侧面长方形。
段剪开,展开后是扇形。
两个底面之间的距离,有无高顶点到底面圆心的距离,只有一条。
数条。
例 2、求下面立体图形的底面周长和底面积。
半径 3 厘米直径10米例 3、判断:圆柱和圆锥都有无数条高。
例 4、(圆柱的侧面积)体育一个圆柱,底面直径是 5 厘米,高是12 厘米。
求它的侧面积。
例 6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30 厘米,高是50 厘米。
做这样一个水桶,至少需用铁皮6123 平方厘米。
例 7、(考点透视)一个圆柱的侧面积展开是一个边长15.7 厘米的正方形。
这个圆柱的表面积是多少平方厘米?例 8、(考点透视)一个圆柱形的游泳池,底面直径是10 米,高是 4 米。
在它的四周和底部涂水泥,每千克水泥可涂 5 平方米,共需多少千克水泥?例9、(考点透视)把一个底面半径是 2 分米,长是 9 分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?4、求下列圆柱体的侧面积(1)底面半径是 3 厘米,高是 4 厘米。
(3)底面周长是 12.56 厘米,高是 4 厘米。
5、求下列圆柱体的表面积(1)底面半径是 4 厘米,高是 6 厘米。
(3)底面周长是 25.12 厘米,高是 8 厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是 15 分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是25.12 米,高是 4 米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20 千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。
2021-2022学年数学六年级下册圆柱和圆锥专项练习一.解答题(共20题,共111分)1.一个圆柱体的蓄水池,从里面量底面周长31.4米,深2米,在它的内壁与底面抹上水泥。
(1)抹水泥的面积是多少平方米?(2)蓄水池能蓄多少吨水?(每立方米水约重1.1吨)2.一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。
3.一个圆锥形的煤堆,底面直径是8米,高1.4米,如果每立方米煤重2500千克,这堆煤共有多少千克?4.一个圆柱形的粮仓,从里面量得底面直径是3米,装有2.5米高的小麦.如果每立方米小麦重0.7吨,这个粮仓装有多少吨的小麦?5.在一个底面半径为10厘米的圆柱形杯里装满水,水里放了一个底面半径为5厘米的圆锥形铅锤,当铅锤从水中完全取出后,杯里的水面下降了0.5厘米,这个铅锤的体积是多少?6.把一个底面半径是4厘米,高是6分米的铁制圆锥体放入盛满水的桶里,将有多少立方厘米的水溢出?7.一个圆柱和一个圆锥底面积比为2:3,体积比为5:6,求高的比。
8.一个压路机的滚筒横截面的直径是1米,长是1.8米,转一周能压路多少平方米?如果每分钟转8周,半小时能压路多少平方米?9.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?10.一个圆柱形铁皮水桶(无盖),高10dm,底面直径是6dm,做这个水桶大约要用多少铁皮?11.一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨?12.一个底面直径为20厘米的圆柱形容器里,盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,这个铅锤的高是多少厘米?13.李大爷家去年夏季收获的小麦堆成了圆锥形,高1.5m,底面周长是18.84m,这堆小麦的体积是多少?14.做一个圆柱形的笔筒,底面半径是4厘米,高是10厘米,做这个笔筒至少需要多少平方厘米的铁皮?(保留整数)15.一个无盖圆柱形油桶,底面半径2分米,高8分米,里面装满汽油,1升汽油重0.8千克。
圆柱圆锥练习题和答案圆柱和圆锥是几何学中常见的立体图形,它们在数学问题中经常出现。
以下是一些关于圆柱和圆锥的练习题以及相应的答案。
练习题1:一个圆柱的底面半径为3厘米,高为10厘米。
求这个圆柱的体积。
答案1:圆柱的体积公式是V = πr²h,其中 r 是底面半径,h 是高。
将给定的值代入公式,我们得到V = π * (3cm)² * 10cm = 90πcm³。
练习题2:一个圆锥的底面半径为4厘米,高为12厘米。
求这个圆锥的体积。
答案2:圆锥的体积公式是 V = (1/3)πr²h。
将给定的值代入公式,我们得到V = (1/3) * π * (4cm)² * 12cm= 64π cm³。
练习题3:如果一个圆柱的体积是100π cm³,底面半径是5厘米,求这个圆柱的高。
答案3:根据圆柱体积公式V = πr²h,我们可以解出高h = V / (πr²)。
将给定的值代入公式,我们得到h = 100π cm³ / (π * (5cm)²)= 4 cm。
练习题4:一个圆锥的体积是150π cm³,底面半径是5厘米,求这个圆锥的高。
答案4:根据圆锥体积公式V = (1/3)πr²h,我们可以解出高 h = (3V) / (πr²)。
将给定的值代入公式,我们得到h = (3 * 150π cm³) / (π *(5cm)²) = 18 cm。
练习题5:一个圆柱和一个圆锥等底等高,已知圆柱的体积是120π cm³,求圆锥的体积。
答案5:由于圆柱和圆锥等底等高,圆锥的体积是圆柱体积的1/3。
所以,圆锥的体积是120π cm³ / 3 = 40π cm³。
练习题6:一个圆柱和一个圆锥的底面半径和高都相等,如果圆柱的体积是圆锥体积的2倍,求圆柱的高。
六年级数学下册圆柱与圆锥测试题一、单选题(共10题;共20分)1.一个圆柱形物体的底面直径4分米,高是5分米,求它的表面积,列式是( )。
A. 3.14×5+3.14× ×2B. 3.14×4×5+3.14× ×2C. 52+3.14× ×2D. 3.14×2×5+3.14× ×22.已知被除数和除数的比为3:2,除数是100,则被除数是()。
A. 200B. 150C. 3003.油漆圆柱形柱子,要计算油漆的面积有多大,就是求()A. 体积B. 表面积C. 侧面积4.用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上下面()圆形铁片正好可以做成一个容积最大的圆柱形容器.(单位:厘米)A. r=1B. d=3C. r=4D. r=65.把一个圆柱体木材加工成一个最大的圆锥,须削去圆柱体的()A. B. C.6.一个圆柱的底面半径2厘米,高3厘米.它的表面积是()平方厘米.A. 62.8B. 31.4C. 78.57.图()是圆柱的展开图。
A. B. C.8.(1)一个圆柱体的体积是与它等底等高的圆锥体的体积的()倍;A. B. 2 C. D. 3(2)一个圆柱体的体积比一个与它等底等高的圆锥体的体积大()倍。
A. B. 2 C. D. 39.圆柱的高不变,底面半径扩大到原来的2倍,体积扩大到原来的()倍.A. 8B. 6C. 4D. 210.下面图()恰好可以围成圆柱体.(接头忽略不计,单位:厘米)A. B.C. D.二、填空题(共8题;共9分)11.计算下面圆锥的体积是________ .12.一个圆柱与一个圆锥等底且体积相等,圆锥的高是6cm,圆柱的高是________cm。
13.一个圆锥,底面积是12 ,高是5cm,体积是________ .14.圆锥的体积= ×________×________.15.一个圆柱体的体积是60立方厘米,把它削成一个最大的圆锥,削去部分的体积是________,圆锥的体积是________.16.把一个底面半径为2分米,高为3分米的铁圆锥浸没在一个盛满水的容器中,将有________立方分米的水溢出容器外?17.圆锥底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是________厘米,与它等底等高的圆柱体积是________立方厘米。
圆柱圆锥练习题及答案圆柱圆锥练习题及答案圆柱和圆锥是几何学中常见的几何体,它们在日常生活和工程应用中都有广泛的应用。
掌握圆柱和圆锥的相关概念和计算方法对于解决实际问题非常重要。
本文将提供一些圆柱和圆锥的练习题及答案,帮助读者巩固相关知识。
练习题1:计算圆柱的体积已知一个圆柱的底面半径为3cm,高度为8cm,求其体积。
解答:圆柱的体积公式为V = πr²h,其中V表示体积,r表示底面半径,h表示高度。
代入已知数值,得到V = π(3cm)²(8cm) = 72π cm³。
练习题2:计算圆柱的表面积已知一个圆柱的底面半径为4cm,高度为10cm,求其表面积。
解答:圆柱的表面积由底面积和侧面积组成。
底面积为πr²,侧面积为2πrh。
代入已知数值,得到表面积S = π(4cm)² + 2π(4cm)(10cm) = 16π + 80π = 96π cm²。
练习题3:计算圆锥的体积已知一个圆锥的底面半径为5cm,高度为12cm,求其体积。
解答:圆锥的体积公式为V = (1/3)πr²h,其中V表示体积,r表示底面半径,h表示高度。
代入已知数值,得到V = (1/3)π(5cm)²(12cm) = 100π cm³。
练习题4:计算圆锥的表面积已知一个圆锥的底面半径为6cm,斜高为10cm,求其表面积。
解答:圆锥的表面积由底面积和侧面积组成。
底面积为πr²,侧面积为πrl,其中l表示斜高。
代入已知数值,得到表面积S = π(6cm)² + π(6cm)(10cm) = 36π + 60π = 96π cm²。
练习题5:计算圆柱的体积比已知两个圆柱的底面半径分别为2cm和4cm,高度分别为6cm和8cm,求两个圆柱的体积比。
解答:圆柱的体积公式为V = πr²h,其中V表示体积,r表示底面半径,h表示高度。
圆柱和圆锥单元测试卷及答案姓名:_____一、填空题〔每空 1 分, 共10 分〕1 、2 平方分米 5 平方厘米=〔〕平方分米2、如果圆柱的侧面展开是一个边长为 3.14 分米的正方形,圆柱的高是〔〕 ,底面积是〔〕3 、等底等高的圆柱体和圆锥体, 其中圆锥体的体积是126 立方厘米, 这两个的体积之和是〔〕.4、一个圆锥体积是24 立方米,底面积是12 平方米,这个圆锥的高是〔〕 ,与它等底等高的圆柱体积是〔〕 .5 、用一张边长是20 厘米的正方形铁皮, 围成一个圆柱体, 这个圆柱的侧面积是〔〕.6 、一个圆锥和它的等底等高的圆柱的体积相差12 立方厘米, 圆锥的体积是〔〕.7 、一个圆锥的体积是62.4 立方厘米, 它的体积是另一个圆锥的 4 倍,如果另一个圆锥的高是 2.5 厘米, 另一个圆锥的底面积是〔〕.8 、一个圆柱体削成一个与它等底等高的圆锥体, 削去的局部是圆锥体的〔〕%.二、选择题〔每题 1 分,共 5 分〕1 、等底等高的圆柱、正方体、长方体的体积相比拟.〔〕A.正方体体积大B.长方体体积大C.圆柱体体积大D. 一样大2 、圆柱体的体积和底面积与一个圆锥体相等, 圆柱体的高是圆锥体的〔〕 .A. 3倍B. 2倍C.三分之二D.三分之一3 、圆柱的底面半径和高都扩大 3 倍, 它的体积扩大〔〕倍.A.3B.6C.9D.274、将一个圆柱体铝块熔铸成圆锥体,它的〔〕不变.A .体积B.外表积C .底面积D .侧面积5、一个长方形的长是6厘米,宽是2厘米.以它的长为轴旋转一周所得到的圆柱体的体积是〔〕立方厘米.A、75.36B、150.72C、56.5D、226.08三、判断题,错误的并指出错误的原因〔或写出正确答案〕.〔每题1.5分,共15分〕1、圆柱的侧面展开图不可能是平行四边形. 〔〕〔可能是长方形也可能是平行四边形〕2、阿拉的体积是网俳俗惧的……3…倍. 〔〕〔等底等高的圆柱的体积是圆锥体积的3倍〕3、圆柱的高扩大2倍,底面积缩小2倍,它的体积不变.〔〕4、圆柱的高有无数条,圆锥的高只有一条. 〔〕5、一个圆锥的底面直径是圆柱底面直径的三分之一,如果它们的高相等,那么圆锥的体积是圆柱的二分之二..一〔〕〔九分之一〕6、圆柱体的体积比与他等底等高的圆锥体的体积多三分之二工……〔〕〔百分之二百〕7、圆柱的侧面展开一一定是长方形. 〔〕〔不一定〕8、圆柱的外表积可以这样求:2l1r 〔h+r 〕〔〕9、两个圆柱的侧面积相等,他们的体积也二定相等. 〔〕〔不一定〕10、圆锥体的半径扩大到原来的2倍,高不变,它的体积和底面积都扩大到原来的4倍. 〔〕四、计算题〔每题3分,共6分〕1 .求圆柱的外表积和体积〔单位:分米〕.r=3 h=72 .求圆柱和圆锥的体积.〔单位:厘米〕五、填表:〔每空1分共9分〕六、应用题〔1—8每题6分,9题7分,共55分〕1、一个圆形水池,它的内直径是10米,深2米,池上装有5个同样的进水管,每个管每小时可以注入水7.85立方米,五管齐开几小时可以注满水池?2、把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长是5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体的底面直径是20厘米,高是多少厘米?3、一根2米长的圆柱形木料,横截面的半径是10厘米,沿横截面的直径垂直锯开,分成相等的两块,每块的体积和外表积各是多少?4、一个无盖的圆柱形水桶,底面直径是40厘米,高50厘米,做这样100个水桶至少需要铁皮多少平方米?5 、一节铁皮烟囱长 1.5 米,直径是20 厘米,做这样的烟囱500 节,至少要用铁皮多少平方米?6 、一个底面直径20 厘米的圆柱形玻璃缸里有一个圆柱体物品,圆柱的2/3 浸没在水中,把这个圆柱体拿出来,缸内水面下降了 2 厘米,求这个圆柱体的体积.7 、一个底面半径是 4 厘米,高是9 厘米的圆柱体木材,削成一个最大的圆锥,这个圆锥的体积是多少立方厘米?削去局部的体积是多少?8、一个圆锥形沙堆,底面周长是12.56 米,高是 4.8 米,用这堆沙在10 米宽的公路上铺 2 厘米厚,能铺多少米长?〔得数保存两位小数〕9、围绕一堆圆锥形石子的外边缘走一圈, 要走18.84 米. 如果这堆石子的高是 2.4 米, 它的体积是多少?如每立方米石子重2700 千克, 这堆石子重多少吨?〔得数保存整数〕1、2.052、3.14分米;0.785 平方分米3、504立方厘米;4、6米;72 立方米5、400平方厘米6、6立方厘米7、18.72 平方厘米8、200、1-5 CDDAA、1-5 x -6-10四、1.侧面积:3.14X3X2X7=131.88 〔平方分米〕底面积:3.14 X3X3=28.26 〔平方分米〕外表积:131.88+28.26 X2=188.4 〔平方分米〕体积:28.26 X7=197.82 〔立方分米〕2.C=12.56 h=12圆柱的体积:3.14 X 〔12.56 +3.14 +2〕 2 X12=150.72 〔立方厘米〕圆锥的体积:150.72 X1/3=50.24 〔立方厘米〕五、226.08 平方厘米;339.12 立方厘米;471平方分米;50.24平方米;50.24 立方米;六、1、3.14 X 〔10+2〕 2X2+ 〔7.85 X5〕 =4 〔小时〕答:五管齐开4小时可以注满水池.2、〔9X7X3+5 X5X5〕 +【3.14 X 〔20+2〕2]=1 〔厘米〕答:这个圆柱体的高是1厘米.3、2 米=200 厘米体积:3.14 X102 X200 +2=31400 〔立方厘米〕侧面积:2X3.14 X10 X200 +2 + 10 X2X200=10280 〔平方厘米〕底面积:3.14X102=314 〔平方厘米〕外表积:10280+314=10594 〔平方厘米〕答:它的体积是31400立方厘米,它的外表积是10594平方厘米.4、40 厘米=0.4 米50 厘米=0.5 米[3.14 X0.4 X0.5+3.14 义〔0.4+2〕 2】义100=75.36〔平方米〕答:做这样100个水桶至少需要铁皮75.36平方米.5、20厘米=0.2米3.14 X0.2 X1.5 X500=471 〔平方米〕答:做这样的烟囱500节, 至少要用铁皮471平方米.6、3.14 X 〔20+2〕 2X2+ 2/3=942 〔立方厘米〕答:这个圆柱体的体积是942立方厘米.7、圆锥的体积:3.14 X4 2 X9X1/3=150.72 〔立方厘米〕削去局部的体积:150.72 X2=301.44 〔立方厘米〕8、3.14 X 〔12.56 +3.14 +2〕 2 X4.8 X1/3 + 〔10 X0.02 〕=100.48 〔米〕。
六年级圆柱圆锥试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 圆柱的底面是:A. 正方形B. 长方形C. 圆形D. 三角形2. 圆锥的体积计算公式是:A. 1/3πr²hB. πr²hC. 1/2πr²hD. 2πr²h3. 圆柱的侧面积计算公式是:A. πr²B. 2πr²C. 2πrhD. πrh4. 圆锥的底面是:A. 正方形B. 长方形C. 圆形D. 三角形5. 圆柱和圆锥的共同特点是:A. 都有两个底面B. 都是直的C. 都是曲面D. 都有一个底面二、判断题(每题1分,共5分)1. 圆柱的底面一定是圆形的。
()2. 圆锥的侧面展开是一个扇形。
()3. 圆柱的体积计算公式是πr²h。
()4. 圆锥的底面可以是方形。
()5. 圆柱和圆锥都是三维图形。
()三、填空题(每题1分,共5分)1. 圆柱的体积计算公式是______。
2. 圆锥的底面是______。
3. 圆柱的侧面积计算公式是______。
4. 圆锥的侧面展开是一个______。
5. 圆柱和圆锥都是______图形。
四、简答题(每题2分,共10分)1. 简述圆柱的特点。
2. 简述圆锥的特点。
3. 如何计算圆柱的体积?4. 如何计算圆锥的体积?5. 圆柱和圆锥有什么共同点和不同点?五、应用题(每题2分,共10分)1. 一个圆柱的底面半径是3cm,高是5cm,求其体积。
2. 一个圆锥的底面半径是4cm,高是6cm,求其体积。
3. 一个圆柱的底面半径是2cm,高是10cm,求其侧面积。
4. 一个圆锥的底面半径是3cm,高是8cm,求其侧面积。
5. 比较一个圆柱和一个圆锥,底面半径都是2cm,圆柱的高是5cm,圆锥的高是10cm,哪个体积更大?六、分析题(每题5分,共10分)1. 分析圆柱和圆锥在生活中的应用。
2. 分析圆柱和圆锥的相似之处和不同之处。
七、实践操作题(每题5分,共10分)1. 制作一个圆柱模型,并计算其体积。
小学六年级圆柱圆锥单选题100道及答案解析1. 一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是()平方厘米。
A. 62.8B. 31.4C. 15.7D. 12.56答案:A解析:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2 = 12.56 厘米,侧面积= 12.56×5 = 62.8 平方厘米。
2. 一个圆柱的底面直径是4 厘米,高是3 厘米,它的体积是()立方厘米。
A. 37.68B. 50.24C. 75.36D. 113.04答案:A解析:圆柱体积= 底面积×高,底面半径= 4÷2 = 2 厘米,底面积= 3.14×2²= 12.56 平方厘米,体积= 12.56×3 = 37.68 立方厘米。
3. 一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是()立方厘米。
A. 37.68B. 113.04C. 150.72D. 12.56答案:A解析:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²= 28.26 平方厘米,体积= 1/3×28.26×4 = 37.68 立方厘米。
4. 把一个圆柱削成一个最大的圆锥,削去部分的体积是圆柱体积的()。
A. 1/3B. 2/3C. 1/2D. 2 倍答案:B解析:把圆柱削成最大的圆锥,圆锥体积是圆柱体积的1/3,削去部分体积是圆柱体积的 1 - 1/3 = 2/3。
5. 一个圆柱和一个圆锥等底等高,圆柱的体积是90 立方厘米,圆锥的体积是()立方厘米。
A. 30B. 60C. 270D. 180答案:A解析:等底等高的圆柱体积是圆锥体积的3 倍,圆锥体积= 90÷3 = 30 立方厘米。
6. 一个圆柱的底面周长是12.56 厘米,高是3 厘米,它的表面积是()平方厘米。
六年级数学圆柱和圆锥试题答案及解析1.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【答案】62.172立方厘米,合0.062172升【解析】由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的倍.所以酒精的体积为立方厘米,而立方厘米毫升升.2.一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是多少立方厘米?【答案】60【解析】由已知条件知,第二个图上部空白部分的高为,从而水与空着的部分的比为,由图1知水的体积为,所以总的容积为立方厘米.3.如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为厘米,则薄膜展开后的面积是多少平方米?【答案】65.94【解析】缠绕在一起时塑料薄膜的体积为:(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为厘米,所以薄膜展开后的面积为平方厘米平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为(平方厘米),展开后为一个长方形,宽为厘米,所以长为厘米,所以展开后薄膜的面积为平方厘米平方米.4.如图,用高都是米,底面半径分别为米、米和米的个圆柱组成一个物体.问这个物体的表面积是多少平方米?(取)【答案】32.97【解析】从上面看到图形是右上图,所以上下底面积和为(立方米),侧面积为(立方米),所以该物体的表面积是(立方米).5.如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?()【答案】2056【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:(厘米),原来的长方形的面积为:(平方厘米).6.把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少平方厘米.原来的圆柱体的体积是多少立方厘米?【答案】25.12【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为厘米,底面半径为厘米,所以原来的圆柱体的体积是(立方厘米).7.已知圆柱体的高是厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了平方厘米,求圆柱体的体积.()【答案】30【解析】圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为,则,(厘米).圆柱体积为:(立方厘米).8.一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【答案】3:4【解析】因为18分钟水面升高:(厘米).所以圆柱中没有铁块的情形下水面升高20厘米需要的时间是:(分钟),实际上只用了3分钟,说明容器底面没被长方体底面盖住的部分只占容器底面积的,所以长方体底面面积与容器底面面积之比为.9.一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是厘米,水深8厘米.现将一个底面积是16平方厘米,高为厘米的长方体铁块竖放在水中后.现在水深多少厘米?【答案】10【解析】根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):(厘米);(法2):设水面上升了厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:,解得:,(厘米).10.一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米?【答案】8【解析】设圆锥形容器底面积为,圆柱体内水面的高为,根据题意有:,可得厘米.11.(1分)(2006•建邺区)圆锥的体积比圆柱体积少..(判断对错)【答案】×【解析】圆锥的体积是与它等底等高的圆柱的体积的,可见圆锥的体积比与它等底等高的圆柱的体积的少,题目中没有说等底等高,由此可以进行判断.解:根据圆锥的体积是与它等底等高的圆柱的体积的,可推出圆锥的体积比与它等底等高的圆柱的体积的少,但是题目中没有说等底等高,所以题目中的说法是错误的;故答案为:×.点评:此题考查了圆锥与圆柱体积之间的关系.12.(3分)(2013•福田区校级模拟)一个圆柱体粮囤,底面直径为2米,高2.5米,装满稻谷后,又在囤上最大限度地堆成一个0.6米高的圆锥.每立方米稻谷重640千克,这囤稻谷一共有多少千克?【答案】答:这囤稻谷一共有4408.32千克【解析】圆柱的底面直径和高已知,圆锥的底面直径和圆柱的底面直径相等,高已知,于是即可分别利用圆锥的体积V=Sh和圆柱的体积V=Sh,求出这囤稻谷的总的体积,再乘每立方米稻谷的重量,就是这囤稻谷的总重量.解:[×3.14×()2×0.6+3.14×()2×2]×640,=(3.14×0.2+6.28)×640,=(0.628+6.28)×640,=6.888×640,=4408.32(千克);答:这囤稻谷一共有4408.32千克.点评:此题主要考查组合体的体积的计算方法,要求能熟练掌握圆柱与圆锥的体积的计算方法.13.(4分)(2014•江油市校级模拟)如图:把一个圆柱体沿高切成底面是若干相等的底面是扇形的几何体,再拼成一个近似长方体.若拼成的长方体前面与右侧面的面积和是207平方厘米,且原来圆柱高是5厘米,则原来圆柱的体积是多少立方厘米?【答案】答:原来圆柱的体积是1570立方厘米【解析】设圆柱底面半径为r厘米,因为拼成的长方体前面与右侧面的面积之和就是圆柱侧面积的一半和圆柱的高与半径的积的和,由此可得方程:2×3.14×r×5÷2+5r=207,解方程求出r,进而根据:圆柱的体积=πr2h,由此解答即可.解:设圆柱底面半径为r厘米,则:2×3.14×r×5÷2+5r=20715.7r+5r=20720.7r=207r=10原来圆柱的体积为:3.14×102×5=1570(平方厘米)答:原来圆柱的体积是1570立方厘米.点评:明确拼成的长方体前面与右侧面的面积之和就是圆柱侧面积的一半和圆柱的高与半径的积的和,是解答此题的关键.14.(1分)(2010•海珠区校级自主招生)如果一个圆锥的高不变,底面半径增加,则体积增加()A.B.C.D.【答案】C【解析】根据圆锥形的体积公式,V=Sh,即V=πr2h,再根据底面半径增加,说明后来圆锥形的半径是原来的(1+),由此即可算出答案.解:原圆锥的体积是:×π×r2h,后来圆锥形的体积是:πr2h,=πr2h,所以,把原来的体积看做单位”1“,(﹣1)÷1=,故选:C.点评:解答此题的关键是,根据题意,找出数量间的关系,再根据体积公式,即可做出答案.15.如图,以长方形的长为轴,旋转一周,得到的立体图形是,那么,得到的这个立体图形的高是厘米,底面周长是厘米。
圆柱圆锥练习题以及答案
圆柱圆锥练习题以及答案
圆柱和圆锥是几何学中常见的几何体,它们具有广泛的应用。
在学习几何学时,我们经常会遇到与圆柱和圆锥相关的练习题。
下面,我将给大家提供一些圆柱
和圆锥的练习题以及相应的答案,希望能帮助大家更好地理解和掌握这些概念。
练习题一:计算圆柱的体积
已知一个圆柱的底面半径为5cm,高度为10cm,求其体积。
解答:圆柱的体积公式为V = πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = 3.14 × 5² × 10 = 785 cm³。
因此,该圆柱的体积为785立
方厘米。
练习题二:计算圆锥的体积
已知一个圆锥的底面半径为8cm,高度为12cm,求其体积。
解答:圆锥的体积公式为V = (1/3)πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = (1/3) × 3.14 × 8² × 12 = 803.84 cm³。
因此,该圆锥的体积为803.84立方厘米。
练习题三:计算圆柱的表面积
已知一个圆柱的底面半径为6cm,高度为15cm,求其表面积。
解答:圆柱的表面积由底面积和侧面积组成。
底面积为πr²,侧面积为2πrh。
将已知数据代入公式,底面积为3.14 × 6² = 113.04平方厘米,侧面积为2 ×
3.14 × 6 × 15 = 565.2平方厘米。
因此,该圆柱的表面积为113.04 + 565.2 = 678.24平方厘米。
练习题四:计算圆锥的表面积
已知一个圆锥的底面半径为10cm,高度为16cm,求其表面积。
解答:圆锥的表面积由底面积、侧面积和底面到顶点的距离构成。
底面积为πr²,侧面积为πrl,其中l为底面到顶点的距离。
根据勾股定理,l = √(r² + h²)。
将
已知数据代入公式,底面积为3.14 × 10² = 314平方厘米,侧面积为3.14 × 10
× √(10² + 16²) = 628.32平方厘米。
底面到顶点的距离为√(10² + 16²) = 18.44
厘米。
因此,该圆锥的表面积为314 + 628.32 + 18.44 = 960.76平方厘米。
通过以上的练习题,我们可以看到圆柱和圆锥的体积和表面积的计算方法。
掌
握这些计算方法,能够帮助我们解决与圆柱和圆锥相关的问题。
在实际生活中,圆柱和圆锥的应用也非常广泛,比如圆柱形的水杯、圆锥形的冰淇淋筒等。
因此,对圆柱和圆锥的理解和掌握对我们的生活和学习都具有重要意义。
总结起来,圆柱和圆锥是几何学中常见的几何体,我们可以通过计算它们的体
积和表面积来解决与它们相关的问题。
通过练习题的训练,我们可以更好地掌
握这些计算方法。
希望以上的练习题和解答能够对大家的学习有所帮助。