多变量非线性约束最优化问题
- 格式:ppt
- 大小:35.50 KB
- 文档页数:3
数学建模案例之多变量无约束最优化多变量无约束最优化问题是指在变量间没有限制条件的情况下,求解目标函数的最优值。
这类问题在数学建模中非常常见,实际应用非常广泛。
下面以一个实际案例说明多变量无约束最优化的建模过程。
假设地有几个旅游景点,现在需要制定一个旅游路线,使得游客的游玩时间最长,同时经济成本最低。
已知每个旅游景点之间的距离和游玩时间,以及游客每次游玩每公里所需的成本。
目标是找到一条旅游路线,使得游客在游览所有景点后,花费的经济成本最少。
首先,我们需要定义问题的数学模型。
假设有n个旅游景点,用x1, x2, ..., xn表示每个景点的游玩时间(单位:小时),用dij表示第i个景点和第j个景点之间的距离(单位:公里),用c表示游客游玩每公里所需的成本。
为了定义问题的数学模型,我们需要明确如下几个关键部分:1. 决策变量:定义一个n维向量X,其中每一个分量xi表示游客在第i个景点的游玩时间。
2. 目标函数:定义一个目标函数f(X),表示游客花费的经济成本。
在本例中,目标函数可以定义为:f(X) = ∑dij * xi * c。
3.约束条件:由于是无约束最优化问题,这里没有额外的约束条件。
有了以上几个关键部分,我们可以将问题的数学模型表达为如下形式:最小化:f(X) = ∑dij * xi * c其中,i=1,2,...,n下一步是求解这个最优化问题。
可以使用各种数值优化算法,比如梯度下降法、牛顿法、遗传算法等。
具体的求解过程会涉及到算法的具体细节,这里不再详述。
最后,根据求解结果,我们可以得到游玩时间最长且经济成本最低的旅游路线。
这条路线就是我们需要制定的旅游路线。
总结起来,多变量无约束最优化问题在数学建模中的应用非常广泛。
通过定义合适的决策变量、目标函数和约束条件,可以将实际问题转化为数学模型,并通过数值优化算法求解这个模型,得到最优解。
在实际应用中,对于复杂的问题,可能需要结合多种算法和技巧来求解。
多变量约束优化方法多变量约束优化问题是指在给定一组目标函数和一组约束条件下,通过调整多个自变量的取值,找到使目标函数最优化且满足约束条件的解。
这类问题在实际应用中非常常见,如工程设计、金融管理、运筹学、物流和供应链管理等领域。
传统的优化方法对于多变量约束优化问题求解存在一些问题,如计算复杂度高、易陷入局部最优解等。
因此,为了有效解决这类问题,研究者们提出了多种多变量约束优化方法,下面将介绍其中几种主流的方法。
一、线性规划方法(Linear Programming, LP)线性规划是最简单且常用的多变量约束优化方法之一、它的目标函数和约束条件都是线性的。
线性规划问题可以通过单纯形法(Simplex Method)或内点法(Interior Point Method)求解。
虽然线性规划方法的计算复杂度比较低,但它只适用于线性目标函数和线性约束条件的情况。
二、非线性规划方法(Nonlinear Programming, NLP)非线性规划方法可以处理目标函数和约束条件是非线性的情况。
常用的非线性规划方法有梯度法、牛顿法和拟牛顿法等。
这些方法通过迭代的方式,在每一步计算目标函数在当前点的梯度,并根据梯度的信息调整自变量的取值,以逐步逼近最优解。
非线性规划方法的计算复杂度较高,但是可以处理复杂的实际问题。
三、遗传算法(Genetic Algorithm, GA)遗传算法是一种通过模拟生物进化过程的优化方法。
它通过模拟自然选择、交叉和变异等过程,逐步解空间中的最优解。
遗传算法具有全局收敛性和并行计算的特点,对于复杂的多变量约束优化问题有较好的适应性。
四、粒子群优化算法(Particle Swarm Optimization, PSO)粒子群优化算法是一种通过模拟鸟群或鱼群的行为进行优化的方法。
在粒子群优化算法中,每个个体(粒子)的位置代表潜在解,速度代表解的方向。
粒子的位置和速度通过迭代的方式进行更新,直到找到最优解。
非线性约束优化问题的数值解法在实际问题中,我们经常会遇到一类非线性约束优化问题,即在一定约束条件下,最小化或最大化一个非线性目标函数。
这类问题的数学模型可以表示为:$$\begin{aligned}\min_{x} \quad & f(x) \\\text{s.t.} \quad & g_i(x) \leq 0, \quad i=1,2,\ldots,m \\& h_j(x) = 0, \quad j=1,2,\ldots,n\end{aligned}$$其中,$x$是决策变量,$f(x)$是目标函数,$g_i(x)$和$h_j(x)$是约束函数。
有时候,这类问题的解析解并不容易求得,因此需要借助数值方法来找到近似解。
本文将介绍几种常用的非线性约束优化问题的数值解法。
一、拉格朗日乘子法拉格朗日乘子法是最基础的非线性约束优化问题求解方法之一。
它将原始问题转化为等价的无约束问题,并通过引入拉格朗日乘子来建立求解函数。
具体而言,我们将原始问题改写成拉格朗日函数的形式:$$L(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m}\lambda_ig_i(x) +\sum_{j=1}^{n}\mu_jh_j(x)$$其中,$\lambda_i$和$\mu_j$是拉格朗日乘子。
然后,我们对拉格朗日函数求取对$x$的梯度,并令其等于零,得到一组等式约束:$$\nabla_x L(x,\lambda,\mu) = \nabla f(x) +\sum_{i=1}^{m}\lambda_i\nabla g_i(x) + \sum_{j=1}^{n}\mu_j\nablah_j(x) = 0$$再加上约束条件 $g_i(x) \leq 0$ 和 $h_j(x) = 0$,我们可以得到原始问题的一组等价条件。
二、内点法内点法是解决非线性约束优化问题的一种有效算法。
该方法通过将约束条件转化为惩罚项,将原问题转化为无约束的目标函数最小化问题。
(1)带约束的非线性优化问题解法小结考虑形式如下的非线性最优化问题(NLP):min f(x)「g j (x )“ jI st 彳 g j (x)=O j L其 中, ^(x 1,x 2...x n )^ R n, f : R n > R , g j :R n > R(j I L) , I 二{1,2,…m }, L ={m 1,m 2...m p}。
上述问题(1)是非线性约束优化问题的最一般模型,它在军事、经济、工程、管理以 及生产工程自动化等方面都有重要的作用。
非线性规划作为一个独立的学科是在上世纪 50年 代才开始形成的。
到70年代,这门学科开始处于兴旺发展时期。
在国际上,这方面的专门性 研究机构、刊物以及书籍犹如雨后春笋般地出现,国际会议召开的次数大大增加。
在我国, 随着电子计算机日益广泛地应用,非线性规划的理论和方法也逐渐地引起很多部门的重视。
关于非线性规划理论和应用方面的学术交流活动也日益频繁,我国的科学工作者在这一领域 也取得了可喜的成绩。
到目前为止,还没有特别有效的方法直接得到最优解,人们普遍采用迭代的方法求解: 首先选择一个初始点,利用当前迭代点的或已产生的迭代点的信息,产生下一个迭代点,一 步一步逼近最优解,进而得到一个迭代点列,这样便构成求解( 1)的迭代算法。
利用间接法求解最优化问题的途径一般有:一是利用目标函数和约束条件构造增广目标 函数,借此将约束最优化问题转化为无约束最优化问题,然后利用求解无约束最优化问题的 方法间接求解新目标函数的局部最优解或稳定点,如人们所熟悉的惩罚函数法和乘子法;另 一种途径是在可行域内使目标函数下降的迭代点法,如可行点法。
此外,近些年来形成的序 列二次规划算法和信赖域法也引起了人们极大的关注。
在文献[1]中,提出了很多解决非线性 规划的算法。
下面将这些算法以及近年来在此基础上改进的算法简单介绍一下。
1. 序列二次规划法序列二次规划法,简称SQ 方法.亦称约束变尺度法。
非线性优化与约束优化问题的求解方法非线性优化问题是在目标函数和约束条件中包含非线性项的优化问题。
约束优化问题是在目标函数中加入了一些约束条件的优化问题。
解决这些问题在实际应用中具有重要意义,因此研究非线性优化和约束优化问题的求解方法具有重要的理论和实际意义。
一、非线性优化问题的求解方法非线性优化问题的求解方法有很多,下面介绍几种常见的方法:1. 黄金分割法:黄金分割法是一种简单但有效的搜索方法,它通过不断缩小搜索范围来逼近最优解。
该方法适用于目标函数单峰且连续的情况。
2. 牛顿法:牛顿法利用目标函数的一阶和二阶导数信息来逼近最优解。
该方法收敛速度较快,但在计算高阶导数或者初始点选取不当时可能产生不稳定的结果。
3. 拟牛顿法:拟牛顿法是对牛顿法的改进,它通过逼近目标函数的Hessian矩阵来加快收敛速度。
拟牛顿法可以通过不同的更新策略来选择Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法或者DFP方法。
4. 全局优化方法:全局优化方法适用于非凸优化问题,它通过遍历搜索空间来寻找全局最优解。
全局优化方法包括遗传算法、粒子群优化等。
二、约束优化问题的求解方法约束优化问题的求解方法也有很多,下面介绍几种常见的方法:1. 等式约束问题的拉格朗日乘子法:等式约束问题可以通过引入拉格朗日乘子来转化为无约束优化问题。
通过求解无约束优化问题的驻点,求得原始约束优化问题的解。
2. 不等式约束问题的罚函数法:不等式约束问题可以通过引入罚函数来转化为无约束优化问题。
罚函数法通过将违反约束条件的点处添加罚项,将约束优化问题转化为无约束问题。
3. 逐次二次规划法:逐次二次规划法是一种常用的求解约束优化问题的方法。
该方法通过依次处理逐个约束来逼近最优解,每次处理都会得到一个更小的问题,直至满足所有约束条件。
4. 内点法:内点法是一种有效的求解约束优化问题的方法。
该方法通过向可行域内部逼近,在整个迭代过程中都保持在可行域内部,从而避免了外点法需要不断向可行域逼近的过程。
毕业论文题目非线性最优化计算方法与算法学院数学科学学院专业信息与计算科学班级计算1201学生陶红学号20120921104指导教师邢顺来二〇一六年五月二十五日摘要非线性规划问题是一般形式的非线性最优化问题。
本文针对非线性规划的最优化问题进行方法和算法分析。
传统的求解非线性规划的方法有最速下降法、牛顿法、可行方向法、函数逼近法、信赖域法,近来研究发现了更多的求解非线性规划问题的方法如遗传算法、粒子群算法。
本文对非线性规划分别从约束规划和无约束规划两个方面进行理论分析。
利用最速下降法和牛顿法两种典型算法求解无约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。
另外给出了阻尼牛顿法,探讨其算法的收敛性和稳定性,求解无约束非线性规划比牛顿法的精确度更高,收敛速度更快。
惩罚函数是经典的求解约束非线性的方法,本文采用以惩罚函数法为核心的遗传算法求解有约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。
并改进遗传算法,给出适应度函数,通过变换适应度函数,提高算法的收敛性和稳定性。
关键词:非线性规划;最速下降法;牛顿法;遗传算法ABSTRACTNonlinear programming problem is the general form of the nonlinear optimization problem. In this paper, we carry on the analysis of the method and algorithm aiming at the optimization problem of nonlinear programming. The traditional methods of solving nonlinear programming problems include steepest descent method, Newton method, the feasible direction method, function approximation method and trust region method. Recent studies found more method of solving nonlinear programming problems, such as genetic algorithm, particle swarm optimization (pso) algorithm. In this paper, the nonlinear programming is analyzed from two aspects: the constraint programming and the unconstrained programming.We solve unconstrained condition nonlinear programming problem by steepest descent method and Newton's method, and get the optimal value through MATLAB. Then the convergence and stability are discussed. Besides, the damped Newton method is furnished. By discussing the convergence and stability of the algorithm, the damped Newton method has higher accuracy and faster convergent speed than Newton's method in solving unconstrained nonlinear programming problems.Punishment function is a classical method for solving constrained nonlinear. This paper solves nonlinear programming problem with constraints by using genetic algorithm method, the core of which is SUMT. Get the optimal value through MATLAB, then the convergence and stability are discussed. Improve genetic algorithm, give the fitness function, and improve the convergence and stability of the algorithm through transforming the fitness function.Key words:Nonlinear Programming; Pteepest Descent Method; Newton Method; GeneticAlgorithm目录摘要 (I)ABSTRACT .......................................................................................................................... I I 1 前言 .. (4)1.1 引言 (4)1.2 非线性规划的发展背景 (5)1.3 国内外研究现状 (5)1.4 研究主要内容及研究方案 (6)1.4.1 研究的主要内容 (6)1.4.2 研究方案 (6)1.5 研究难点 (7)2 预备知识 (8)2.1 向量和矩阵范数 (8)2.1.1 常见的向量范数 (8)2.1.2 谱范数 (9)2.2符号和定义 (9)2.3 数值误差 (10)2.4 算法的稳定性 (10)2.5 收敛性 (12)3 非线性规划模型 (13)3.1 非线性规划模型 (13)3.2 无约束非线性规划 (14)3.2.1 最速下降法 (16)3.2.2 牛顿法 (18)3.2.2 阻尼牛顿法 (18)3.3 约束非线性规划 (20)3.3.1 惩罚函数法 (21)3.3.2 遗传算法 (21)3.3.3 自适应遗传算法 (22)结论 (26)参考文献 (27)致谢 (28)附录 (29)1 前言1.1 引言我们知道最优化是一门很古老的求极值问题,最优化在求解线性规划,非线性规划,随机规划,多目标规划,非光滑规划,整数规划,几何规划等方面研究得到迅速发展。