行列式的计算方法-计算行列式的格式
- 格式:doc
- 大小:28.50 KB
- 文档页数:11
行列式的计算技巧和方法总结行列式是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。
正确计算行列式有助于解决线性方程组、特征值等问题。
下面将总结行列式的计算技巧和方法。
一、行列式的定义和性质:行列式是一个数,是由方阵中元素按照一定规律排列所组成的。
设A为n阶方阵,行列式记作det(A)或,A,定义如下:det(A) = ,A, = a11*a22*...*ann - a11*a23*...*a(n-1)n +a12*a23*...*ann-1*n + ... + (-1)^(n-1)*a1n*a2(n-1)*...*ann 其中,a_ij表示A的第i行第j列的元素。
行列式具有以下性质:1. 若A = (a_ij)为n阶方阵,若将A的第i行和第j行互换位置,则det(A)变为-det(A)。
2. 若A = (a_ij)为n阶方阵,若A的其中一行的元素全为0,则det(A) = 0。
3. 若A = (a_ij)为n阶三角形矩阵,则det(A) = a11*a22*...*ann。
4. 若A = (a_ij)和B = (b_ij)为n阶方阵,则det(AB) = det(A)* det(B)。
5. 若A = (a_ij)为n阶可逆方阵,则det(A^(-1)) = 1/det(A)。
二、行列式计算的基本方法:1.二阶行列式:对于2阶方阵A = (a_ij),有det(A) = a11*a22 - a12*a212.三阶行列式:对于3阶方阵A = (a_ij),有det(A) = a11*a22*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31 - a12*a21*a33 -a11*a23*a323.高阶行列式:对于n阶方阵A,可以利用行列式按行展开的性质来计算。
选择其中一行(列)展开,计算每个元素乘以其代数余子式的和,即:det(A) = a1j*C1j + a2j*C2j + ... + anj*Cnj其中,Cij为A的代数余子式,表示去掉第i行第j列后所得子矩阵的行列式。
行列式的几种计算方法行列式是线性代数中非常重要的概念,它可以帮助我们理解矩阵的性质和求解线性方程组。
行列式的计算方法有多种,下面将详细介绍几种常用的计算方法。
一、按定义式计算行列式:按照定义式计算行列式是最基本的一种方法。
对于一个n阶矩阵A,其行列式记作det(A),可以按照以下公式进行计算:det(A) = Σ(−1)^σ(π_1,π_2,…,π_n)a_{1π_1}a_{2π_2}⋯a_{nπ_n}σ(π_1,π_2,…,π_n)是排列(π_1,π_2,…,π_n)的符号,a_{iπ_i}表示矩阵A的第i行第π_i列的元素,Σ表示对所有可能的排列进行求和。
按照定义式计算行列式需要对所有可能的排列进行求和,计算量较大,对于较大阶的矩阵来说并不实用。
我们通常会采用其他方法来计算行列式。
计算行列式时,我们可以利用其性质来简化计算过程。
行列式有一些基本的性质,如行列式中某一行(列)所有元素都乘以一个数k,行列式的值也要乘以k;行列式中某一行(列)元素乘以某个数加到另一行(列)上去后,行列式的值不变等。
利用这些性质,我们可以通过变换行列式中的元素或行列式本身,从而简化计算过程。
对于一个3阶矩阵A,我们可以利用做行列变换将其变换为上三角矩阵,这样计算其行列式就会变得非常简单。
具体地,我们可以通过交换行或列,将矩阵A变换为上三角矩阵,然后利用上三角矩阵的行列式的性质求解行列式的值。
三、按矩阵的余子式和代数余子式计算行列式:对于一个n阶矩阵A,其(i,j)位置的余子式M_{ij}定义为将A的第i行第j列划去后,剩下的元素按原来的次序组成的(n-1)阶行列式。
即M_{ij} = (-1)^{i+j} \cdot \det(A_{ij})其中A_{ij}是将矩阵A的第i行第j列元素划掉后得到的(n-1)阶子式矩阵。
矩阵的代数余子式A_{ij}定义为A_{ij} = (-1)^{i+j} \cdot M_{ij}。
行列式的几种计算方法行列式是线性代数中一个重要的概念,它在矩阵运算中起着至关重要的作用。
在实际应用中,我们经常会遇到需要计算行列式的情况,因此掌握行列式的计算方法对于线性代数的学习和应用都是非常重要的。
本文将介绍行列式的几种常用的计算方法,希望能够对读者有所帮助。
1. 二阶行列式的计算方法我们来看二阶行列式的计算方法。
对于一个二阶行列式,其表示形式为:D = |a b||c d|a、b、c、d为任意实数。
二阶行列式的计算方法非常简单,只需用左上角的元素乘以右下角的元素,再减去左下角的元素乘以右上角的元素即可,即:这就是二阶行列式的计算方法。
通过这个公式,我们可以很容易地计算出任意给定二阶行列式的值。
同样地,a、b、c、d、e、f、g、h、i为任意实数。
三阶行列式的计算方法稍微复杂一些,但也是很容易理解的。
我们通过第一行的元素a、b、c与其余两行的元素d、e、f 和g、h、i构成的二阶行列式来计算出一个值,即a(ei - fh) - b(di - fg) + c(dh - eg)。
这样,我们就得到了原三阶行列式的值。
这个计算方法的核心就是利用代数余子式来计算三阶行列式的值。
代数余子式是指把一个元素及其所在的行和列去掉后所剩下的元素构成的二阶行列式的值。
通过不断地利用代数余子式,我们就可以顺利地计算出任意给定三阶行列式的值。
除了二阶行列式和三阶行列式之外,我们还可以通过递归的方法来计算其他阶行列式的值。
递归的思想在计算机科学中非常常见,它可以大大简化复杂问题的求解过程。
在计算行列式的情况下,递归的思想同样适用。
具体来说,我们可以通过下述公式来递归地计算n阶行列式的值:D = a1* A11 + a2* A12 + ... + an* A1na1、a2、... an为第一行的元素,A11、A12、... A1n为以a1、a2、... an为第一行元素的n-1阶行列式。
通过不断地利用代数余子式,我们就可以层层递归地计算出任意给定阶数的行列式的值。
行列式的几种计算方法行列式是线性代数中的重要概念,通常用于计算矩阵的逆、解线性方程组等问题。
本文将介绍行列式的几种计算方法,帮助读者更好地理解和应用这一概念。
二阶行列式就是二阶矩阵的行列式,计算公式为:$$\begin{vmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$其中,$a_{11}$、$a_{12}$、$a_{21}$、$a_{22}$ 分别表示矩阵的四个元素。
计算二阶行列式时,可以直接套用上面的公式进行计算。
$$ \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} +a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12} $$其中,$a_{11}$、$a_{12}$、$a_{13}$、$a_{21}$、$a_{22}$、$a_{23}$、$a_{31}$、$a_{32}$、$a_{33}$ 分别表示矩阵的九个元素。
计算三阶行列式时,可以采用如下方法:(1)按照第一行、第一列、第二列的顺序计算,得到三个二阶行列式;(2)按照上述公式计算三个二阶行列式对应的乘积和。
3. 拉普拉斯展开法拉普拉斯展开法是一种通用的行列式计算方法。
它的基本思想是,将行列式按照一行或一列进行展开,转化为若干个小的行列式之和。
具体步骤如下:(1)选择一行或一列作为基准行(列);(2)对于基准行(列)中的每个元素,求它所在子矩阵的行列式,乘以对应的余子式(代数余子式);(3)将所有乘积相加。
行列式的几种计算方法7篇第1篇示例:行列式是线性代数中的一个重要概念,它是一个方阵中的一个数值,可以帮助我们判断矩阵的性质,计算行列式的值是线性代数中的基础技能之一。
下面我们将介绍几种行列式的计算方法以及其应用。
一、直接展开法计算行列式最基本的方法就是直接展开法。
以3阶行列式为例,一个3阶方阵的行列式可以表示为:\[\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix}\]通过公式展开,可以得到:\[\begin{aligned}\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix} & = aei + bfg + cdh - ceg - bdi - afh \\& = a(ei - fh) - b(di - fg) + c(dh - eg)\end{aligned}\]这样就可以直接计算出行列式的值。
但是这种方法比较繁琐,不适用于高阶行列式的计算。
二、拉普拉斯展开法\[\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]以第一行为例,可以按照以下公式展开:\[ \text{det}(A) = a_{11}C_{11} + a_{12}C_{12} + \cdots +a_{1n}C_{1n} \]C_{ij}表示元素a_{ij}的代数余子式,通过递归计算代数余子式,最终可以得到行列式的值。
行列式的计算方法及其应用行列式是线性代数中一种非常重要的概念,出现在许多领域中,如数学、物理、工程等。
它是一个方阵中各个元素的代数和,具有非常重要的几何和代数特征,因此也是线性代数学习的基础之一。
一、行列式的定义设有n阶行列式,写成如下形式:$$\Delta_n = \begin{vmatrix}a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\\vdots &\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & a_{n3} &\cdots & a_{nn}\\\end{vmatrix}$$其中,$a_{ij}$代表矩阵中第i行第j列的元素。
行列式的定义是这样的:设$A$为$n$阶方阵,$a_{i,j}$是$A$的元素,那么行列式$\Delta(A)$定义为:$$\Delta(A) =\sum_{\sigma}{(-1)^\sigma\cdot{a_{1,{\sigma(1)}}}\cdot{a_{2,{\sigma(2)}}}\cdots{a_ {n,{\sigma(n)}}}}$$其中,$\sum_{\sigma}$代表对所有$n$个元素的所有排列求和,$\sigma$是一个排列,并且$\sigma(k)$表示k在$\sigma$中的位置。
二、行列式的计算方法计算行列式有三种方法:直接定义法、代数余子式法和高斯消元法。
直接定义法随着矩阵维度的增加,计算量呈指数级增长,因此较少使用。
代数余子式法和高斯消元法可以将计算行列式的时间复杂度降低到$O(n^3)$,被广泛应用于实际问题中。
1. 直接定义法直接定义法是按照定义计算行列式的方法。
行列式的计算技巧与方法总结行列式是线性代数中的重要概念,广泛应用于各个领域,如线性方程组的求解、线性变换的判断等。
在实际应用中,计算行列式是一个必不可少的环节。
本文将对行列式的计算技巧和方法进行总结,以便读者能够更加轻松地解决行列式相关问题。
一、行列式的定义行列式是一个数。
行列式的定义通常有多种不同的形式,其中最常见的是按照矩阵的形式定义的。
对于一个n阶方阵A=(a_ij),其行列式记作det(A),可以通过以下方式计算:det(A) = a_11 * C_11 + a_12 * C_12 + ... + (-1)^(n+1) * a_1n * C_1n其中,C_ij是指元素a_ij的代数余子式。
二、行列式的计算方法1.二阶行列式的计算对于2阶方阵A=(a_11,a_12;a_21,a_22),其行列式可以直接通过以下公式计算:det(A) = a_11 * a_22 - a_12 * a_212.三阶行列式的计算对于3阶方阵A=(a_11,a_12,a_13;a_21,a_22,a_23;a_31,a_32,a_33),可以通过Sarrus法则来计算行列式:det(A) = a_11*a_22*a_33 + a_12*a_23*a_31 + a_13*a_21*a_32 -a_13*a_22*a_31 - a_12*a_21*a_33 - a_11*a_23*a_323.高阶行列式的计算对于n(n>3)阶方阵A,一般采用高斯消元法将矩阵转化为上三角矩阵,然后再计算行列式的值。
具体操作如下:a)对第一列进行第二行、第三行、..、第n行的倍加,使得第一列除了第一个元素外的其他元素都为0。
b)接着在第二列中对第三行、第四行、..、第n行的倍加,使得第二列除了第二个元素外的其他元素都为0。
c)重复以上步骤,直到将矩阵转化为上三角矩阵。
d)上三角矩阵的行列式等于主对角线上的元素相乘。
4.行列式的性质行列式具有以下性质,可以在计算中灵活运用:a)行互换或列互换,行列式的值不变,其符号变为相反数。
行列式的计算方法总结行列式是矩阵的一个重要的数值性质,它将一个矩阵映射为一个数。
行列式的计算方法有多种,包括按定义展开、按行(列)展开、按特定行(列)展开、按相似行变化展开、按行列变换展开等等。
下面将总结行列式的计算方法。
1. 按定义展开法:行列式的定义是通过求和的形式给出的,具体计算步骤如下:a. 对于1×1的矩阵,直接返回矩阵元素的值。
b. 对于n×n的矩阵A,选择第一行或第一列,如第一行,则有det(A) = a_{11} * det(A_{11}) - a_{12} * det(A_{12}) + ... + (-1)^(1+n) * a_{1n} * det(A_{1n}),其中A_{ij}表示删去第i行第j列后的(n-1)×(n-1)的矩阵。
c. 迭代调用行列式计算函数,直到矩阵规模变为1×1,然后返回最终的计算结果。
2. 按行(列)展开法:选择任意一行(列),对于这一行(列)的每个元素aij,计算aij*(-1)^(i+j)*Det(Aij),其中Det(Aij)表示矩阵A删去第i行第j列后的(n-1)×(n-1)的矩阵的行列式。
将所有结果相加即可获得行列式的值。
3. 按特定行(列)展开法:对于任意一行(列)i,选择元素a_{ik},其中k≤n。
根据特定行(列)展开的性质,行列式的值可以表示为det(A) =a_{ik} * C_{ik},其中C_{ik}表示A中删去第i行第k列后的(n-1)×(n-1)的矩阵的行列式。
简而言之,即选取矩阵中的某个元素,用这个元素乘以它的代数余子式(或称余子式)再相加。
4. 按相似行变化展开法:相似行是指行向量的倍数,对于具有相似行的矩阵A,其行列式的值为零。
因此,可以选择特定的行对矩阵进行行变换,使得相似行变成0,从而简化计算。
这需要根据具体的矩阵进行分析,选择合适的行变换方式。
5. 按行列变换展开法:行列变换可以通过交换两行(列)或某行(列)乘以一个非零数加到另外一行(列)上进行。
行列式的几种计算方法行列式是矩阵的一个特征值,表示矩阵所包含的线性变换对空间的扭曲程度。
行列式的计算方法有多种,下面将介绍几种常用的方法。
一、定义法行列式的定义法是最基础的计算方法,也是其他方法的基础。
对于一个n阶方阵A,其行列式记作det(A)或|A|,定义为:det(A) = a11*a22*...*ann+b11*b32*...*bnn + ... + z11*z22*...*z(n-1)n+(-1)^nPa11、a22、...、ann 为A的主对角线元素,b11、b32、...、bnn是由A去掉第一行第一列后的矩阵的对角线元素,z11、z22、...、z(n-1)n是由A去掉最后一行最后一列后的矩阵的对角线元素,nP为A的最后一行元素的乘积与(-1)^n的乘积。
对于一个3阶方阵A,其行列式为:det(A) = a11*a22*a33 + a21*a32*a13 + a31*a12*a23 - a13*a22*a31 - a23*a32*a11 - a33*a12*a21二、按行或按列展开法按行或按列展开法是行列式计算的一种常用方法。
对于一个n阶方阵A,按第i行展开行列式得到:det(A) = a1i*A1i + a2i*A2i + ... + ani*AniAji是由A去掉第i行第j列得到的(n-1)阶方阵,Aji的行列式记作det(Aji)或|Aji|。
按列展开的计算方法与按行展开类似。
三、逐次消元法逐次消元法是一种基于初等变换的行列式计算方法。
通过初等变换将方阵A转化为一个上三角矩阵,再取上三角矩阵的对角线元素的乘积即可得到行列式的值。
具体步骤如下:1. 对A的第1列进行初等行变换,将首元素a11变为1,其它元素变为0;2. 将A的第1列以下的元素进行初等行变换,使得首列以下的所有元素变为0;3. 对A的第2列进行初等行变换,将次对角元素a22变为1,其它元素变为0;4. 将A的第2列以下的元素进行初等行变换,使得次对角列以下的所有元素变为0;5. 重复上述过程,直到对角线上所有元素都变为1。
行列式的几种计算方法行列式是矩阵的一个重要性质,通常用来表示线性方程组的解的情况。
行列式的计算方法有多种,下面将介绍几种常见的计算方法。
1. 代数余子式法:代数余子式法是一种常用的计算行列式的方法。
对于一个n阶矩阵A=[a_{ij}],可以通过以下步骤计算行列式的值:1) 对于矩阵A的任意元素a_{ij},求出它的代数余子式M_{ij},即将第i行和第j列的元素划去,剩下的元素按原来的顺序排列成一个(n-1)阶矩阵,然后计算这个矩阵的行列式。
2) 根据代数余子式的符号规律,得到每个代数余子式的符号。
即当i+j为偶数时,代数余子式的符号为正;当i+j为奇数时,代数余子式的符号为负。
3) 将每个代数余子式与对应的元素相乘,得到n个乘积,并将这些乘积相加,即可得到行列式的值。
3. 克拉默法则:克拉默法则是一种特殊的行列式计算方法,适用于线性方程组的求解。
对于一个n阶矩阵A=[a_{ij}]和一个n维向量B=[b_1,b_2,...,b_n],假设该线性方程组的解存在且唯一,可以通过以下步骤计算行列式的值:1) 对于矩阵A,计算它的行列式D。
2) 对于矩阵A的每一列,将向量B替换到对应的列下,形成一个新的矩阵A'。
然后计算新矩阵A'的行列式D'。
3) 行列式D'除以行列式D,即可得到线性方程组的解。
4. 特殊矩阵的行列式计算方法:对于一些特殊的矩阵,可以使用特定的计算方法来求解行列式。
常见的特殊矩阵包括对称矩阵、三角矩阵、反对称矩阵等。
对于对称矩阵,可以通过正交相似变换将其对角化,然后计算对角矩阵的行列式。
对于三角矩阵,行列式的值等于对角线上元素的乘积。
对于反对称矩阵,行列式的值等于0。
行列式的计算方法包括代数余子式法、拉普拉斯展开法、克拉默法则和特殊矩阵的行列式计算方法。
不同的方法适用于不同的情况,根据具体的矩阵形式选择合适的计算方法,可以有效地计算行列式的值。
行列式的几种计算方法行列式是线性代数中一种重要的概念,它可以通过不同的计算方法来求解。
下面将介绍几种常用的行列式计算方法。
1. 代数余子式展开法代数余子式展开法是求解行列式的一种常用方法。
对于一个n阶行列式A,可以选择任意一行或一列展开,然后按照一定的规律计算各个元素的代数余子式,并与原矩阵对应元素相乘再求和,得到最终的行列式的值。
假设我们选择第i行展开,则有:det(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + … + a_{in}A_{in}a_{ij}表示矩阵A的第i行第j列的元素,A_{ij}表示矩阵A的第i行第j列元素的代数余子式。
2. 公式法对于2阶和3阶的行列式,可以直接使用公式来计算。
对于2阶行列式A,有:对于3阶行列式A,有:det(A) = a_{11}·a_{22}·a_{33} + a_{12}·a_{23}·a_{31} +a_{13}·a_{21}·a_{32} - a_{13}·a_{22}·a_{31} - a_{11}·a_{23}·a_{32} -a_{12}·a_{21}·a_{33}3. 初等变换法对于某些特殊形式的矩阵,可以通过初等变换将其转化为简单的行阶梯形或对角形矩阵,从而方便计算行列式的值。
一般来说,可以通过初等行变换将矩阵A转化为行阶梯形矩阵U,即U =E_k·E_{k-1}·…·E_2·E_1·A,其中E_i是一个初等矩阵。
然后,行列式的值可以通过计算行阶梯形矩阵的对角线元素的乘积得到,即det(A) = u_{11}·u_{22}·…·u_{nn},其中u_{ii}是U的第i行第i列元素。
4. 递推关系法递推关系法是一种递归地求解行列式的方法。
行列式的几种计算方法行列式是线性代数中的基本概念,在数学、工程、物理、经济学等众多领域中都有广泛的应用。
行列式的计算方法有多种,下面将介绍其中的几种方法。
1.按行(列)展开法按照行或列来展开行列式是一种基本的计算方法。
假设行列式为:$$D=\begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix}$$按第1行展开,得到:按照任意一行或一列展开,都可以得到同样的结果。
展开的过程中,每个元素前面加上正负号的符号与其对应的行数和列数有关。
这种方法适用于$3\times 3$的行列式,对于更高维的行列式,效率会大大降低。
2.三角行列式求法如果一个$n\times n$的行列式中有某一行或某一列的元素都是0,那么通过消元可以化简为一个更小的$n-1$阶行列式,然后递归地运用同样的方法求解,最终可以化简为一阶行列式。
这种方法叫做三角行列式求法。
例如,对于$3\times 3$的行列式:将第1列乘以$a_{23}$,再将第2列乘以$a_{11}$,用第2行减去第1行,用第3行加上第1行,得到:继续化简:3.性质计算法行列式有一些性质,可以通过这些性质来计算行列式。
其中最基本的性质是行列式的行列互换性质:将行列式的一行或一列互换,行列式的值反号。
例如:$$\begin{vmatrix}1 &2 &3 \\4 &5 &6 \\7 & 8 & 9\end{vmatrix}=-\begin{vmatrix}4 &5 &6 \\1 &2 &3 \\7 & 8 & 9\end{vmatrix}=0$$如果行列式某一行可以表示为其他行的线性组合,那么行列式的值为0。
线性代数行列式计算方法总结线性代数中,行列式是一个非常重要的概念。
它是一种用于表示线性变换、矩阵和线性方程组性质的数值指标。
在实际应用中,我们常常需要计算行列式的值。
下面将总结一些常用的行列式计算方法。
一、定义法行列式的定义法是最基本的计算方法。
对于一个n阶方阵A=[a[i][j]],其行列式表示为det(A),可以通过如下公式进行计算:det(A) = Σ[(-1)^perm] * a[1][p[1]] * a[2][p[2]] * ... *a[n][p[n]]其中,Σ表示求和,perm表示排列p[1]、p[2]、..、p[n]的所有可能情况。
公式中的(-1)^perm是一个符号因子,当一些排列具有奇数个逆序时,符号为负;当一些排列具有偶数个逆序时,符号为正。
这种方法简单直观,但对于大型的n阶矩阵计算复杂度较高。
因此,我们需要探索一些优化方法。
二、拉普拉斯展开法拉普拉斯展开法也是一种常用的行列式计算方法。
它基于行列式的定义法,并通过将行列式展开为一系列子行列式的和来计算。
对于一个n阶方阵A=[a[i][j]],其行列式表示为det(A),可以通过以下公式进行计算:det(A) = Σ[(-1)^(i+1)] * a[i][j] * det(A[i][j])其中,A[i][j]表示A删去第i行和第j列后的子矩阵。
公式中的Σ表示求和,从j=1到j=n进行累加。
拉普拉斯展开法的优点是可以通过递归地计算子矩阵的行列式来减少计算量,但其复杂度仍然为O(n!),对于大型矩阵仍然不够高效。
三、行变换法行变换法是一种常用的行列式计算方法,通过矩阵的初等行变换将矩阵转化为易于计算的上(下)三角形式,从而求得行列式的值。
对于一个n阶方阵A=[a[i][j]],其行列式表示为det(A),可以通过以下步骤进行计算:1.对A进行初等行变换,将其转化为上(下)三角形形式。
2.计算上(下)三角形矩阵对角线上的元素的乘积,即可得到行列式的值。
谈谈行列式的计算方法行列式是线性代数中的一个重要概念,常用于解线性方程组、计算逆矩阵以及求多项式的根等问题。
本文将详细介绍行列式的计算方法。
一、行列式的定义与性质:行列式是一个数,可以用于判断矩阵是否可逆、求解线性方程组的唯一解以及计算矩阵的逆等问题。
设A为一个n阶方阵,其行列式记作,A,或det(A)。
1.一阶行列式:对于一个1×1的矩阵[a],其行列式定义为,a,=a。
2.二阶行列式:对于一个2×2的矩阵[a b; c d],其行列式定义为,A,=ad-bc。
3.三阶行列式:对于一个3×3的矩阵[a₁b₁c₁;a₂b₂c₂;a₃b₃c₃],其行列式定义为,A,=a₁b₂c₃+b₁c₂a₃+c₁a₂b₃-c₁b₂a₃-a₁c₂b₃-b₁a₂c₃。
性质:-行列式与其转置矩阵行列式相同:,A,=,A^T。
-交换矩阵的两行(列)行列式改变符号,交换三行(列)行列式不变。
-一行(列)中有等于零的元素,行列式等于零。
二、行列式的计算方法:1.根据定义计算:根据行列式的定义,可以直接按照计算规则进行计算,但随着阶数的增加,计算量会呈指数级增长,因此不适用于高阶行列式的计算。
2.代数余子式法(拉普拉斯展开):利用代数余子式法可以将计算一个行列式的问题转化为计算多个较小行列式的和的问题。
对于一个n阶矩阵A,定义它的第i行第j列元素为aᵢⱼ,那么对于任意一个aᵢⱼ,可以定义它的代数余子式M(i,j)为将行i和列j从A中删去后的(n-1)阶行列式,即A的余子矩阵的行列式。
代数余子式M(i,j)用(-1)^(i+j)乘以A的代数余子式C(i,j)得到。
通过拉普拉斯展开定理,行列式等于它的任意一行(列)元素与其对应的代数余子式乘积的和,即:A,=a₁ⱼM(1,j)+a₂ⱼM(2,j)+...+aⱼⱼM(n,j)(其中j为任意列号)3.三角行列式法:对于三角矩阵(上三角或下三角),行列式等于对角线上元素的乘积,即a₁₁a₂₂...aⱼⱼ。
行列式的计算方法行列式是线性代数中重要的概念和计算方法之一,可以用于解线性方程组、求特征值和特征向量等问题。
行列式的计算方法有多种,包括按定义展开式法、初等变换法和特殊行列式计算法等。
下面将详细介绍这些方法。
1. 定义展开式法行列式的定义展开式法是一种通过递归计算的方法。
对于一个2×2的行列式A= [a b; c d],其行列式的计算公式为:|A| = ad - bc。
对于一个3×3的行列式A= [a b c; d e f; g h i],可以通过以下公式计算行列式:|A| = a(ei - fh) - b(di - fg) + c(dh - eg)这个方法的缺点是计算步骤繁琐,计算复杂度高,所以对于高阶的行列式往往不适用。
2. 初等变换法初等变换是指对行列式的某两行(列)进行加减乘除等操作,可以改变行列式的值,但保持行列式的性质。
通过进行初等变换,将原始的行列式变换为一个上三角矩阵的行列式,即只有主对角线以下的元素全为0。
这样,行列式就可以简化为:|A| = a11 * a22 * … * ann,其中a11、a22、…、ann分别为上三角矩阵的对角线上的元素。
由于初等变换不改变行列式的值,我们可以根据这个特性进行计算。
例如,对于一个3×3的行列式A= [a b c; d e f; g h i],首先使用初等变换将矩阵变换为上三角矩阵:对第三行乘以a11,然后第三行减去第一行的a13倍,再将第二行减去第一行的a12倍:[a b c; d e f; g h i] -> [a b c; d e f; 0 h i - g*a11]接着对第三行进行初等变换将第三行的元素变为0:[a b c; d e f; 0 h i - g*a11] -> [a b c; d e f; 0 h i - g*a11 - h*a22]最终得到的上三角矩阵为:[a b c; d e f; 0 0 i - g*a11 - h*a22]根据行列式的性质,我们可以得出:|A| = a * e * (i - g*a11 - h*a22)= e * (ai - ag*a11 - ah*a22)= e * i - e * (g*a11 + h*a22) + e * ag*a11 + e * ah*a22这样,行列式的计算就变为了替代计算。
行列式的计算方法1 引言行列式的计算是《线性代数》和《高等代数》的一个重要内容.同时也是工程应用中具有很高价值的数学工具,本文针对几种常见的类型给出了计算行列式的几种典型的方法.2 一般行列式的计算方法2.1 三角化法利用行列式的性质把原来的行列式化为上(下)三角行列式,那么,上(下)三角行列式的值就是对角线各项的积.例 1 计算行列式12311212332125113311231 ------=n n n n n nn n n n D对这个行列式的计算可以用三角化方法将第1行乘以(-1)加到第2,3,n 行,得0001002000200010001231 ---=n n n n D再将其第1,2,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得102001321)1(2)1(--=-n n D n n=)!1()1(2)1(---n n n2.2 加边法有时为了便于计算行列式,特意把行列式加边升阶进行计算,这种方法称之为升阶法.它的一般方法是:nn n n n n n n n a a a a a a a a a a a a a a a a D 321333323122322211131211==nnn n n n na a ab a a a b a a a b 212222121121110001(n b b b ,,21任意数)例如下面的例题: 例2 计算行列式nn a a a a D ++++=11111111111111111111321现将行列式n D 加边升阶,得na a a D +++=111011101110111121第1行乘以(-1)加到第1,3,2+n 行,得na a a D10001001001111121----=第2列乘以11a 加到第1列,第3列乘以21a 加到第1列,依次下去直到第1+n 列乘以n a 1加到第1列,得)11(00011111121211∑∑==+=+=ni in nni ia a a a a a a a D2.3 降阶法利用按一行(列)展开定理或Laplace 展开定理将n 阶行列式降为阶较小且容易计算的行列式来计算行列式的方法称为降阶法. 例 3 计算nD 222232222222221=解 首先我们应考虑D 能不能化为上(下)三角形式,若将第一行乘以(-2)加到第n ,3,2 行,数字反而复杂了,要使行列式出现更多的“0”,将D 的第一行乘以(-1)加到第第n ,3,2 行,得2001010100012221-=n D这样仍然不是上(下)三角行列式,我们注意到,第二行除了第一项是1,后面的项全是0,这样我们按第二行展开,降阶得到:201222)1(21--=+n D)!2(2--=n2.4 对于所谓二条线的行列式,可直接展开降阶,再利用三角或次三角行列式的结果直接计算. 例4 计算行列式nnn n n a b b a b a b a D 112211--=解 按第1列展开,得11221111221)1(--+---+=n n n n nn n n b a b ab b a b a b a a Dn n n b b b a a a 21121)1(+-+=2.5 递推法通过降阶等途径,建立所求n 阶行列式n D 和比它低阶的但是结构相同的行列式之间的关系,并求得n D 的方法叫递推法.当n D 与1-n D 是同型的行列式,可考虑用递推法.例 5 计算n 级行列式 2112000002100012100012------=n D 对于形如这样的三角或次三角行列式,按第1行(列)或第n 行(列)展开得到两项的递推关系式,再利用变形递推的技巧求解.解 按第1行展开,得210120000012000011)1)(1(2211-------+=+-n n D D212---=n n D D 直接递推不易得到结果,变形得1221121232211=---=-==-=-=------D D D D D D D D n n n n n n于是 1)1(2)1(21121+=-+=-+==+=+=--n n n D D D D n n n例6 计算n 2级行列式nnn n n n nnn d c d c d c b a b a b a D 111111112----=对于形如这样的所谓两条线行列式,可直接展开得到递推公式. 解 按第1行展开,得)1(1111111121111111112nn n n n nn n n n n nn c d c d c b a b a b d c d c b a b a a D ----+-----+=1111111111111111---------=n n n n nn n n n n nn d c d c b a b a c b d c d c b a b a d a)1(2)(--=n n n n n D c b d a)1(22)(--=n n n n n n D c b d a D)2(21111))((-------=n n n n n n n n n D c b d a c b d a)())((11111111c b d a c b d a c b d a n n n n n n n n ---=----2.6 连加法 例 7 计算mx x x x m x x x x m x D n n n n ---=212121这种行列式的特点是:各行元素之和都相等.先把第2列到第n 列元素同时加到第1列,并提出公因式,得mx x x m x x x m x D n n n ni i n ---=∑=2221111)(然后将第1行乘以(-1)加到第n ,3,2行,得mm x x m x D n ni i n ---=∑=001)(21)()(11m x m ni i n --=∑=-2.7 乘积法根据拉普拉斯定理,所得行列式乘法运算规则如下:nnn nnn n n nn n n c c c c b b b b a a a a 111111111111=⋅ (其中tj ni it ij b a c ∑==1)两个行列式的乘积可以像矩阵的乘法一样来计算,假若两个行列式的阶数不同,只要把它们的阶数化为相同就可以应用上面的公式了.这种方法的关键是寻找有特殊结构的已知行列式去乘原行列式,从而简化原行列式的计算,这也是较为常用的方法.例 8 计算行列式 ab c db a dc cd a bd c b aD =解 取行列式 1111111111111111------=H显然 0≠H ,由行列式的乘法规则:=DH ⋅ab c d ba d c c d a bd c b a 1111111111111111------ H d c b a d c b a d c b a d c b a d c b a ))()()()((+---+--++--++++=等式两边消去,H 得=D ))()()()((d c b a d c b a d c b a d c b a d c b a +---+--++--++++2.8 对称法这是解决具有对称关系的数学问题的常用方法. 例 9 计算n 阶行列式βαβααββααββα++++=1010001000 n D解 按第1行展开,得21)(---+=n n n D D D αββα即 )(211----=-n n n n D D D D αβα由此递推,即得 nn n D D βα=--1因为n D 中αβ与对称,又有 nn n D D αβ=--1当 βα≠ 时,从上两式中消去1-n D ,得 11n n n D αβαβ++-=-当 βα= 时,1-+=n nn D D ββ)(21--++=n n n D ββββ 222-+=n n D ββ11)1(D n n n-+-=ββ )()1(1βαββ++-=-n n nnn β)1(+= 2.9 数学归纳法当n D 与1-n D 是同型的行列式,可考虑用数学归纳法. 例 10 计算n 级行列式ααααcos 2100cos 210001cos 210001cos =n D解 当2=n 时,ααcos 211cos 2=D αα2cos 1cos 22=-=结论成立,假设对级数小于n 的行列式结论成立,则n D 按第n 行展开,得21cos 2---=n n n D D D α由假设αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n代入前一式,得]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D nαααααn n n cos sin )1sin(cos )1cos(=---=故对一切自然数n ,结论成立.2.10 拆项法这是计算行列式常用的方法.一般地,当行列式的一列(行)或一列(行)以上的元素能有规律地表示为两项或多项和的形式,就可以考虑用拆为和的方法来进行计算.例 11 在平面上,以点),(),(),(233332332232222221311211x x x x M x x x x M x x x x M ------,,为顶点的三角形面积D S =,其中11121323233322222321212131x x x x x x x x x x x x D ------= )1()1()1()1()1()1(11121323222121332211------=x x x x x x x x x x x x )1()1()1()1()1()1()1()1()1(21323222121332211332211------+--+--+--=x x x x x x x x x x x x x x x x x x解 第1行拆为)1()1()1(11111121111)1)(1)(1(21332211321321232221321321------+----=x x x x x x x x x x x x x x x x x x x x x D32112132332121))()()(1)(1)(1(21x x x x x x x x x x x x +-------=232221321111x x x x x x )]1)(1)(1([))()((21321321121323----⋅---=x x x x x x x x x x x x 3 分块矩阵行列式的计算方法我们学习了矩阵的分块,知道一个矩阵⎥⎦⎤⎢⎣⎡B A 00通过分块若能转化成对角矩阵或上(下)三角矩阵⎥⎦⎤⎢⎣⎡B C A 0,那么行列式B A B C A B A ⋅==000,其中B A ,分别是r s ,阶可逆矩阵,C 是s r ⨯阶矩阵,0是n s ⨯阶矩阵.可以看出,这样可以把r s +阶行列式的计算问题通过矩阵分块转化为较低阶的s 阶和r 阶行列式计算问题,下面先根据上面的途径给出计算公式.设矩阵 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B C D A b b c c b b c c d d a a d d a a G rr r rsr r s sr s ss s r s 1111111111111111其中B A ,分别是s 阶和r 阶的可逆矩阵,C 是s r ⨯阶矩阵,D 是r s ⨯阶矩阵,则有下面公式成立. C DB A B BCD A G 1--⋅==或C DA B A BCD A G 1--⋅==下面推导公式,事实上,当0≠A 时,有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---D BCA D A B C D A E CA E 1100 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---B C C DB A B C D A E DB E 0011 上面两式两边同取行列式即可得出上面的公式.例 12 计算 8710650143102101=D这道题的常规解法是将其化为上三角行列式进行计算,若用前面介绍的公式则可以直接得出结果.令 ⎥⎦⎤⎢⎣⎡=1001A ,⎥⎦⎤⎢⎣⎡=8765B , ⎥⎦⎤⎢⎣⎡=1001C , ⎥⎦⎤⎢⎣⎡=4321D 则 ⎥⎦⎤⎢⎣⎡=1001'A ,由公式(1) 知原行列式D CA B A BCD A 1--⋅==⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=43211001100187651001 ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=432187651 4444==0这个题还有个特点,那就是C A =,如果我们把公式变形,即D CA B A BCD A 1--⋅=D ACA AB D CA B A 11)(---=-=当C A =时,D ACA AB 1--CD AB D CAA AB -=-=-1,所以当C A =时,我们有CD AB BCD A -=,这样例题就可以直接写出答案了.参考文献:[1] 北京大学数学系,高等代数[M] (第三版).北京:高等教育出版社,2003,9.[2] 张禾瑞,高等代数[M] (第四版).北京:高等教育出版社,1997.[3] 丘维生,高等代数[M].北京:高等教育出版社,1996,12.[4] 杨子胥,高等代数[M].山东:山东科学技术出版社,2001,9.[5] 王萼芳,高等代数题解[M].北京:北京大学出版社,1983,10.[6] Gelfand I M, Kapranov M M and Celvinskij A V. Discriminaants, redultants,and multidimensional determinants[M].Mathematics: Theory&Applications,Birkhauser Verlag,1994.[7] 徐仲,陆全等.高等代数导教·导学·导考.西安::西北工业大学出版社,2004.[8] 陈黎钦.福建:福建商业高等专科学校学报,2007年2月第1期.11。
行列式的几种计算方法行列式是线性代数中的一种重要概念,也是解线性方程组的基础。
行列式的求解方法有很多,下面介绍几种比较常用的方法。
1. 代数余子式法代数余子式法是求解$n$阶行列式的一种常用方法。
假设有一个$n$阶行列式$A$,它的第$i$行、第$j$列元素为$a_{i,j}$,则记$A_{i,j}$为该行列式除去第$i$行和第$j$列后得到的$(n-1)$阶行列式,即:$$A_{i,j}=(-1)^{i+j}|A_{i,j}|$$其中,$|A_{i,j}|$表示该矩阵的余子式。
在求解行列式的时候,先选择行或列作为基准,计算出每个元素的代数余子式,然后进行相乘相加即可。
具体方法如下:$$det(A)=\sum_{i=1}^{n}a_{i,j}A_{i,j}=\sum_{j=1}^{n}a_{i,j}A_{i,j}$$根据公式可知,代数余子式法的时间复杂度为$O(n!)$,因此只能适用于小规模的行列式求解。
2. 行列式加边法行列式加边法是求解$n$阶行列式的另一种常用方法,它利用了矩阵的运算规律,通过添加等行等列来求解行列式值。
具体方法如下:(1)选择行或列中绝对值最大的元素,将该元素加入到行列式外面新添加一行或一列,然后依次将其它元素按矩阵运算法则进行变换;(2)此时,行列式的值等于新行列式减去外加行列后的新行列式;(3)依次将新加行列的元素还原到原来的位置,然后计算新添加元素的代数余子式求和即可。
这种方法的优点是时间复杂度较低,为$O(n^3)$。
缺点是需要进行大量的矩阵运算,计算过程较为繁琐。
3. 克拉默法则克拉默法则是解决线性方程组的常用方法,也可以用来求解行列式。
假设有一个$n$阶行列式$A$,则克拉默法则的公式为:其中,$D_i$表示以第$i$列为基准的行列式值。
4. 三角分解法三角分解法是求解$n$阶行列式的一种高效方法,它可以分解为上三角和下三角矩阵的乘积,从而降低了计算复杂度。
该方法可以通过高斯列主元消元法来实现,具体流程如下:(1)按列主元消元法,将原始矩阵变换为上三角矩阵$U$;(2)计算对角线上的元素之积,即为行列式的值。
「行列式的计算方法」1.定义法:行列式的定义是通过递归来定义的。
对于一个1×1的矩阵A=[a],其行列式为det(A)=,a。
对于一个n×n的矩阵A=[aij],其中i代表行数,j代表列数,行列式可以通过以下方式递归计算:det(A)=Σ(-1)^(i+j)×aij×det(Aij)其中,Aij是将A中第i行和第j列删除后得到的(n-1)×(n-1)的子矩阵。
2.展开法:根据定义法,展开法也是一种递归的计算方法。
展开法是通过在行或列上选择一个元素展开计算行列式。
通常选择展开的元素是行列式中非零元素最多的行或列。
假设我们选择第i行展开,那么行列式可以表示为:det(A)=Σ(-1)^(i+j)×aij×det(Aij)其中,Aij是将A中第i行和第j列删除后得到的(n-1)×(n-1)的子矩阵。
通过递归计算Aij的行列式,最后可以得到det(A)的值。
3.克拉默法则:克拉默法则是行列式计算的一种特殊方法,适用于求解n元线性方程组。
对于一个n×n的方阵A=[aij],其行列式为det(A),方程组为Ax=b。
克拉默法则根据公式xk=det(Bk)/det(A),其中Bk是将A的第k列替换为b后的矩阵,det(Bk)是Bk的行列式,det(A)是A的行列式。
通过计算det(Bk)和det(A),可以求解方程组的解向量x。
4.LUP分解法:LUP分解法是行列式计算的一种常用方法,也适用于求解线性方程组。
LUP分解法通过将矩阵A分解为三个矩阵的乘积A=LU,其中L是一个下三角矩阵,U是一个上三角矩阵,P是一个置换矩阵。
LUP分解可以通过高斯消元法和选主元的方式得到。
通过进行LUP分解后,原方程组Ax=b可以表示为LUx=Pb,令Ux=y,则Ly=Pb。
通过先解y的方程组,再解x的方程组,可以求解出方程组的解向量x。
5.次序化方法:次序化方法是通过行列式的性质来计算行列式。
行列式的计算方法-计算行列式的格式行列式的计算方法计算行列式的格式行列式是线性代数中的一个重要概念,在数学、物理、工程等领域都有广泛的应用。
准确计算行列式的值对于解决许多问题至关重要。
而在计算行列式时,遵循正确的格式和方法可以避免错误并提高计算效率。
一、二阶行列式的计算格式二阶行列式是最简单的行列式形式,其计算格式相对直观。
对于二阶行列式\(\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{vmatrix}\),其值为\(a_{11}a_{22} a_{12}a_{21}\)。
例如,计算二阶行列式\(\begin{vmatrix}3 & 2 \\ 1 &4\end{vmatrix}\),按照格式计算为:\\begin{align}&3×4 2×1\\=&12 2\\=&10\end{align}\二、三阶行列式的计算格式三阶行列式的计算相对复杂一些。
对于三阶行列式\(\begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} &a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix}\),可以按照以下格式进行计算:\\begin{align}&a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} +a_{13}a_{21}a_{32} a_{13}a_{22}a_{31} a_{12}a_{21}a_{33}a_{11}a_{23}a_{32}\end{align}\例如,计算三阶行列式\(\begin{vmatrix}1 & 2 & 3 \\ 4 & 5 &6 \\ 7 & 8 & 9\end{vmatrix}\):\\begin{align}&1×5×9 + 2×6×7 + 3×4×8 3×5×7 2×4×9 1×6×8\\=&45 + 84 + 96 105 72 48\\=&0\end{align}\三、n 阶行列式的按行(列)展开法对于 n 阶行列式,按行(列)展开法是一种常用的计算方法。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载行列式的计算方法-计算行列式的格式地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容行列式的计算方法摘要:线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组, 行列式的计算是一个重要的问题。
本文依据行列式的繁杂程度,以及行列式中字母和数字的特征,给出了计算行列式的几种常用方法:利用行列式的定义直接计算、化为三角形法、降阶法、镶边法、递推法,并总结了几种较为简便的特殊方法:矩阵法、分离线性因子法、借用“第三者”法、利用范德蒙德行列式法、利用拉普拉斯定理法,而且对这些方法进行了详细的分析,并辅以例题。
关键词:行列式矩阵降阶The Methods of Determinant CalculationAbstract:Solving multiple linear equations is the main content of the linear algebra, determinants produced in solving linear equations, determinant calculation is an important issue.This article is based on the complexity degree of the determinant, and the characteristics of letters and numbers of the determinant ,and then gives several commonly used methods to calculate the determinant: direct calculation using the definition of determinant, into the triangle, reduction method, edging method , recursion, and summarizes several relatively simple and specific methods: matrix, linear separation factor method, to borrow "the third party" method, using Vandermonde determinant method, using Laplace theorem,also analyze these methods in detail,and supported by examples.Keywords: determinant matrix reduction.1.引言线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,然而它除了用于研究线性方程组、矩阵、特征多项式等代数问题外,还在各种工程领域有着广泛的应用,是一种不可缺少的运算工具,所以说行列式的计算是一个重要的问题。
二阶行列式:⑴三阶行列式:⑵由此可以看出二阶、三阶行列式计算结果的一些规律:eq \o\ac(○,1) ⑵中每项都是三个数的乘积,并由行标与列标可以看出,这三个数分别取自行列式的不同行与不同列;eq \o\ac(○,2) ⑵式正好有6项,它恰好是1,2,3全排列的个数。
eq \o\ac(○,3) 每项前面的符号为,其中为的逆序数。
这就是比较简单的采用对角线的方法计算行列式。
在行列式的定义中,虽然计算结果的每一项是个元素的乘积,但是由于这个元素是取自不同的行与列,所以对于某一确定的行中的个元素譬如来说,每一项都含有其中的一个且只含有其中的一个元素,而级行列式一共有项,计算它就需要做个乘法。
当较大时,是一个相当大的数字,直接从定义采用对角线法计算行列式几乎是不可能的事,[1]本文依据行列式元素间的规律和行列式的性质总结了计算行列式几种常用和特殊的方法。
2. 计算行列式的常用方法2.1 利用行列式的定义直接计算根据行列式的定义=,可以利用行列式的定义直接计算低阶稀疏行列式。
利用行列式的定义计算阶行列式=解:根据行列式的定义,行列式展开后等于所有取自不同行不同列的个元素的乘积,通过观察可知的展开式中只有一个非零项,这一项行标排列具有自然顺序排列,对应的列标排列为,其逆序数为,故当行列式的元素中有较多0时,可以利用定义法进行计算,但如果元素中出现较多非0元素时,这种方法就不易求解。
2.2 利用化为三角形的方法计算利用行列式的性质把行列式通过一系列的变换转化成位于主对角线一侧的元素全为零的行列式,这样得到的行列式的值就等于主对角线上所有元素的乘积。
而对于非零元素位于次对角线的情形,行列式的值等于与次对角线上所有元素的乘积。
例2 利用上三角形法计算阶行列式解:在例2中,行列式的每一行对应元素中包含有相同的元素,这样使用化三角形法较为简便,但当行列式的元素不相同且无规律时,计算量就会增加不少,此时这种方法并不简单。
2.3 利用降阶法计算行列式在计算行列式的时候可以根据行列式元素间的规律,依据行列式的性质或行列式按行(列)展开定理,将一个阶行列式化为个阶行列式来计算。
若再继续使用按行(列)展开法,可以将阶行列式降阶然后一直化为多个2阶行列式来计算。
例3. 利用降阶法计算阶行列式解:依据行列式按行(列)展开的定理,将按第一行展开,即得:然后将后面的行列式按第一列展开,即得(-1)值得注意的是,根据行列式的性质利用降阶法时,应该将某行(列)元素尽可能多地变成零,之后再按行(列)展开,这样计算才能体现出降阶法计算行列式的简便性,但是针对一些构造特殊的行列式,因为阶行列式的第行构成的级子式有个,故一般行列式只是能降阶而不能减少其计算量,这种方法往往无效。
[2]利用降阶法可以计算行列式,那是不是也可以通过加边使其变成一个相等的阶行列式呢?2.4 镶边法一个阶行列式,如果或中除了外其余元素全为0,那么该行列式便可利用行列式按行(列)展开定理将其转化为一个计算阶行列式。
反过来,也可以利用相同的方法把一个阶行列式转化为一个与之相等的阶行列式,这就是镶边法。
2.4.1 镶边法解题步骤eq \o\ac(○,1) 通过加边(列)的方法把一个级行列式转化为一个与之相等的阶行列式;eq \o\ac(○,2) 根据行列式的性质把添加进去的行(列)的适当的倍数加到其它行(列)使其它行(列)出现更多的0元素后再进行计算。
2.4.2 镶边的一般方式eq \o\a c(○,1) 首行首列 eq \o\ac(○,2) 首行末列 eq\o\ac(○,3) 末行首列 eq \o\ac(○,4) 末行末列。
[3]当然也可以添加在行列式任意某一行与某一列的位置,但是等价变形后,总变成上述四种情况之一。
利用镶边法计算阶行列式解:2.5 递推法递推法就是利用行列式元素间的规律,在阶与阶(或更低阶)行列式之间建立递推关系,再利用所得的关系式计算行列式的值。
递推法主要是降阶递推法,常见的有两种类型:1.型;这时根据递推关系可推出关系式2.型;这时可设、是方程的根,则由根与系数的关系可得,于是有:- (Ⅰ)(Ⅱ)若,则由(Ⅰ)和(Ⅱ)得注意又由(Ⅰ)和(Ⅱ)递推可得若,则(Ⅰ)和(Ⅱ)可变成,即,故=====……以此类推,最后可得:例5 利用递推法计算阶行列式=解:由于,则不妨设、是方程的根,则:。
于是其中:;所以:即原式上面介绍的几种计算行列式的方法都是比较常用的,同时通过上面的例题分析和解题过程可以发现,上述几种计算方法只是适用一些行列式较为简单和行列式元素间具有明显规律的情况,而对于一些比较特殊或行列式元素间的关系隐藏较深的行列式,就要通过其它的途径来解决问题,下面给出几种计算行列式的特殊方法。
3.计算行列式的几种特殊方法3.1 矩阵法如果一个行列式的对应矩阵可以转化为两个矩阵的乘积,而且这两个矩阵所对应的行列式都比较容易计算,即可利用公式=计算出阶行列式的值。
[4] 例6 利用矩阵法计算阶行列式解:该行列式的第行第列元素可化为所以该行列式可转化为两个矩阵乘积的行列式,即==3.2 分离线性因子法3.2.1 分离线性因子法分离线性因子法就是把行列式看成含有一个或一些字母的多项式,将它变换,如果它可被一些因子互素的线性因子所整除,同时它也可被这些因子的积所整除,就可将行列式的某些项与线性因子的项进行比较,继而找出多相式的所有因子,然后用这些因子的乘积除行列式的商,从而求得行列式的表达式。
3.2.2 一般的解题思路eq \o\ac(○,1) 如果行列式有些元素是某一变量(参数)的多项式,不妨设此变量为,那么可将该行列式看作关于的多项式,然后找出因子互素的线性因子,即;eq \o\ac(○,2) 在和中选出一个特殊项进行比较,如果与的次数相等,就用待定系数法,确定出的值;如果的次数比的次数小,继续找出的线性因子,直至将的所有线性因子全部找出,从而求出行列式的值。
例7 利用分离线性因子法计算阶行列式其中解:将行列式最后一行乘以(-1)后再加到上一行去,并以此类推,直至第2行为止,得显而易见,是一个关于的多项式,且=0由行列式的性质知……所以的根为0,故进而可得的次项系数,令其为,即=综上可得:=3.2.3 利用分离线性因子法的注意能够利用分离线性因子法进行计算的行列式大都是含有字母变量(参数)的行列式,当某个变量(参数)取某个特定值的时候行列式的值为0,则该行列式必含有某个特定因子。
[3]类如:、、等3.3 借用“第三者”法借用“第三者”法计算行列式,就是当所给的行列式不易计算时,乘以一个适当的值不为0的行列式,且,使其转化为求乘积的行列式。
使用这种方法有优越,但的选取不易,需要有足够的知识和经验。
例8 计算阶行列式解:取,=上题中不但计算出了行列式的值,而且同时也证明了相似于一个对角矩阵。
3.4 利用范德蒙德行列式来计算范德蒙德行列式是一类比较特殊的行列式,通过观察其中的任一列可以发现,它都是某个数(字母)的不同方幂,且从上至下其幂次数由0递增至,通过证明已经得知阶范德蒙德行列式的值就等于组成这个行列式的个元素的所有可能差的乘积。
利用范德蒙德行列式的时候,应先根据范德蒙德行列式的特点,将所给的行列式转化为范德蒙德行列式,再利用其结果计算出所给行列式的值。
例9 利用范德蒙德行列式计算阶行列式解:镶边得再将第一列的(-1)倍加到其它各列得:将此行列式拆分为两项即得-===3.5 利用拉普拉斯定理展开计算拉普拉斯定理:设在行列式中任意取定了个行,由这行元素所组成的一切级子式与它们的代数余子式的乘积的和等于行列式。