2014-2015年福建省漳州市平和县八年级上学期数学期中试卷与答案
- 格式:doc
- 大小:217.00 KB
- 文档页数:14
10. 如图5,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),注满为止,水池中水面高度是h 注水时间为t ,则h 与t 之间的关系大致为下图中的 ( )二. 填空题(本大题共10小题,每小题3分,共30分) 11. 在下列数中:39-,1211,4.0,25,31-,-88,14.3-π,0,.1.0,2)3(-,225。
其中无理数的个数有 个。
12. 函数x y -=4中,自变量x 的取值范围是 。
13. 若函数m x m y m +-+=32)2(是一次函数,则m= 。
14. 已知函数⎩⎨⎧>-≤+=0,20,12x x x x y 若10=y ,则x = 。
15. 若一次函数的图象k x k y +--=1)3(不经过第二象限,则k的取值范围是 。
16. 已知点P(x,2x-6)在x 17. 如图,已知A 、B 两点的坐标分别是(-3,6)、(3,6)则直线AC 与y 轴相交的点的y 坐标为 。
18. 把直线4+-=x y 向右平移3个单位长度,所得直线与y 轴交点的y 坐标为 19. 设119-的整数部分是a,小数部分是b ,则()()a b ++191=20. 已知一条直线y= -3x+8与x 轴、y 轴分别交于A 、B 两点,将这条直线向左平移后与x 轴、y 轴分别交于C 、D 两点,若AB=AD ,则直线CD 的函数关系式为 。
三. 解答题(本大题共8小题,21~25题每题6分, 26、27两题每题9分,28题12分,共60分) 21. 计算:(1) (3分)30)21()14.3()25)(25(--+---+π(2) (3分)52)5(832402---++22. 已知y-3与x 成正比例,且当x=1时,y=5。
(1) (3分)求y 与x 的函数关系式;(2) (3分)求当x=-2时的函数值;23. 已知一次函数y=mx+n (m 、n 是常数)的图象经过第一、二、四象限,化简:122++--m n n m24. 如图,甲轮船以16海里/时的速度离开港口O 沿北偏东57°的方向航行,乙轮船同时从港口O 出发沿北偏西33°的方向航行,已知它们离开港口1.5小时后分别到达B 、A 两地,且AB=30海里,问乙轮船每小时航行多少海里?25.变量?哪个是函数?(2) (3分)如果用x(min)表示时间,用y (元)表示电话费,那么随着x 的变化,y 的变化趋势是怎样的?请写出它们的函数表达式。
2014-2015学年福建省漳州市平和县八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>25.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>28.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是度.12.“x与3的和不小于x的2倍”,用不等式表示为.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.20.解不等式组并把解集表示在数轴上..21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC 沿顺时针旋转90°得到△A2B2C2.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.2014-2015学年福建省漳州市平和县八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC考点:线段垂直平分线的性质.分析:根据线段的垂直平分线的性质进行判断即可.解答:解:∵DE是线段AB的垂直平分线,∴DB=DA,∴B正确,故选:B.点评:本题考查的是线段的垂直平分线的性质等几何知识.掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为4cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是12cm.故选D.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y考点:不等式的性质.分析:根据不等式的基本性质,进行判断即可.解答:解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的考点:旋转的性质;等边三角形的性质.分析:根据旋转的定义和等边三角形的性质即可解答.解答:解:图中△ACD可以看作由△ABC绕A点顺时针旋转60°得到.故选A.点评:本题考查了旋转的性质和等边三角形的性质,对于旋转关键要确定旋转角,确定旋转角时一定要首先找到对应点.6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.考点:几何变换的类型.分析:根据平移、旋转和轴对称的性质即可得出正确结果.解答:解:A、经过平移可得到上图,故此选项错误;B、经过平移可得到上图,故此选项错误;C、经过平移、旋转或轴对称变换后,都不能得到上图,故此选项正确;D、经过旋转可得到上图,故此选项错误.故选:C.点评:本题考查平移、旋转和轴对称的性质.平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.旋转的性质:①旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②两组对应点连线的交点是旋转中心.轴对称的性质:①翻折变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②对称轴是任何一对对应点所连线段的垂直平分线.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>2考点:一次函数与一元一次不等式.分析:从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.解答:解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.故选C.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人考点:一元一次不等式的应用.专题:应用题.分析:本题可设参加合影的人数为x,根据平均每人分摊的钱不足0.5元,列出不等式,解出x即可.解答:解:设参加合影的人数为x,则有:0.35x+0.8<0.5x﹣0.15x<﹣0.8x>5所以至少6人.故应选B.点评:本题考查的是不等式的运用,解此类题目时常常是先设出未知数,再根据题意列出不等式、求解.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm考点:角平分线的性质.专题:压轴题.分析:要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.解答:解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故选B.点评:此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6考点:解一元一次不等式组.分析:先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.解答:解:不等式组,由①得,x≥a+b,由②得,x<,∴,解得,故选A.点评:本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是80 度.考点:等腰三角形的性质.分析:由已知等腰三角形的一个底角是,50°,利用等腰三角形的性质得另一个底角也是50°,结合三角形内角和定理可求顶角的度数.解答:解:∵三角形是等腰三角形,∴两个底角相等,∵等腰三角形的一个底角是50°,∴另一个底角也是50°,∴顶角的度数为180°﹣50°﹣50°=80°.故答案为:80.点评:本题考查了等腰三角形的性质及三角形内角和定理;借助三角形的内角定理求解有关角的度数问题是一种很重要的方法,要熟练掌握.12.“x与3的和不小于x的2倍”,用不等式表示为x+3≥2x.考点:由实际问题抽象出一元一次不等式.分析:首先表示出“x与3的和”为x+3,再表示“不小于x的2倍”为x+3≥2x即可.解答:解:由题意得:x+3≥2x,故答案为:x+3≥2x.点评:此题主要考查了由实际问题抽象出一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是y1>y2.考点:一次函数图象上点的坐标特征.分析:根据一次函数的比例系数的符号以及相应自变量的大小可得所求结果.解答:解:∵比例系数为﹣2<0,﹣5<﹣2,∴y1>y2.故答案为y1>y2.点评:考查一次函数图象上点的坐标的特点;用到的知识点为:一次函数的比例系数小于0,y随x的增大而减小.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是△AFE和△EDC .考点:平移的性质;等边三角形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半判断出△ABC被分成的四个小三角形是全等三角形,然后根据平移的性质解答.解答:解:∵D、E、F分别是边BC、AC、AB的中点,∴图中四个小等边三角形是全等三角形,∴可以看成是由△FBD平移得到的三角形是△AFE和△EDC.故答案为:△AFE和△EDC.点评:本题考查了平移的性质,等边三角形的性质,熟记性质并准确识图是解题的关键,难点在于先确定出四个等边三角形是全等三角形.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为 3 .考点:全等三角形的判定与性质.分析:求出∠BDF=∠ADC,∠DBF=∠DAC,∠DAB=∠DBA,推出BD=AD,根据ASA证△BFD≌△ACD,即可得出答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠BEA=∠ADC=∠ADB=90°,∴∠DAB=90°﹣45°=45°=∠ABD,∠C+∠CBE=90°,∠C+∠CAD=90°,∴BD=AD,∠DBF=∠CAD,∵在△BFD和△ACD中,∴△BFD≌△ACD(ASA),∴BF=AC=3,故答案为:3.点评:本题考查了全等三角形的性质和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13 道.考点:一元一次不等式的应用.专题:应用题.分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13点评:解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= 70 °.考点:旋转的性质.专题:探究型.分析:直接根据图形旋转的性质进行解答即可.解答:解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB1=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°.故答案为:70.点评:本题考查的是旋转的性质,熟知图形旋转前后对应边、对应角均相等的性质是解答此题的关键.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为a>﹣4 .考点:解一元一次不等式;二元一次方程组的解.分析:把方程组的两个方程相加,即可求得x+y,则可以得到一个关于a的不等式,解不等式即可求得a的范围.解答:解:,①+②得:4(x+y)=4﹣a,则x+y=(4﹣a),则(4﹣a)<2,解得:a>﹣4.故答案是:a>﹣4.点评:本题是一个方程组与不等式的综合题目.转化为关于a的不等式是本题的一个难点.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母,移项,合并同类项,系数化成1即可.解答:解:<x+5,2+6x<2x+10,6x﹣2x<10﹣2,4x<8,x<2,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键,难度适中.20.解不等式组并把解集表示在数轴上..考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解答:解:,解①得:x>1,解②得:x≥2.,则不等式组的解集是:x≥2.点评:本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC 沿顺时针旋转90°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:根据平移的性质:对应点所连的线段平行且相等,可得平移的图形;根据对应点与旋转中心的距离相等且旋转角相等,可得旋转的图形.解答:解:如图:.点评:本题考查了作图,利用了平移的性质作图,旋转的性质作图.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.考点:全等三角形的判定;平行线的性质.专题:证明题.分析:根据平行线的性质可知由∠B=∠DEF.BE=CF,∠ACB=∠F,根据ASA定理可知△ABC≌△DEF.解答:证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴,∴△ABC≌△DEF(ASA).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.考点:一元一次不等式组的应用.分析:(1)根据计划投入资金不多于44万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数;(2)得出利润y与A产品数量x的函数关系式,根据增减性可得,B产品生产越多,获利越大,因而B 取最大值时,获利最大,据此即可求解.解答:解:(1)设应生产A种产品x件,则生产B种产品有(10﹣x)件,由题意有:解得:2≤x<6;所以可以采用的方案有:①A种产品2件,B种产品8件;②A种产品3件,B种产品7件;③A种产品4件,B种产品6件;④A种产品5件,B种产品5件;共4种方案;(2)设总利润为y万元,生产A种产品x件,则生产B种产品(10﹣x)件,则利润y=x+2(10﹣x)=﹣x+20,则y随x的增大而减小,即可得,A产品生产越少,获利越大,所以当A种产品2件,B种产品8件;时可获得最大利润,其最大利润为2×1+8×2=18万.点评:本题考查一元一次不等式组的实际运用,关键从表格种获得成本价和利润,然后根据利润和成本做为不等量关系列不等式组分别求出解,然后求出哪种方案获利最大从而求出来.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE 全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.解答:证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).点评:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.。
2014-2015学年度第一学期八年级数学期中试卷(本试卷满分100分,时间100分钟)题号 一 1--10 二11-15三总分 16 17 18 19 20 21 得分一、选择题(每题3分,共30分)题号 12345678910 答案1.点)4,5(-P 到y 轴的距离是【 ▲ 】A.5B.4C.5-D.4-2.当0,0><y x 时,点(,)A x y 在平面直角坐标系中的位置是在【 ▲ 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.若正比例函数y kx =的图象经过点(1,2),则k 的值为【 ▲ 】 A.1- B.2- C.1 D.24.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是【 ▲ 】5.已知三角形的两边长分别为cm 3和cm 8,则第三边长可以是【 ▲ 】 A.cm 13 B.cm 6 C.cm 5D.cm 46.函数3x y +=中自变量x 的取值范围是【 ▲ 】 A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠7.在同一平面直角坐标系中,若一次函数3y x =-+与35y x =-的图象交于点P ,则点P 的坐得分学校 班级 姓名 考号密封 线 内 不 要 答 题标为【 ▲ 】A.(1,4)-B.(1,2)-C.(2,1)-D.(2,1) 8.一次函数b kx y +=的图象如图所示,则不等式2>+b kx 的 解集为【 ▲ 】A.0>xB.0<xC.1-<xD.1->x9.一个三角形的两个内角分别是ο55和ο72,这个三角形的外角不可能是【 ▲ 】 A. 125° B.108° C.127° D.137°10.甲、乙两个同学从m 400环形跑道上的同一点出发,同时同向而行,甲的速度为s m /6,乙的速度为s m /4.设经过x (s )后,跑道上此两人间的较短部分的长度为y (m ),则y 与x (0≤x ≤300)之间函数关系可用图象表示为【 ▲ 】A. B. C. D.二、填空题(每题4分,共20分)11.如图,是某风景区几个主要景点示意图,根据图中信息可确定 九疑山的中心位置C 点的坐标为 .12.已知直线3-=x y 与22+=x y 的交点为)8,5(--,则方程组 的⎩⎨⎧=+-=--02203y x y x 解是 .13.直线a x y +-=2经过点),3(1y 和点),2(2y -,则1y 2y (填“>”、 “<”或“=”). 14.如果将函数x y 2=的图象向左平移m (0>m )个单位,正好等于将它向上平移n (0>n )个单位,则m 和n 之间的关系为 .15.某人用80元充值卡坐某种刷卡出租车,按行驶里程收费.km 3内收费8元,以后每超过km1得分第8题图第11题图加收5.1元.若此人第一次坐出租车(331)xkm x ≤≤,则充值卡中所余的费用y (元)与x ()km 之间的关系式是 . 三、解答题(共55分)16.(本小题7分)如图,A B C 、、三点的坐标分别为3,4()、1,2()、5,0(),将ABC ∆先向下平移四个单位得到'''A B C ∆,再将'''A B C ∆向左平移五个单位得到111A B C ∆.(1)请你在图上画出'''A B C ∆和111A B C ∆; (2)观察所画的图形写出'A 和1A 的坐标;(3)计算ABC ∆的面积.17.(本小题8分)综合与实践世界上大部分国家都使用摄氏温度()C o,但美国、英国等国家的天气预报仍然使用华氏温度()F o.两种计量之间有如下对应:(1(2)求出华氏0度时摄氏是多少度?(3)华氏温度的值与对应摄氏温度的值有相等的可能吗?如果有,请求出该值.xy –1–2–3–4–512345–1–2–3–4–512345O18.(本小题8分)如图,在ABC ∆中,AC AB =,AC 上的中线把三角形的周长分为cm 24和cm 30的两个部分,求三角形各边的长.19.(本小题10分) 已知2+y 与x 成正比例,且2-=x 时,0=y . (1)求y 与x 之间的函数关系式; (2)画出函数的图象;(3)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于B A 、两点,且4=∆ABP S ,求P 点的坐标.20.(本小题10分) 已知,如图,在ABC ∆中,角平分线BD 、CD 相交于点D , (1)若ο80=∠A ,求BDC ∠的度数; (2)若ο120=∠BDC ,求A ∠的度数;(3)若βα=∠=∠BDC A ,,试求α、β之间的数量关系.第20题图21. (本小题12分) 我市某企业利用机器生产一种科技产品,机器从早上八点开始工作,中午十二点停止.产品生产出来后,需要包装入库.通常的办法是,机器先工作一段时间,包装工人再开始包装.某次包装工人工作了一段时间后,因临近下班,又抽掉了一部分工人来帮忙,使包装入库的速度提高了一倍.如图是生产出来后待包装入库的产品数量y(件)与时间t(h)的函数关系的图象.根据图象解决以下问题:(1)机器每小时生产件产品;工人包装入库的速度是件/h;(2)求线段BC的解析式;(3)如果要保证生产的产品恰好在半天(4h)时全部包装入库,原有包装工人应该在机器开始工作后多长时间时开始包装?2014-2015学年度第一学期八年级数学期中测试参考答案一、选择题1---5:ABDCB 6----10:BDADC 二、填空题 11.(3,1) 12.⎩⎨⎧-=-=85y x 13.< 14.2m=n 15.5.765.1+-=x y三、解答题16.(1)图略………………2分(2)'A (3,0);1A (-2,0)………………4分 (3)42214221222144⨯⨯-⨯⨯-⨯⨯-⨯=∆ABC S ………………6分 6=………………7分 17.解:(1)是一次函数.………………1分设摄氏温度值为x ,华氏温度值为y ,令y=kx+b321050b k b =⎧⎨+=⎩解得9,325k b == 9325y x =+………………4分 (2)当y=0时,93205x +=,解得1609x =-,即华氏0度时,摄氏是1609-.…………6分 (3)依题意得9325y x y x⎧=+⎪⎨⎪=⎩ 解得40y x ==-即华氏温度的值与摄氏温度的值在-40时相等.………………8分 18.解:设AB=AC=2x ,则AD=CD=x ,(1)当AB +AD=30,BC +CD=24时,有2x +x=30, ∴x=10,………………2分 2x=20,BC=24-10=14,三边分别为:20cm ,20cm ,14cm .………………4分(2)当AB +AD=24,BC +CD=30,有2x +x=24∴x=8,………………6分BC=30-8=22,三边分别为:16cm ,16cm ,22cm .………………8分19.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0. ∴0+2=k ·(-2),∴k =-1. ∴函数关系式为x+2=-x , 即y=-x-2.………………3分 (2)列表;x 0 -2 y-2描点、连线,图象如图所示.………………6分 (3)函数y=-x-2分别交x 轴、y 轴于A ,B 两点, ∴A (-2,0),B (0,-2). ∵S △ABP =21·|BP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4. 又∵B 点坐标为(0,-2),且P 在y 轴负半轴上, ∴P 点坐标为(0,-6).………………10分 20.(1)∵∠A=80°,∴∠ABC+∠ACD=180°-80°=100° ∵BD 、CD 是角平分线 ∴∠DBC+∠DCB=οο5010021)(21=⨯=∠+∠ACB ABC ∴∠BDC=180°-∠DBC-∠DCB=180°-50°=130°;………………3分 (2)当∠BDC=120°,∴∠DBC+∠DCB=180°-120°=60° ∵BD 、CD 是角平分线∴οο120602)(2=⨯=∠+∠=∠+∠DCB DBC ACB ABC∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60°;………………6分 (3)∵∠A=α,∴∠ABC+∠ACB=180°-α ∵BD 、CD 是角平分线 ∴∠DBC+∠DCB=)180(21)(21α-⨯=∠+∠οACB ABC ∴∠BDC=180°-(∠DBC+∠DCB)=180°-αα2190)180(21+=-οο ∴︒+=9021αβ………………10分 21.(1)150,250………………4分(2)由包装速度提高一倍可知,最后阶段包装速度为500件/时,100÷500=0.2,所以点C 的坐标为(4.2,0),………………6分设y=kt+b ,则41004.20k b k b +=⎧⎨+=⎩,解得500,2100k b =-= 5002100y t =-+………………8分(3)设机器开始工作后t 小时,包装工人开始包装,则 150×4=250(4-t ) 解得t=1.6即原有工人应该在机器开始工作1.6小时后开始包装.………………12分。
2014—2015 第一学期初二数学期中学业水平测试、选一选,牛刀初试露锋芒!(每小题3分,共42分)1.下列图形中,轴对称图形的个数是()A. 4个2 .下列说法正确的是()A .三角形的角平分线是射线。
B.三角形三条高都在三角形内。
C. 三角形的三条角平分线有可能在三角形内,也可能在三角形外。
D. 三角形三条中线相交于一点。
3 .两根木棒长分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,?如果第三根木棒长为偶数, 则组成方法有b5E2RGbCAPA. 3种B. 4种C. 5种D. 6种4. 下列各组条件中,不能判定△AB4A A/B/C/的一组是()/ / / / / //—”//A、/ A=Z A,/B=Z B ,AB= A BB、/ A=Z A , AB= A B , AC=A C/ / / J / / / / / / /C、/ A=/ A , AB= A B , BC= B CD、AB= A B , AC=A C ,BC= B C5. 如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和△ ABC全等的图形是(D.只有丙6.如图1,将长方形ABCD纸片沿对角线BD折叠,使点C落在C •处,BC交AD于丘,若• DBC =22.5 °,贝恠不添加任何辅助线的情况下, 则图中45的角(虚线也视为角的边)的个数是()A. 5个E 22.12.如图5,△ ABC 的三边 AB 、BC CA 长分别是 20、30、40,其三条 角平分线将△ ABC 分为三个三角形,则 S A ABO : S A BCO:CAO 等于( )A . 1 : 1 : 1B . 1 : 2 : 3C . 2 : 3 : 4D . 3 : 4 : 513.如图6, 一圆柱高8cm,底面半径2cm,—只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 (二 取 3)是() DXDiTa9E3dA.20cm;B.10cm;C.14cm;D. 无法确定.7•如图2,有一张直角三角形纸片,两直角边 △ ABC 折叠,使点B 与点A 重合,折痕为DE 为( )A. 10 cm B . 12cmC8、若等腰三角形的腰长为10,底边长为12,A 、6B 、7C 、8AC=5cm BC=10cm则厶ACD 的周长盒命 图2 E.15cmD . 20cm则底边上的高为()D 、99.如图3,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事 的办法是()p1EanqFDPwA.带①去B.带②去C.带③去D.带①和②去10、下列条件中,不能确定三角形是直角三角形的是(A.三角形中有两个角是互为余角; B.三角形三个内角之比为3 : 2 : 1; C.三角形的三边之比为3 : 2 : 1 ; D.三角形中有两个内角的差等于第三个内角 11.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 4所示的图形,两条直角边在同一直线上.则图中等腰三角形有( )个. A. 1个B . 2个C.3 个D.4 个F C D图4图5A图614.如图7所示,已知△ ABC和厶BDE都是等边三角形。
福建省八年级上学期期中试卷数学一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.已知△ABC中,∠A=∠C﹣∠B,则此三角形是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定3.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于()A.10 B.11 C.13 D.11或134.已知△ABC≌△DEF,∠A=70°,∠E=50°,则∠F的度数为()A.50° B.60° C.70° D.80°5.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.17cm B.12cm C.5cm D.3cm6.画△ABC中AC边上的高,下列四个画法中正确的是()A.B. C. D.7.点(﹣3,2)与点B(﹣3,﹣2)关于()A.x轴对称B.y轴对称 C.原点对称 D.不能确定8.如图,已知∠A=∠D,要使△ABC≌△DCB,可以增加的一个条件是()A.AC=BD B.AB=DC C.∠ACB=∠DBC D.∠ABE=∠DCE9.如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,图中与BD相等的线段有()A.5条 B.6条 C.7条 D.8条10.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90° B.95° C.100° D.105°二、填空题:本题共6小题,每小题4分,共24分.11.六边形的内角和是.12.如图,△ADB≌△ECB,若∠CBD=40°,BD⊥EC,则∠D的度数为.13.如图,在△ABC中,∠C=90°,AM是∠CAB的平分线,CM=20cm,那么M到AB的距离为.第12题第13题第14题第15题14.如图,若AC=12,BC=7,AB的垂直平分线交AB于E,交AC于D,求△BCD的周长是.15.如图是标准跷跷板的示意图.横板AB的中点过支撑点O,且绕点O只能上下转动.如果∠OCA=90°,∠CAO=25°,则小孩玩耍时,跷跷板可以转动的最大角度为.16.如图,在等边△ABC中,AB=6,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)如图,是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形(阴影部分)为轴对称图形.18.(8分)如图所示,已知AC⊥BC,CD⊥AB,∠2与∠A有什么关系?请说明理由.19.(8分)如图,在△ABC中,AB=AC,∠A=36°,求作∠ABC的平分线,交AC于点D;并证明AD=BC.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)如图,点E、F在AC上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE.21.(8分)求证:等腰三角形底边中点到两腰的距离相等(要求画图,写已知、求证、然后证明)22.(10分)如图,AB∥CD,AE平分∠BAD交CD于E点.(1)求证:△ADE是等腰三角形;(2)若AD=13cm,AE=24cm,求△ADE的面积.23.(10分)如图,在等边△ABC中,点D,E分别在边AB,BC上,且AD=BE,AE与CD交于点F.(1)求证:AE=CD;(2)求∠EFC的度数.24.(12分)如图,在长方形ABCD中,AB=CD=3cm,BC=5cm,点P从点B出发,以1cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.25.(14分)(1)阅读理解:如图①,在△ABC中,若AB=12,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E,使DE=AD,再连接BE(或将△ACD绕着点D 逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断.(2)问题解决:如图②,在△ABC中,E是BC边上的中点,DE⊥EF于点E,DE交AB于点D,EF交AC于点F,连接DF,求证:BD+CF>DF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=160°,以点C为顶点作一个80°角,角的两边分别交AD,AB于E、F两点,连接EF,探索线段BF、DE、EF之间的数量关系,并加以说明.八年级上学期期中考试卷数学(答题卷)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本题共6小题,每小题4分,共24分.11. 12. 13. 14. 15. 16.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(8分)18.(8分)19.(8分)学校: 姓名: 班级: 考号: …………………………………密……………………………………封…………………………线…………………………20.(8分)21.(8分)22.(10分)24.(12分)(1)PC= cm.参考答案及评分标准一.选择题(共10小题)1.D;2.A;3.D;4.B;5.B;6.C;7.A;8.C;9.C;10.D;二.填空题(共6小题)11.720°;12.50°;13.20cm;14.19;15.50°;16.3;三.解答题(共9小题)17.所补画的图形如下所示:对一个2分,二个5分,三个8分。
2014-2015学年度第一学期期中考试八年级数学模拟试题第Ⅰ卷(本卷满分100分)一、选择题(共8小题,每小题3分,共24分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填写在答卷指定位置。
1.下面汽车标志图案中,不是轴对称图形的是( )2.要使六边形木架不变形,至少要再钉上( )根木条A .2B .3C .4D .5 3.下列长度的三条线段首尾相连不能组成三角形的是( )A .(2,4,3)B .(1,2,1)C .(2,3,2)D .(21,31,41) 4.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )A B C D5.如图,直线m 是多边形ABCDE 的对称轴,其中∠A =120°,∠ABC =110°,那么∠BCD 的度数为( )A .50°B .60°C .70°D .80°6.已知△ABC ,在三角形内部找一点P ,使P 到A 、B 、C 三点距离相等,则P 为( )A .三条高线的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点7.如图,C 为线段AB 上一点,在AB 的同侧作等边△ACM 和等边△BCN ,连接AN 、BM ,若∠MBN =40°,则∠ANB 的大小是( )A .60°B .65°C .70°D .80°8.在已给图形的基础上画一个小正方形,使之成为轴对称图形,有( )种画法A .1B .2C .3D .4二、填空题(共8小题,每小题3分,共24分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置。
9.在平面直角坐标系中,点A (2,0),B (0,4),作△BOC ,使△BOC 与△ABO 全等,则点C 坐标为_____________10.如图,△ABD ≌△BAC ,若AD =BC ,则∠BAC 的对应角为__________11.已知AD 是△ABC 的角平分线,DE ⊥AB 于E ,且DE =3 cm ,则点D 到AC 的距离为____12.如果将长度为a -2、a +5和a +2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是____________13.若点P (3,4)与Q (m ,n )关于x 轴对称,则=+n m14.一个多边形的一个内角的外角与其余内角的和是780°,则这个多边形的边数为_______15.已知等腰三角形一腰上的高与另一腰的夹角等于50°,设这条高与等腰三角形底边上的高所在的直线的夹角中,有一个锐角为α,则α的度数为16.如图,在△ABC 中,∠C =90°,AC =3,BC =4,AB =5,角平分线AF 和BG 交于D ,DE ⊥AB 于E ,则DE 长为________三、解答题(共5题,共52分)17.(本题满分10分)如图,已知△ABC 的三个顶点的坐标分别为A (-2,3)、B (-6,0)、C (-1,0)(1) 将△ABC 向右平移六个单位,再向下平移三个单位,则平移后点A 、B 、C 的对应点的坐标是_______、_______、_______(2) 将△ABC 沿y 轴翻折,则翻折后点A 的对应点的坐标是__________(3) 若△DBC 与△ABC 全等,请画出符号条件△DBC (点D与点A 重合除外),并直接写出点D 的坐标18.(本题满分10分)如图,已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B ,求证:AD =BC19.(本题满分10分)如图,在△ABC 中,D 为BC 上一点,∠BAD=∠ABC ,∠ADC=∠ACD ,若∠BAC=60°,试求∠ADC 的度数。
福建初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列运算中,正确的是()A.x3·x3=x6B.3x2÷2x=x C.(x2)3=x5D.(x+y2)2=x2+y42.下列二次根式中是最简二次根式的是()A.B.C.D.3.地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为()A.0.149B.1.49C.1.49D.14.94.分别以下列五组数为一个三角形的边长:①6、8、10;②13、12、5;③1、2、3;④3.5、4.5、5.5;⑤8、10、12,其中能够组成直角三角形的有()A.4组B.3组C.2组D.1组5.下列运算中错误的是()A.B.C.D.6.下列图形中,不是轴对称图形的是()7.有一个三角形两边长分别为4和5,要使三角形为直角三角形,则第三边长为()A.3B.C.3或D.3或8.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b>0B.a+b<0C.ab>0D.│a│>│b│9.如图,直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是()A.6厘米B.8厘米C.厘米D.厘米10.如图,棱长为1的正方体木块上有一只小虫从顶点A出发沿着正方体的外表面爬到顶点B,则它爬行的最短路程是()A.3B.C.D.2二、填空题1.当__________时,二次根式在实数范围内有意义。
2.已知x=3是方程112x=ax1的解,则a=___________。
3.在实数范围内分解因式:________。
4.如图,在平行四边形ABCD中,AB=8,BC="10" ,则∠B=150°,则□ABCD的面积= 。
5.在平面直角坐标系中,A、B两点的坐标分别为A(1,2),B(5,4),那么A、B两点之间的距离为AB=___________。
2014-2015学年福建省漳州市平和县八年级(上)期中数学试卷一、选择题(共11小题,每小题3分,满分33分)1.(3分)四个数﹣3,,,π中为无理数的是()A.﹣3 B. C.D.π2.(3分)下列数据中,哪一组数能作为直角三角形的三边长()A.9,12,15 B.3,4,6 C.1,2,3 D.6,9,113.(3分)点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)与数轴上的点成一一对应关系的是()A.有理数B.实数C.整数D.无理数5.(3分)点P(﹣2,﹣1)关于y轴对称的点的坐标是()A.(﹣2,﹣1)B.(1,﹣2)C.(2,﹣1)D.(﹣1,﹣2)6.(3分)若三角形的三边长满足(a﹣b)2+2ab=c2,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形7.(3分)函数y=2x﹣1的图象一定通过点()A.(3,4) B.(﹣2,3)C.(2,7) D.(1,1)8.(3分)下列运算正确的是()A.=B.=﹣C.= D.=9.(3分)若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为()A.cm B.cm C.5cm D.cm10.(3分)下列各式中,正确的是()A.±=3 B.=﹣2 C.=±3 D.=﹣311.(3分)关于函数y=3x+1,下列结论错误的是()A.图象必经过点(﹣2,1)B.y值x的增大而增大C.图象必经过第一、二、三象限D.当x>﹣时,y>0二、填空题(共8小题,每小题3分,满分24分)12.(3分)﹣5的相反数是.13.(3分)的算术平方根是.14.(3分)点(2a﹣1,2a+1)在直角坐标系的x轴上,则a=.15.(3分)已知一个三角形的三边长分别是10cm,24cm,26cm,则这个三角形的面积为.16.(3分)函数y=﹣3x+4的图象与y轴的交点坐标为.17.(3分)如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2),黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是.18.(3分)正比例函数的图象经过点(﹣2,3),那么这个函数的解析式为.19.(3分)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方体,那么新正方体的边长是.三、解答题(共6小题,满分43分)20.(8分)计算:(1)﹣2;(2)(+3)(﹣3)﹣|﹣5|.21.(5分)如图,在Rt△ABC中,AB=4,BC=3,在Rt△FAC中,AF=12,求正方形CDEF的面积.22.(8分)已知a、b、c为三角形的三边长,且满足|a﹣5|++(c﹣13)2=0,试判断该三角形的形状.23.(7分)如图方格纸中的每个小方格都是边长为1个单位的正方形,以0为坐标原点建立平面直角坐标系,在坐标系中,将坐标是(0,4),(1,0),(3,0),(4,4),(2,4),(0,4)的点用线段依次连接起来形成一个封闭图形.(1)在图的坐标系中画出这个图形;(2)图形中哪些点的坐标在坐标轴上,它们的坐标有什么特点;(3)图形中有和坐标轴平行的线段吗;(4)求出此图形的面积.24.(7分)某中学要添置某种教学仪器,方案一:到商店购买,每件需要8元;方案二:学校自己制作,每件需要4元,但另外需要制作工具的租用费120元,议需要仪器x件,方案一的费用为y1元,方案二的费用为y2元.(1)分别求出y1、y2关于x的函数关系式;(2)购买仪器多少件时,两种方案的费用相同;(3)若学校需要仪器50件,采用哪种方案便宜?25.(8分)若规定两数a、b通过运算“*”得到2(a﹣b),即a*b=2(a﹣b),例如:2*6=2(2﹣6)=﹣8.(1)求*的值;(2)求x*3﹣*4=0中x的值.2014-2015学年福建省漳州市平和县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共11小题,每小题3分,满分33分)1.(3分)四个数﹣3,,,π中为无理数的是()A.﹣3 B. C.D.π【解答】解:π是无理数,故选:D.2.(3分)下列数据中,哪一组数能作为直角三角形的三边长()A.9,12,15 B.3,4,6 C.1,2,3 D.6,9,11【解答】解:A、∵92+122=225=152,∴能够成直角三角形,故本选项正确;B、∵32+42=25≠62,∴不能够成直角三角形,故本选项错误;C、∵12+22=5≠32,∴不能够成直角三角形,故本选项错误;D、∵62+92=117≠112,∴不能够成直角三角形,故本选项错误.故选:A.3.(3分)点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(﹣1,﹣2)所在的象限是第三象限.故选:C.4.(3分)与数轴上的点成一一对应关系的是()A.有理数B.实数C.整数D.无理数【解答】解:因为数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示,所以实数与数轴上的点成一一对应.故选:B.5.(3分)点P(﹣2,﹣1)关于y轴对称的点的坐标是()A.(﹣2,﹣1)B.(1,﹣2)C.(2,﹣1)D.(﹣1,﹣2)【解答】解:点P(﹣2,﹣1)关于y轴对称的点的坐标是(2,﹣1),故选:C.6.(3分)若三角形的三边长满足(a﹣b)2+2ab=c2,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形【解答】解:∵(a﹣b)2+2ab=c2,∴a2﹣2ab+b2+2ab=c2,∴a2+b2=c2,∴这个三角形是直角三角形,故选:B.7.(3分)函数y=2x﹣1的图象一定通过点()A.(3,4) B.(﹣2,3)C.(2,7) D.(1,1)【解答】解:A、∵当x=3时,y=6﹣1=5≠4,∴此点不在直线y=2x﹣1上,故本选项错误;B、∵当x=﹣2时,y=﹣4﹣1=﹣5≠3,∴此点不在直线y=2x﹣1上,故本选项错误;C、∵当x=2时,y=4﹣1=3≠7,∴此点不在直线y=2x﹣1上,故本选项错误;D、∵当x=1时,y=2﹣1=1,∴此点在直线y=2x﹣1上,故本选项正确.故选:D.8.(3分)下列运算正确的是()A.=B.=﹣C.= D.=【解答】解:A、不是同类项不能相加减,故本选项错误.B、=﹣,故本选项错误.C、=,故本选项正确.D、=,故本选项错误.故选:C.9.(3分)若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为()A.cm B.cm C.5cm D.cm【解答】解:根据勾股定理,斜边==5,设斜边上的高为h,则S=×3×4=×5•h,△整理得5h=12,解得h=cm.故选:B.10.(3分)下列各式中,正确的是()A.±=3 B.=﹣2 C.=±3 D.=﹣3【解答】解:A、±=±3,故本选项错误;B、=﹣2,故本选项正确;C、=3,故本选项错误;D、==3,故本选项错误;故选:B.11.(3分)关于函数y=3x+1,下列结论错误的是()A.图象必经过点(﹣2,1)B.y值x的增大而增大C.图象必经过第一、二、三象限D.当x>﹣时,y>0【解答】解:A、1≠3×(﹣2)+1,因此图象不经过点(﹣2,1),故此选项符合题意;B、∵3>0,∴y值随x的增大而增大,说法正确,故此选项不合题意;C、图象必经过第一、二、三象限,说法正确,故此选项不合题意;D、当x>﹣时,y>0,说法正确,故此选项不合题意;故选:A.二、填空题(共8小题,每小题3分,满分24分)12.(3分)﹣5的相反数是5.【解答】解:﹣5的相反数是5.故答案为:5.13.(3分)的算术平方根是2.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.14.(3分)点(2a﹣1,2a+1)在直角坐标系的x轴上,则a=﹣.【解答】解:∵点(2a﹣1,2a+1)在直角坐标系的x轴上,∴2a+1=0,∴a=﹣.故答案为﹣.15.(3分)已知一个三角形的三边长分别是10cm,24cm,26cm,则这个三角形的面积为120cm2.【解答】解:∵102+242=262,∴该三角形为直角三角形,且直角边为10cm、24cm,∴这个三角形的面积S=×10×24=120(cm2).故答案为120cm2.16.(3分)函数y=﹣3x+4的图象与y轴的交点坐标为(0,4).【解答】解:根据题意,把x=0代入y=﹣3x+4得:y=4,∴图象与y轴的交点坐标为(0,4).故答案为:(0,4).17.(3分)如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2),黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是(2,1).【解答】解:如图,白棋(甲)的坐标是(2,1).故答案为(2,1).18.(3分)正比例函数的图象经过点(﹣2,3),那么这个函数的解析式为.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(﹣2,3),∴3=﹣2k,解得,x=﹣.故答案是:.19.(3分)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方体,那么新正方体的边长是.【解答】解:阴影部分的面积是:(1+3)×1+(1+3)×2=6,则新正方形的边长是:.故答案是:.三、解答题(共6小题,满分43分)20.(8分)计算:(1)﹣2;(2)(+3)(﹣3)﹣|﹣5|.【解答】解:(1)原式=﹣2=5﹣2=3;(2)原式=()2﹣9﹣5=13﹣14=﹣1.21.(5分)如图,在Rt△ABC中,AB=4,BC=3,在Rt△FAC中,AF=12,求正方形CDEF的面积.【解答】解:∵∠FAC和∠ABC都为直角,∴AC2=AB2+BC2=25,FC2=FA2+AC2=144,∴FC2=FA2+AC2=144+25=169.∴正方形CDEF的面积为169.22.(8分)已知a、b、c为三角形的三边长,且满足|a﹣5|++(c﹣13)2=0,试判断该三角形的形状.【解答】解:由题意得:a﹣5=0,b﹣6=0,c﹣13=0,解得:a=5,b=12,c=13,∵52+122=132,∴该三角形是直角三角形.23.(7分)如图方格纸中的每个小方格都是边长为1个单位的正方形,以0为坐标原点建立平面直角坐标系,在坐标系中,将坐标是(0,4),(1,0),(3,0),(4,4),(2,4),(0,4)的点用线段依次连接起来形成一个封闭图形.(1)在图的坐标系中画出这个图形;(2)图形中哪些点的坐标在坐标轴上,它们的坐标有什么特点;(3)图形中有和坐标轴平行的线段吗;(4)求出此图形的面积.【解答】解:(1)如图:(2)点A(0,4)、B(1,0)、C(3,0)在坐标轴上,在y轴上点的横坐标为0,在x轴上点的纵坐标为0;(3)线段AE、DE、AD与x轴平行;(4)此图形的面积=×(2+4)×4=12.24.(7分)某中学要添置某种教学仪器,方案一:到商店购买,每件需要8元;方案二:学校自己制作,每件需要4元,但另外需要制作工具的租用费120元,议需要仪器x件,方案一的费用为y 1元,方案二的费用为y2元.(1)分别求出y1、y2关于x的函数关系式;(2)购买仪器多少件时,两种方案的费用相同;(3)若学校需要仪器50件,采用哪种方案便宜?【解答】解:(1)y1=8x,y2=4x+120;(2)依题意y1=y2,即8x=4x+120,解得x=30,∴当需要的仪器为30件时,两种方案所需的费用相同;(3)把x=50分别代入y1=8x,y2=4x+120中,得y1=8×50=400,y2=4×50+120=320,∵y1>y2,∴当需要的仪器为50件时,选择第2种方案费用便宜.25.(8分)若规定两数a、b通过运算“*”得到2(a﹣b),即a*b=2(a﹣b),例如:2*6=2(2﹣6)=﹣8.(1)求*的值;(2)求x*3﹣*4=0中x的值.【解答】解:(1)*=2(﹣)=2(2﹣)=4﹣4;(2)∵x*3﹣*4=0,∴2(x ﹣3)﹣2(﹣4)=0,解得x=﹣1.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
《二元一次方程组》提高测试姓名 班级 学号(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. 4.2x -3y =4x -y =5的解为_______________.5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D )1110.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10 11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3(C )y =2x +1 (D )y =-2x +112.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1) 13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+1cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=014.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )015.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,216.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x 18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x《二元一次方程组》提高测试姓名班级学号(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+25434zyxzyx,xyz≠0,求222223yxzxyx+++的值.22.甲、乙两人解方程组⎩⎨⎧=+-=-514byaxbyx,甲因看错a,解得⎩⎨⎧==32yx,乙将其中一个方程的b写成了它的相反数,解得⎩⎨⎧-=-=21yx,求a、b的值.23.已知满足方程2 x-3 y=m-4与3 x+4 y=m+5的x,y也满足方程2x+3y=3m-8,求m的值.24.当x=1,3,-2时,代数式ax2+bx+c的值分别为2,0,20,求:(1)a、b、c的值;(2)当x=-2时,ax2+bx+c的值.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.⎩⎨⎧=++=-+.y x xy y x 391045100 26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.《二元一次方程组》提高测试 答案(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. 【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________. 【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数.【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a cb a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值. 【答案】a =61,b =41,c =31.【点评】设“比例系数”是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10 【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法.12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解. 【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( ) (A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0 【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值. 【答案】B . 【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键. 16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A BA , 进而求得x ,y .【答案】⎩⎨⎧-==.11y x20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x zxy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k ,y =2 k ,z =3 k ,代入代数式.【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的.22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错. 【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5. 【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数. 【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间. 【提示】设原计划用x 小时,AB 两地距离的一半为y 千米, 根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
2014-2015学年福建省漳州市八年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分,每小题只有一个正确的选项,请将正确选项填入相应的表格内)1.(2分)下列四个实数中,是无理数的为()A.0B.﹣3C.D.2.(2分)无理数的整数部分是()A.1B.2C.3D.43.(2分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a24.(2分)观察下列各组数:①9,16,25;②8,15,17;③7,24,25;④12,15,20.其中能作为直角三角形边长的组数为()A.①②B.②③C.③④D.①④5.(2分)下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角相等6.(2分)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+1 7.(2分)若等腰三角形的周长为20,有一边长为4,则它的腰长为()A.4B.8C.10D.4或88.(2分)要直观反映我市某一周每天的最高气温的变化趋势,宜采用()A.折线统计图B.条形统计图C.频数分布统计图D.扇形统计图9.(2分)如图,有两棵树,一棵高10m,另一棵高5m,两树相距12m,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()A.5m B.10m C.13m D.17m10.(2分)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2 11.(2分)如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.点O到△ABC三边的距离相等C.CG也是△ABC的一条内角平分线D.AO=BO=CO12.(2分)如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC 的值是()A.10B.8C.6D.4二、填空题(共8小题,每小题3分,共24分)13.(3分)9的平方根是.14.(3分)计算(2m+n)(2m﹣n)=.15.(3分)计算:﹣8x3y2÷2xy=.16.(3分)若+(b﹣3)2=0,则a+b=.17.(3分)测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,则该班身高在1.60m以下的学生有人.18.(3分)如图,∠A=∠D=90°,要使△ABC≌△DCB,只需再添加一个条件即可.19.(3分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC 于E,若CE=1,∠AEC=45°,则BE的长是.20.(3分)如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是.三、解答题(共7题,满分52分)21.(6分)计算:++(﹣1)2015+|4﹣π|.(结果保留π)22.(8分)(1)9x2﹣4y2;(2)2x2+4x+2.23.(6分)如图,已知B,F,E,D在同一条直线上,AB=CD,AB∥CD,BF=DE,求证:AE=CF.24.(6分)近年来,各地“广场舞”噪音干扰的问题倍受关注,某中学八年级学生就此问题对市民进行了随机问卷调查,问卷内容有以下四种:A.有一定影响,要控制好音量;B.影响很大,建议取缔;C.没影响;D.其它根据调查结果,制作了如图两幅不完整的统计图:根据以上信息解答下列问题:(1)本次调查的人数是人.(2)将两幅统计图补充完整.25.(8分)先化简,再求值:[(x﹣y)2]﹣x(x+y)+4xy÷y,其中x=﹣1,y=2.26.(8分)如图,在海上观察所A处,我边防海警发现正北60海里的B处,有一可疑船只正在往正东方向80海里的C处行驶,速度为40海里/小时,我边防海警立即派海警船从A处出发,沿AC方向行驶前往C处拦截,当可疑船只行驶到C处时,海警船也同时到达并将其截住,求海警船的速度.27.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB=cm,AB边上的高为cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.2014-2015学年福建省漳州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分,每小题只有一个正确的选项,请将正确选项填入相应的表格内)1.(2分)下列四个实数中,是无理数的为()A.0B.﹣3C.D.【解答】解:A、0是整数,是有理数,故A选项错误;B、﹣3是整数,是有理数,故B选项错误;C、=2是无理数,故C选项正确;D、是无限循环小数,是有理数,故D选项错误.故选:C.2.(2分)无理数的整数部分是()A.1B.2C.3D.4【解答】解:∵,∴2<<3,∴的整数部分为2,故选:B.3.(2分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a2【解答】解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选:C.4.(2分)观察下列各组数:①9,16,25;②8,15,17;③7,24,25;④12,15,20.其中能作为直角三角形边长的组数为()A.①②B.②③C.③④D.①④【解答】解:①、错误,∵92+162=337≠252=625,∴不能作为直角三角形边长;②、正确,∵82+152=172=289,∴能作为直角三角形边长;③、正确,∵72+242=252=625,∴能作为直角三角形边长;④、错误,∵122+152=369≠202=400,∴不能作为直角三角形边长.故选:B.5.(2分)下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角相等【解答】解:A、全等三角形的对应边上的高相等,故错误;B、全等三角形的对应边上的中线相等,故错误;C、全等三角形的对应角的角平分线相等,故错误;D、全等三角形的对应角相等,正确.故选:D.6.(2分)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+1【解答】解:(18x4﹣48x3+6x)÷6x=3x3﹣8x2+1.7.(2分)若等腰三角形的周长为20,有一边长为4,则它的腰长为()A.4B.8C.10D.4或8【解答】解:分情况考虑:当4是腰时,则底边长是20﹣8=12,此时4,4,12不能组成三角形,应舍去;当4是底边时,腰长是(20﹣4)×=8,4,8,8能够组成三角形.此时腰长是8.故选:B.8.(2分)要直观反映我市某一周每天的最高气温的变化趋势,宜采用()A.折线统计图B.条形统计图C.频数分布统计图D.扇形统计图【解答】解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:A.9.(2分)如图,有两棵树,一棵高10m,另一棵高5m,两树相距12m,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()A.5m B.10m C.13m D.17m【解答】解:如图,设大树高为AB=10m,小树高为CD=5m,过C点作CE⊥AB于E,则四边形EBDC是矩形,∴EB=5m,EC=12m,AE=AB﹣EB=10﹣5=5(m),在Rt△AEC中,AC===13(m).故小鸟至少飞行13m.故选:C.10.(2分)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2【解答】解:由题可得:a2﹣b2=(a﹣b)(a+b).故选:A.11.(2分)如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.点O到△ABC三边的距离相等C.CG也是△ABC的一条内角平分线D.AO=BO=CO【解答】解:∵由尺规作图的痕迹可得AE、BF是△ABC的内角平分线,∴点O到△ABC三边的距离相等,CG也是△ABC的一条内角平分线,故D选项不正确,故选:D.12.(2分)如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC 的值是()A.10B.8C.6D.4【解答】解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE ,∴S △ABD =S △ADE ,S △BDC =S △CDE ,∴S △ABD +S △BDC =S △ADE +S △CDE =S △ADC ,∴S △ADC ═S △ABC =×12=6,故选:C .二、填空题(共8小题,每小题3分,共24分)13.(3分)9的平方根是 ±3 .【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.14.(3分)计算(2m +n )(2m ﹣n )= 4m 2﹣n 2 .【解答】解:原式=4m 2﹣n 2.故答案为:4m 2﹣n 2.15.(3分)计算:﹣8x 3y 2÷2xy= ﹣4x 2y .【解答】解:﹣8x 3y 2÷2xy=﹣4x 2y .故答案为:﹣4x 2y .16.(3分)若+(b ﹣3)2=0,则a +b= 2 .【解答】解:∵+(b﹣3)2=0,≥0,(b﹣3)2≥0,∴a+1=0,b﹣3=0,解得:a=﹣1,b=3,∴a+b=2,故答案为:2.17.(3分)测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,则该班身高在1.60m以下的学生有16人.【解答】解:∵测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,∴该班身高在1.60m以下的学生有:40×0.4=16(人).故答案为:16.18.(3分)如图,∠A=∠D=90°,要使△ABC≌△DCB,只需再添加一个条件∠ABC=∠DCB,本题答案不唯一即可.【解答】解:添加的条件是∠ABC=∠DCB,理由是:在△ABC和△DCB中∴△ABC≌△DCB(AAS),故答案为:∠ABC=∠DCB.本题答案不唯一.19.(3分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,若CE=1,∠AEC=45°,则BE的长是.【解答】解:∵∠C=90°,∠AEC=45°,∴∠EAC=45°,∴AE=CE=,∵DE垂直平分AB,∴BE=AE=,故答案为:.20.(3分)如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是9.6.【解答】解:如图,过点A作AE⊥BC,垂足为E,过点B作BD⊥AC,垂足为D.∵AC=AC,AE⊥BC,∴BE=EC=6,在Rt△AEB中,==8,由三角形的面积公式可知:,即:,故答案为:9.6.三、解答题(共7题,满分52分)21.(6分)计算:++(﹣1)2015+|4﹣π|.(结果保留π)【解答】解:原式=2+3﹣1+4﹣π=8﹣π.22.(8分)(1)9x2﹣4y2;(2)2x2+4x+2.【解答】解:(1)原式=(3x+2y)(3x﹣2y);(2)原式=2(x2+2x+1)=2(x+1)2.23.(6分)如图,已知B,F,E,D在同一条直线上,AB=CD,AB∥CD,BF=DE,求证:AE=CF.【解答】证明:∵BF=DE,∴BE+EF=DE+EF.即BE=DF,∵AB∥CD,∴∠B=∠D,在△ABE和△CDF中,,∴△ABE≌△CDF.24.(6分)近年来,各地“广场舞”噪音干扰的问题倍受关注,某中学八年级学生就此问题对市民进行了随机问卷调查,问卷内容有以下四种:A.有一定影响,要控制好音量;B.影响很大,建议取缔;C.没影响;D.其它根据调查结果,制作了如图两幅不完整的统计图:根据以上信息解答下列问题:(1)本次调查的人数是200人.(2)将两幅统计图补充完整.【解答】解:(1)本次调查的总人数是:80÷40%=200(人),故答案是:200;(2)项目C的人数是:200×20%=40(人),B项目的人数是:200﹣80﹣40﹣50=30(人).D项目所占的百分比是:×100%=25%,B项目所占的百分比是:×100%=15%.25.(8分)先化简,再求值:[(x﹣y)2]﹣x(x+y)+4xy÷y,其中x=﹣1,y=2.【解答】解:[(x﹣y)2]﹣x(x+y)+4xy÷y=x2﹣2xy+y2﹣x2﹣xy+4x,=﹣3xy+y2+4x,当x=﹣1,y=2时,原式=6+4﹣4=6.26.(8分)如图,在海上观察所A处,我边防海警发现正北60海里的B处,有一可疑船只正在往正东方向80海里的C处行驶,速度为40海里/小时,我边防海警立即派海警船从A处出发,沿AC方向行驶前往C处拦截,当可疑船只行驶到C处时,海警船也同时到达并将其截住,求海警船的速度.【解答】解:∵AB=60海里,BC=80海里,∴AC==100(海里),∵可疑船只的行驶速度为40海里/小时,∴可疑船只的行驶时间为80÷40=2(小时),∴我边防海警船的速度为100÷2=50(海里/小时),答:我边防海警船的速度为50海里/小时,才能恰好在C处将可疑船只截住.27.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB=50cm,AB边上的高为24cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB•CE=AC•BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.。
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2014-2015学年福建省漳州市平和县八年级(上)期中数学试卷一、选择题(共11小题,每小题3分,满分33分)1.(3分)四个数﹣3,,,π中为无理数的是()A.﹣3 B. C.D.π2.(3分)下列数据中,哪一组数能作为直角三角形的三边长()A.9,12,15 B.3,4,6 C.1,2,3 D.6,9,113.(3分)点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)与数轴上的点成一一对应关系的是()A.有理数B.实数C.整数D.无理数5.(3分)点P(﹣2,﹣1)关于y轴对称的点的坐标是()A.(﹣2,﹣1)B.(1,﹣2)C.(2,﹣1)D.(﹣1,﹣2)6.(3分)若三角形的三边长满足(a﹣b)2+2ab=c2,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形7.(3分)函数y=2x﹣1的图象一定通过点()A.(3,4) B.(﹣2,3)C.(2,7) D.(1,1)8.(3分)下列运算正确的是()A.=B.=﹣C.= D.=9.(3分)若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为()A.cm B.cm C.5cm D.cm10.(3分)下列各式中,正确的是()A.±=3 B.=﹣2 C.=±3 D.=﹣311.(3分)关于函数y=3x+1,下列结论错误的是()A.图象必经过点(﹣2,1)B.y值x的增大而增大C.图象必经过第一、二、三象限D.当x>﹣时,y>0二、填空题(共8小题,每小题3分,满分24分)12.(3分)﹣5的相反数是.13.(3分)的算术平方根是.14.(3分)点(2a﹣1,2a+1)在直角坐标系的x轴上,则a=.15.(3分)已知一个三角形的三边长分别是10cm,24cm,26cm,则这个三角形的面积为.16.(3分)函数y=﹣3x+4的图象与y轴的交点坐标为.17.(3分)如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2),黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是.18.(3分)正比例函数的图象经过点(﹣2,3),那么这个函数的解析式为.19.(3分)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方体,那么新正方体的边长是.三、解答题(共6小题,满分43分)20.(8分)计算:(1)﹣2;(2)(+3)(﹣3)﹣|﹣5|.21.(5分)如图,在Rt△ABC中,AB=4,BC=3,在Rt△FAC中,AF=12,求正方形CDEF的面积.22.(8分)已知a、b、c为三角形的三边长,且满足|a﹣5|++(c﹣13)2=0,试判断该三角形的形状.23.(7分)如图方格纸中的每个小方格都是边长为1个单位的正方形,以0为坐标原点建立平面直角坐标系,在坐标系中,将坐标是(0,4),(1,0),(3,0),(4,4),(2,4),(0,4)的点用线段依次连接起来形成一个封闭图形.(1)在图的坐标系中画出这个图形;(2)图形中哪些点的坐标在坐标轴上,它们的坐标有什么特点;(3)图形中有和坐标轴平行的线段吗;(4)求出此图形的面积.24.(7分)某中学要添置某种教学仪器,方案一:到商店购买,每件需要8元;方案二:学校自己制作,每件需要4元,但另外需要制作工具的租用费120元,议需要仪器x件,方案一的费用为y1元,方案二的费用为y2元.(1)分别求出y1、y2关于x的函数关系式;(2)购买仪器多少件时,两种方案的费用相同;(3)若学校需要仪器50件,采用哪种方案便宜?25.(8分)若规定两数a、b通过运算“*”得到2(a﹣b),即a*b=2(a﹣b),例如:2*6=2(2﹣6)=﹣8.(1)求*的值;(2)求x*3﹣*4=0中x的值.2014-2015学年福建省漳州市平和县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共11小题,每小题3分,满分33分)1.(3分)四个数﹣3,,,π中为无理数的是()A.﹣3 B. C.D.π【解答】解:π是无理数,故选:D.2.(3分)下列数据中,哪一组数能作为直角三角形的三边长()A.9,12,15 B.3,4,6 C.1,2,3 D.6,9,11【解答】解:A、∵92+122=225=152,∴能够成直角三角形,故本选项正确;B、∵32+42=25≠62,∴不能够成直角三角形,故本选项错误;C、∵12+22=5≠32,∴不能够成直角三角形,故本选项错误;D、∵62+92=117≠112,∴不能够成直角三角形,故本选项错误.故选:A.3.(3分)点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(﹣1,﹣2)所在的象限是第三象限.故选:C.4.(3分)与数轴上的点成一一对应关系的是()A.有理数B.实数C.整数D.无理数【解答】解:因为数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示,所以实数与数轴上的点成一一对应.故选:B.5.(3分)点P(﹣2,﹣1)关于y轴对称的点的坐标是()A.(﹣2,﹣1)B.(1,﹣2)C.(2,﹣1)D.(﹣1,﹣2)【解答】解:点P(﹣2,﹣1)关于y轴对称的点的坐标是(2,﹣1),故选:C.6.(3分)若三角形的三边长满足(a﹣b)2+2ab=c2,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形【解答】解:∵(a﹣b)2+2ab=c2,∴a2﹣2ab+b2+2ab=c2,∴a2+b2=c2,∴这个三角形是直角三角形,故选:B.7.(3分)函数y=2x﹣1的图象一定通过点()A.(3,4) B.(﹣2,3)C.(2,7) D.(1,1)【解答】解:A、∵当x=3时,y=6﹣1=5≠4,∴此点不在直线y=2x﹣1上,故本选项错误;B、∵当x=﹣2时,y=﹣4﹣1=﹣5≠3,∴此点不在直线y=2x﹣1上,故本选项错误;C、∵当x=2时,y=4﹣1=3≠7,∴此点不在直线y=2x﹣1上,故本选项错误;D、∵当x=1时,y=2﹣1=1,∴此点在直线y=2x﹣1上,故本选项正确.故选:D.8.(3分)下列运算正确的是()A.=B.=﹣C.= D.=【解答】解:A、不是同类项不能相加减,故本选项错误.B、=﹣,故本选项错误.C、=,故本选项正确.D、=,故本选项错误.故选:C.9.(3分)若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为()A.cm B.cm C.5cm D.cm【解答】解:根据勾股定理,斜边==5,设斜边上的高为h,则S=×3×4=×5•h,△整理得5h=12,解得h=cm.故选:B.10.(3分)下列各式中,正确的是()A.±=3 B.=﹣2 C.=±3 D.=﹣3【解答】解:A、±=±3,故本选项错误;B、=﹣2,故本选项正确;C、=3,故本选项错误;D、==3,故本选项错误;故选:B.11.(3分)关于函数y=3x+1,下列结论错误的是()A.图象必经过点(﹣2,1)B.y值x的增大而增大C.图象必经过第一、二、三象限D.当x>﹣时,y>0【解答】解:A、1≠3×(﹣2)+1,因此图象不经过点(﹣2,1),故此选项符合题意;B、∵3>0,∴y值随x的增大而增大,说法正确,故此选项不合题意;C、图象必经过第一、二、三象限,说法正确,故此选项不合题意;D、当x>﹣时,y>0,说法正确,故此选项不合题意;故选:A.二、填空题(共8小题,每小题3分,满分24分)12.(3分)﹣5的相反数是5.【解答】解:﹣5的相反数是5.故答案为:5.13.(3分)的算术平方根是2.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.14.(3分)点(2a﹣1,2a+1)在直角坐标系的x轴上,则a=﹣.【解答】解:∵点(2a﹣1,2a+1)在直角坐标系的x轴上,∴2a+1=0,∴a=﹣.故答案为﹣.15.(3分)已知一个三角形的三边长分别是10cm,24cm,26cm,则这个三角形的面积为120cm2.【解答】解:∵102+242=262,∴该三角形为直角三角形,且直角边为10cm、24cm,∴这个三角形的面积S=×10×24=120(cm2).故答案为120cm2.16.(3分)函数y=﹣3x+4的图象与y轴的交点坐标为(0,4).【解答】解:根据题意,把x=0代入y=﹣3x+4得:y=4,∴图象与y轴的交点坐标为(0,4).故答案为:(0,4).17.(3分)如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2),黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是(2,1).【解答】解:如图,白棋(甲)的坐标是(2,1).故答案为(2,1).18.(3分)正比例函数的图象经过点(﹣2,3),那么这个函数的解析式为.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(﹣2,3),∴3=﹣2k,解得,x=﹣.故答案是:.19.(3分)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方体,那么新正方体的边长是.【解答】解:阴影部分的面积是:(1+3)×1+(1+3)×2=6,则新正方形的边长是:.故答案是:.三、解答题(共6小题,满分43分)20.(8分)计算:(1)﹣2;(2)(+3)(﹣3)﹣|﹣5|.【解答】解:(1)原式=﹣2=5﹣2=3;(2)原式=()2﹣9﹣5=13﹣14=﹣1.21.(5分)如图,在Rt△ABC中,AB=4,BC=3,在Rt△FAC中,AF=12,求正方形CDEF的面积.【解答】解:∵∠FAC和∠ABC都为直角,∴AC2=AB2+BC2=25,FC2=FA2+AC2=144,∴FC2=FA2+AC2=144+25=169.∴正方形CDEF的面积为169.22.(8分)已知a、b、c为三角形的三边长,且满足|a﹣5|++(c﹣13)2=0,试判断该三角形的形状.【解答】解:由题意得:a﹣5=0,b﹣6=0,c﹣13=0,解得:a=5,b=12,c=13,∵52+122=132,∴该三角形是直角三角形.23.(7分)如图方格纸中的每个小方格都是边长为1个单位的正方形,以0为坐标原点建立平面直角坐标系,在坐标系中,将坐标是(0,4),(1,0),(3,0),(4,4),(2,4),(0,4)的点用线段依次连接起来形成一个封闭图形.(1)在图的坐标系中画出这个图形;(2)图形中哪些点的坐标在坐标轴上,它们的坐标有什么特点;(3)图形中有和坐标轴平行的线段吗;(4)求出此图形的面积.【解答】解:(1)如图:(2)点A(0,4)、B(1,0)、C(3,0)在坐标轴上,在y轴上点的横坐标为0,在x轴上点的纵坐标为0;(3)线段AE、DE、AD与x轴平行;(4)此图形的面积=×(2+4)×4=12.24.(7分)某中学要添置某种教学仪器,方案一:到商店购买,每件需要8元;方案二:学校自己制作,每件需要4元,但另外需要制作工具的租用费120元,议需要仪器x件,方案一的费用为y1元,方案二的费用为y2元.(1)分别求出y1、y2关于x的函数关系式;(2)购买仪器多少件时,两种方案的费用相同;(3)若学校需要仪器50件,采用哪种方案便宜?【解答】解:(1)y1=8x,y2=4x+120;(2)依题意y1=y2,即8x=4x+120,解得x=30,∴当需要的仪器为30件时,两种方案所需的费用相同;(3)把x=50分别代入y1=8x,y2=4x+120中,得y1=8×50=400,y2=4×50+120=320,∵y1>y2,∴当需要的仪器为50件时,选择第2种方案费用便宜.25.(8分)若规定两数a、b通过运算“*”得到2(a﹣b),即a*b=2(a﹣b),例如:2*6=2(2﹣6)=﹣8.(1)求*的值;(2)求x*3﹣*4=0中x的值.【解答】解:(1)*=2(﹣)=2(2﹣)=4﹣4;(2)∵x*3﹣*4=0,∴2(x﹣3)﹣2(﹣4)=0,解得x=﹣1.。