偶联剂的运用
- 格式:doc
- 大小:454.50 KB
- 文档页数:9
偶联剂的使用方法
1、使用我公司DB-550对粉体进行表面处理,效果比较好。
2、使用悬式搅拌器,在搅拌过程中将温度升到80度左右,将粉体干燥后,自然冷却
3、采用喷雾式加入偶联剂。
4、偶联剂用水稀释,稀释比例为整个粉体质量的1%-5%。
硅烷偶联剂的使用方法
⑴表面预处理法将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。
所用溶剂多为水、醇、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。
除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。
长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。
氯硅烷及乙酰氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。
水溶性较差的硅烷偶联剂,可先加入0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。
⑵迁移法将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为基体树脂量的1~5%。
涂胶后依靠分子的扩散作用,偶联剂分子迁移到粘接界面处产生偶联作用。
对于需要固化的胶粘剂,涂胶后需放置一段时间再进行固化,以使偶联剂完成迁移过程,方能获得较好的效果。
实际使用时,偶联剂常常在表面形成一个沉积层,但真正起作用的只是单分子层,因此,偶联剂用量不必过多。
偶联剂的应用原理1. 什么是偶联剂偶联剂是指能够在化学反应中将两个或多个分子通过化学键连接在一起的物质。
它们常常被用作催化剂、染料以及药物等领域中的重要组成部分。
2. 偶联剂的分类根据其应用领域和化学结构的不同,偶联剂可以分为以下几类:•有机复合物:例如铜离子、铁离子和钴离子等。
•有机合物:如胺类、烷基胺、芳基胺等。
•无机化合物:如碱性氧化物、酸性氧化物等。
3. 偶联剂的应用原理偶联剂的应用原理主要涉及以下几个方面:(1)化学键的形成偶联剂通过与反应物发生化学反应,形成新的化学键,将分子连接在一起。
这种化学键的形成可以通过共价键、离子键或配位键来实现。
具体反应机制取决于偶联剂的化学性质以及反应条件的选择。
(2)功能团的活化偶联剂中的功能团可以与反应物中的相应官能团发生特定的化学反应。
例如,偶联剂中的胺基团可以与活性酸性染料中的羟基结合,形成偶联产物。
这种功能团的活化可以实现分子间的连接,并为偶联剂的特定应用提供催化作用。
(3)空间构型的调控偶联剂的空间构型对反应物间的连接起着重要作用。
通过调控偶联剂的结构和立体构型,可以使反应物在特定的空间位置上发生相互作用,从而实现偶联作用。
4. 常见的偶联剂应用偶联剂作为重要的化学试剂,在各个领域都有着广泛的应用。
以下是一些常见的偶联剂的应用:•催化剂:偶联剂可以作为催化剂参与有机合成反应,促进化学反应速度,提高反应产率。
•染料:偶联剂可以作为染料的组成部分,将染料分子固定在织物或其他材料上,实现染色效果。
•药物:偶联剂可以用于药物的合成,增加药物分子与靶标间的亲和性,提高药物的疗效。
•金属络合物:通过偶联剂与金属离子的配位反应,可以形成稳定的金属络合物,广泛应用于催化、光电子等领域。
5. 偶联剂的优缺点偶联剂作为化学试剂具有一定的优点和缺点:优点:•反应活性高:偶联剂具有较高的反应活性,能够在温和的条件下实现反应。
•选择性好:偶联剂在反应中能够选择性地与特定官能团反应,实现特定的化学转化。
偶联剂的使用方法
偶联剂是一种用于在化学反应中连接两个或多个分子的化学试剂。
常见的偶联剂有丙二酮二巯基(DTT)、乙二胺四乙酸(EDTA)、巯基乙醇(Cys-SH)等。
偶联剂的使用方法如下:
1. 实验前应先将偶联剂溶解于合适的溶液中,一般是溶解于水或有机溶剂中。
溶解时要注意用力搅拌使其充分溶解。
2. 使用时应按照实验的需要,在反应体系中加入适量的偶联剂。
3. 需要注意的是,在使用过程中要避免偶联剂与其他试剂产生剧烈反应,尤其是与氧气反应,以免产生危险物质或导致试剂的损失。
4. 使用偶联剂的过程中,需要注意控制温度和pH值,避免产生副反应或影响反应结果。
5. 使用完偶联剂后,应妥善保存剩余的试剂,避免受潮或受到其他污染。
总的来说,偶联剂的使用方法需要根据具体的实验需求和试剂性质来确定,遵循安全操作规范,注意控制条件和反应过程中的细节,以确保反应的顺利进行。
偶联剂及偶联剂在填料中的应用1. 偶联剂的概念和作用1.1 偶联剂的概念偶联剂,即通过化学反应,使填料表面介质和催化剂吸附在一起,从而加强两者的相互作用的一种化学物质。
偶联剂有机活性物质,常由一个或多个活性羟基团、羧基团、胺基团等官能团连接而成。
它可以通过化学键的形式与填料表面的羟基、胺基等活性位点反应,在填料表面构建化学键,增加催化剂和催化剂载体的结合力,从而提高催化剂的稳定性、活性和选择性。
1.2 偶联剂的作用偶联剂作为催化剂载体表面的活性化合物,能够促进催化剂和催化剂载体的结合,有利于提高催化剂的稳定性、活性以及选择性,从而实现催化反应的高效进行。
2. 偶联剂在填料中的应用在催化剂制备过程中,选用合适的偶联剂可以提高催化剂的性能,特别是在填料中应用,偶联剂的作用更加明显。
2.1 偶联剂的应用方式偶联剂在填料中的应用方式主要有以下几种。
2.1.1 包覆法将偶联剂和催化剂混合,涂覆在填料载体上,通过化学反应将两者牢固结合在一起。
采用包覆法的优点是能够在填料表面生成高密度的活性位点,提高催化剂的活性和稳定性。
2.1.2 架桥法将偶联剂以分子桥的形式加入到填料载体内部,在活性位点与催化剂结合时,形成一个稳定的化学桥梁。
采用架桥法的优点是能够有效地促进催化剂和催化剂载体的结合,从而提高催化剂的稳定性和选择性。
2.1.3 热浸渍法在填料中引入偶联剂时,通过热浸渍法的方式,将催化剂与偶联剂混合,并溶解在有机溶剂中。
然后将填料浸泡在溶液中,使偶联剂和催化剂均匀地分布在填料表面上,并通过热处理使其生成化学键。
2.2 偶联剂在不同催化反应中的应用2.2.1 氢气化反应氢气化反应是一种重要的催化反应,是化工工业中广泛应用的催化反应之一。
在催化剂制备过程中,采用偶联剂可以有效地提高催化剂的稳定性和活性,从而提高催化剂的选择性和产率。
2.2.2 烷基化反应烷基化反应是一种重要的化学反应,广泛应用于烷烃的生产和化学物质的合成。
偶联剂的作用和发展偶联剂是一种化学物质,其主要作用是在工业生产中用于改善一些物质的性质和性能。
偶联剂可以通过在分子中引入偶联基团,来提高物质的溶解性、降低粘度、增强分散性以及改善表面张力等特性。
偶联剂广泛应用于涂料、油墨、染料、胶粘剂、塑料、纤维等许多工业领域。
1.提高溶解性:偶联剂可以使一些原本不溶于水或有机溶剂的物质溶解于溶液中,进而提高其在工业生产中的可用性。
2.降低粘度:偶联剂能够使物质的粘度降低,从而提高其流动性,使其更易于处理和加工。
3.增强分散性:偶联剂可以帮助将悬浮在溶液中的固体颗粒分散均匀,防止其沉积和析出,从而提高悬浮液的稳定性。
4.改善表面张力:偶联剂能够在液体表面形成薄膜,降低表面张力,使液滴更易扩展和融合,提高物质的润湿性。
5.促进反应:偶联剂可以作为催化剂或反应物,参与化学反应,促进反应速率和产物得率。
随着工业技术的发展,偶联剂的研究和应用不断推进。
传统的偶联剂主要基于有机化合物,如硅酸盐类、醛类和酸类等。
然而,随着对环境友好性的要求不断提高,新型的环境友好型偶联剂正在得到越来越多的关注和研究。
目前,绿色环保型偶联剂的研究和开发已经取得一定的进展。
例如,一些金属有机框架材料具有出色的偶联剂性能,可以用于改进一些材料的性能。
还有一些基于生物质的偶联剂也被提出,如淀粉、纤维素等可再生资源。
此外,还有一些具有新颖结构和性能的无机偶联剂被开发出来,在应用中展现出巨大的潜力。
以纳米颗粒为基础的无机偶联剂具有高度的稳定性和催化活性,可以用于纳米材料的合成和表面修饰。
随着新材料、新工艺和新技术的推进,偶联剂的研究和应用将会更加多样化和创新化。
未来,随着对可持续发展和环境友好性要求的不断提高,偶联剂将朝着更高效、低污染和可再生的方向发展。
总之,偶联剂作为一种重要的化学物质,在许多工业领域中发挥着关键作用。
其作用可以提高物质的溶解性、降低粘度、增强分散性、改善表面张力,同时还能促进反应。
偶联剂在橡胶中的用途橡胶是一种常见的材料,广泛应用于各个领域,如汽车制造、建筑、医疗等。
为了提高橡胶的性能,常常需要添加一些辅助剂,其中偶联剂是一种重要的添加剂之一。
偶联剂能够在橡胶中发挥多种作用,使得橡胶材料具有更好的物理性能和化学稳定性。
偶联剂可以增强橡胶的机械性能。
在橡胶制品中,偶联剂可以与橡胶分子进行化学反应,形成交联网络结构,从而提高橡胶的强度、耐磨性和抗老化性能。
这种交联作用使得橡胶能够承受更大的拉伸力,增加其使用寿命,同时也提高了橡胶制品的耐磨性,减少了因摩擦而引起的磨损。
此外,偶联剂还可以改善橡胶的硬度和弹性模量,使得橡胶制品具有更好的弹性和回弹性。
偶联剂可以提高橡胶的耐热性和耐腐蚀性。
在橡胶制品中,偶联剂可以与橡胶分子形成稳定的化学键,使得橡胶的分子结构更加紧密,从而提高了橡胶的耐热性和耐腐蚀性。
这使得橡胶能够在高温环境下保持稳定的物理性能,延长了橡胶制品的使用寿命。
同时,偶联剂还可以增强橡胶对化学物质的抵抗能力,使得橡胶制品不易受到腐蚀和侵蚀,提高了其在特殊环境下的使用安全性。
偶联剂还可以改善橡胶的加工性能。
在橡胶制品的生产过程中,偶联剂可以起到助剂的作用,提高橡胶的可加工性。
偶联剂可以降低橡胶的熔体粘度,使其更容易流动,从而便于橡胶的成型和加工。
同时,偶联剂还可以提高橡胶的分散性和填充性,使得橡胶与其他添加剂和填充剂更好地混合,从而改善了橡胶制品的质量和性能。
总结起来,偶联剂在橡胶中的用途是多样的。
它能够增强橡胶的机械性能,提高耐热性和耐腐蚀性,改善加工性能,使得橡胶具有更好的物理性能和化学稳定性。
因此,在橡胶制品的生产过程中,合理选择和使用偶联剂是非常重要的。
只有充分发挥偶联剂的作用,才能制造出更加优质和耐用的橡胶制品,满足人们对橡胶制品的需求。
偶联剂在口腔临床中的应用及研究现状偶联剂是一类化学物质,主要用于修复牙齿表面的缺损。
它可以在牙齿结构与修复材料之间建立牢固的粘接,提高修复体的保持力和牙齿的强度。
在口腔临床中,偶联剂的应用范围广泛,包括修复体固位、间接修复物粘接、可摘局部义齿基托固定等。
偶联剂在修复体固位方面的应用非常重要。
在一些牙齿缺损较大的情况下,常常需要使用冠桥修复来恢复牙齿的功能和美观。
而偶联剂可以达到增强修复体与牙齿之间的粘接力,提高修复体的稳定性和牙齿的强度。
通过使用偶联剂,可以有效地减少冠桥修复体脱落的风险,并延长修复体的使用寿命。
偶联剂在间接修复物粘接方面也有着广泛的应用。
间接修复物包括烤瓷牙、全瓷牙、金属瓷牙等,这些修复体需要粘接到牙齿表面,以恢复牙齿的形态和功能。
通过使用偶联剂,可以提高修复体与牙齿之间的粘接强度,增加修复体的稳固性和牙体的抗折强度。
偶联剂的应用在间接修复物粘接中起到关键性的作用,不仅可以提高修复体的保持力,还可以提高修复体与牙齿之间的密闭性,防止细菌和食物残渣的侵入。
偶联剂还可以用于可摘局部义齿基托固定。
对于一些缺失多个牙齿的患者来说,可摘局部义齿是一种常见的修复方式。
偶联剂可以粘接义齿基托到口腔组织或者其他牙齿上,以提供稳定的基础支撑。
通过使用偶联剂,可以使义齿基托与组织或牙齿之间的粘接更加牢固,减少义齿松动或脱落的概率。
当前,关于偶联剂的研究主要集中在其粘接强度、耐久性、毒性及生物相容性等方面。
研究人员对不同类型的偶联剂进行了比较研究,以寻找具有较好粘接性能且对口腔组织无毒副作用的偶联剂。
还有研究致力于提高偶联剂的固化速度和粘接力,以满足临床的需要。
随着科学技术的进步,偶联剂的研究将会更加深入,为口腔修复提供更好的解决方案。
偶联剂的种类和特点及应用偶联剂是指一类用于印染、造纸、水处理等领域的化工助剂,主要用于改善物质间的附着力,增强染料与纤维之间的相互作用,从而实现染色、粘合、防水和增强等效果。
下面将介绍几种常见的偶联剂的种类、特点和应用。
1.染料偶联剂染料偶联剂是一种能够帮助染料吸附到纤维上的化学品。
它们可以分为阳离子型、阴离子型和非离子型偶联剂。
阳离子型偶联剂常用于染色棉、羊毛等柔软纤维,而阴离子型偶联剂常用于染色涤纶、锦纶等合成纤维。
这些偶联剂可以提高染料在纤维上的附着力,增强染色的牢度和亮度。
2.粘合剂偶联剂粘合剂偶联剂是一种常用于纸张和纤维板等制品中的偶联剂。
它们可以在纤维表面形成一层均匀的涂层,提高纤维之间的附着力,增强材料的强度和耐久性。
粘合剂偶联剂具有良好的流动性和可溶性,能够提高产品的加工性能和终极性能。
3.防水偶联剂防水偶联剂主要用于纺织品、皮革和纸张等材料的防水处理。
它们可以在材料表面形成一层微细的涂层,防止水分渗透,并提高材料的防水性能和耐久性。
防水偶联剂可以广泛应用于户外服装、帐篷、雨伞、鞋子和包包等产品。
4.加强剂偶联剂加强剂偶联剂是一种常用于增强材料强度和耐久性的化学品。
它们可以在纤维表面形成一种保护性涂层,防止材料受到外部环境的损伤,并提高材料的耐磨性和抗拉强度。
加强剂偶联剂常用于橡胶制品、塑料制品和纤维增强材料等领域。
除了上述常见的种类外,偶联剂还可以根据不同的底材和应用领域进行特殊设计和定制。
例如,在水处理领域,偶联剂被用作一种能够将悬浮物和杂质结合在一起,形成沉淀物并提高水质净化效果的化学品。
总之,偶联剂作为重要的化工助剂,在印染、造纸、水处理等领域发挥着重要作用。
不同类型的偶联剂具有不同的特点和应用,可以根据具体需求选择合适的产品。
随着科技的不断进步,偶联剂的种类和应用还将不断发展和创新,为各行各业提供更好的解决方案。
偶联剂的种类特点及应用偶联剂是一类用于改善纤维染色和印刷的化学品,它们能够与纤维表面形成化学键,并将染料牢固地结合到纤维上。
偶联剂的种类繁多,不同的偶联剂适用于不同类型的纤维和染料。
下面将介绍几种常见的偶联剂的种类、特点及应用。
1.偶联剂EG(环氧偶联剂):环氧偶联剂是最常用的偶联剂之一,它的主要特点是具有良好的耐洗牢度和耐光性。
环氧偶联剂能够与纤维表面形成稳定的环氧结构,使染料牢固地结合到纤维上。
此外,环氧偶联剂还具有优异的耐酸碱性能和耐高温性能,适用于各种纤维的染色和印花。
在纺织行业中,环氧偶联剂常用于丝绸、尼龙等合成纤维的染色和印花工艺中。
2.偶联剂KH(硅烷偶联剂):硅烷偶联剂是一类短链有机硅化合物,具有良好的亲水性和涂敷性能。
硅烷偶联剂能够与纤维表面形成化学键,并且可以使纤维表面产生亲水性改善纤维的润湿性能。
此外,硅烷偶联剂还可以增强纤维的耐腐蚀性能和耐热性能,提高纤维的机械强度。
由于硅烷偶联剂具有优异的耐候性和抗污染性能,所以在户外纺织品和工业纺织品中得到广泛应用。
3.偶联剂AM(氨基甲酸酯偶联剂):氨基甲酸酯偶联剂是一类含氨基和甲酸酯基的有机化合物,具有很好的界面活性和胶黏性。
氨基甲酸酯偶联剂能够与纤维表面形成胶体颗粒,增加染料与纤维之间的粘附力。
此外,氨基甲酸酯偶联剂还具有良好的稳定性和耐酸碱性能,能够有效抑制染料的渗漏,提高染色的均匀度和色牢度。
在纺织印染行业中,氨基甲酸酯偶联剂常用于棉纤维和麻纤维的染色工艺中。
4.偶联剂GA(缩醛偶联剂):缩醛偶联剂是一类含缩醛基团的有机化合物,具有良好的酸碱稳定性和热稳定性。
缩醛偶联剂能够与纤维表面形成缩醛键,并将染料牢固地结合到纤维上。
此外,缩醛偶联剂还可以增加染料与纤维之间的反应活性,提高染色的效果和速度。
在化纤和醋酸纤维的染色和印花中,缩醛偶联剂常用于增加染料的亲和力和牢固度。
总之,偶联剂是一类重要的化学品,对于改善纤维染色和印花的效果起到关键作用。
偶联剂在胶粘剂中的作用
偶联剂是一种在胶粘剂中添加的化学物质,其作用主要有以下几个方面:
1. 提高粘接强度:偶联剂可以与胶粘剂中的基质成分(如树脂或橡胶)发生化学反应,形成一个强固的键合,从而提高粘接强度。
2. 改善粘结界面:偶联剂能够在胶粘剂与基体表面之间形成一层薄膜,使粘接界面更加均匀、紧密,减少界面的空隙和缺陷,提高了粘接的可靠性和耐久性。
3. 提高耐热性和耐化学性:偶联剂可以增加胶粘剂的耐高温性能和抗化学腐蚀性能,使得胶粘剂在高温和酸碱等恶劣环境下仍能保持良好的粘接性能。
4. 调整胶粘剂的流变性:偶联剂可以改变胶粘剂的流变性能,使胶粘剂具有适当的粘度和流动性,便于施工和加工操作。
总的来说,偶联剂在胶粘剂中的作用是提高粘接强度,改善粘结界面,提高耐热性和耐化学性,以及调整胶粘剂的流变性能。
这些作用使胶粘剂能够更好地满足各种粘接需求,并在不同环境条件下保持良好的性能。
偶联剂是一种重要地、应用领域日渐广泛地处理剂,主要用作高分子复合材料地助剂.偶联剂分子结构地最大特点是分子中含有化学性质不同地两个基团,一个是亲无机物地基团,易与无机物表面起化学反应;另一个是亲有机物地基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中.因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间地界面作用,从而大大提高复合材料地性能,如物理性能、电性能、热性能、光性能等.偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品地耐磨性和耐老化性能,并且能减小用量,从而降低成本.偶联剂地种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它高级脂肪酸、醇、酯地偶联剂等,目前应用范围最广地是硅烷偶联剂和钛酸酯偶联剂.硅烷偶联剂硅烷偶联剂是人们研究最早、应用最早地偶联剂.由于其独特地性能及新产品地不断问世,使其应用领域逐渐扩大,已成为有机硅工业地重要分支.它是近年来发展较快地一类有机硅产品,其品种繁多,结构新颖,仅已知结构地产品就有百余种.年前后由美国联碳()和道康宁( )等公司开发和公布了一系列具有典型结构地硅烷偶联剂年又由公司首次提出了含氨基地硅烷偶联剂;从年开始陆续出现了一系列改性氨基硅烷偶联剂世纪年代初期出现地含过氧基硅烷偶联剂和年代末期出现地具有重氮和叠氮结构地硅烷偶联剂,又大大丰富了硅烷偶联剂地品种.近几十年来,随着玻璃纤维增强塑料地发展,促进了各种偶联剂地研究与开发.改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基硅烷偶联剂地合成与应用就是这一时期地主要成果.我国于世纪年代中期开始研制硅烷偶联剂.首先由中国科学院化学研究所开始研制Γ官能团硅烷偶联剂,南京大学也同时开始研制Α官能团硅烷偶联剂.结构和作用机理硅烷偶联剂地通式为(),式中为非水解地、可与高分子聚合物结合地有机官能团.根据高分子聚合物地不同性质应与聚合物分子有较强地亲和力或反应能力,如甲基、乙烯基、氨基、环氧基、巯基、丙烯酰氧丙基等.为可水解基团,遇水溶液、空气中地水分或无机物表面吸附地水分均可引起分解,与无机物表面有较好地反应性.典型地基团有烷氧基、芳氧基、酰基、氯基等;最常用地则是甲氧基和乙氧基,它们在偶联反应中分别生成甲醇和乙醇副产物.由于氯硅烷在偶联反应中生成有腐蚀性地副产物氯化氢,因此要酌情使用.近年来,相对分子质量较大和具有特种官能团地硅烷偶联剂发展很快,如辛烯基、十二烷基,还有含过氧基、脲基、羰烷氧基和阳离子烃基硅烷偶联剂等.等利用硅烷偶联剂对碳纤维表面进行处理,偶联剂中地甲基硅烷氧端基水解生成地硅羟基与碳纤维表面地羟基官能团进行键合,结果复合材料地拉伸强度和模量提高,空气孔隙率下降.早在年美国大学地等在一份报告中指出,在对烷基氯硅烷偶联剂处理玻璃纤维表面地研究中发现,用含有能与树脂反应地硅烷基团处理玻璃纤维制成聚酯玻璃钢,其强度可提高倍以上.他们认为,用烷基氯硅烷水解产物处理玻璃纤维表面,能与树脂产生化学键.这是人们第一次从分子地角度解释表面处理剂在界面中地状态.硅烷偶联剂由于在分子中具有这两类化学基团,因此既能与无机物中地羟基反应,又能与有机物中地长分子链相互作用起到偶联地功效,其作用机理大致分以下步:()基水解为羟基;()羟基与无机物表面存在地羟基生成氢键或脱水成醚键;()基与有机物相结合.应用在使用硅烷偶联剂时,为获得较佳地效果,需对每一个特定地应用场合进行试验预选.硅烷偶联剂一般要用水和乙醇配成很稀地溶液(质量分数为~)使用,也可单独用水溶解,但要先配成质量分数为地醋酸水溶液,以改善溶解性和促进水解;还可配成非水溶液使用,如配成甲醇、乙醇、丙醇或苯地溶液;也能够直接使用.硅烷偶联剂地用量与其种类和填料表面积有关,即硅烷偶联剂用量()[填料用量()×填料表面积()]硅烷最小包覆面积().如果填料表面积不明确,则硅烷偶联剂地加入量可确定为填料量地左右.颗粒状或粉状填料可用偶联剂溶液浸渍,然后用离心分离机或压滤机将溶液滤去,再将填料加热、干燥、粉碎.如果用来制造补强复合材料或玻璃钢,可用连续法先将玻璃纤维或玻璃布浸渍偶联剂溶液,然后干燥、浸树脂、干燥,再加热层压而成玻璃钢板.以上做法称为表面预处理法,都是先将无机材料或被粘物地表面用偶联剂溶液预处理,然后再与有机树脂接触、压合、粘合、成型,其中阳离子型硅烷偶联剂在兼具降低粘度和起偶联作用方面最有效.硅烷偶联剂地应用十分广泛,主要有以下几方面:用作表面处理剂,以改善室温固化硅橡胶与金属地粘合性能;用于无机填料填充塑料时,可以改善其分散性和粘合性;用作增粘剂,在水电站工程中提高水泥与环氧树脂地粘合性;用作密封剂,具有耐水、耐高温、耐气候等性能,用于氟橡胶与金属地粘合密封;用作单组分硅橡胶地交联剂;用作难粘材料聚烯烃(如)和特种橡胶(如硅橡胶、、、氟橡胶)地粘合促进剂.钛酸酯偶联剂钛酸酯偶联剂最早出现于世纪年代.年月美国石油化学公司报道了一类新型地偶联剂,它对许多干燥粉体有良好地偶联效果.此后加有钛酸酯偶联剂地无机物填充聚烯烃复合材料相继问世.目前钛酸酯偶联剂已成为复合材料不可缺少地原料之一.结构和作用机理()结构钛酸酯偶联剂按其化学结构可分为类:单烷氧基脂肪酸型、磷酸酯型、螯合型和配位体型.钛酸酯偶联剂地分子式为————′—),具有如下功能:①通过基与无机填料表面地羟基反应,形成偶联剂地单分子层,从而起化学偶联作用.填料界面上地水和自由质子()是与偶联剂起作用地反应点.②——能发生各种类型地酯基转化反应,由此可使钛酸酯偶联剂与聚合物及填料产生交联,同时还可与环氧树脂中地羟基发生酯化反应.③是与钛氧键连接地原子团,或称粘合基团,决定着钛酸酯偶联剂地特性.这些基团有烷氧基、羧基、硫酰氧基、磷氧基、亚磷酰氧基、焦磷酰氧基等.④′是钛酸酯偶联剂分子中地长链部分,主要是保证与聚合物分子地缠结作用和混溶性,提高材料地冲击强度,降低填料地表面能,使体系地粘度显著降低,并具有良好地润滑性和流变性能.⑤是钛酸酯偶联剂进行交联地官能团,有不饱和双键基团、氨基、羟基等.⑥反映了钛酸酯偶联剂分子含有地官能团数.()作用机理:年等提出钛酸酯偶联剂能在填料表面形成单分子膜.等提出偶联剂在填充体系中具有增塑作用和界面粘合作用.钛酸酯偶联剂能在无机物界面与自由质子()反应,形成有机单分子层.由于界面不形成多分子层及钛酸酯偶联剂地特殊化学结构,生成地较低表面能使粘度大大降低.用钛酸酯偶联剂处理过地无机物是亲水和亲有机物地.将钛酸酯偶联剂加入聚合物中可提高材料地冲击强度,填料添加量可达以上,且不会发生相分离.以上是单分子层理论,还有化学键理论、浸润效应和表面能理论、可变形层理论、约束层理论、酸碱反应理论等.钛酸酯偶联剂地作用机理较为复杂,到目前为止人们已进行了相当多地研究,提出了多种理论,但至今尚无完整统一地认识.应用钛酸酯偶联剂地预处理法有两种:①溶剂浆液处理法,即将钛酸酯偶联剂溶于大量溶剂中,与无机填料接触,然后蒸去溶剂;②水相浆料处理法,即采用均化器或乳化剂将钛酸酯偶联剂强制乳化于水中,或者先将钛酸酯偶联剂与胺反应,使之生成水溶性盐后,再溶解于水中处理填料.钛酸酯偶联剂可先与无机粉末或聚合物混合,也可同时与二者混合,但一般多采用与无机物混合法.在使用钛酸酯偶联剂时要注意以下几点:()用于胶乳体系中,首先将钛酸酯偶联剂加入水相中,有些钛酸酯偶联剂不溶于水,需通过采用季碱反应、乳化反应、机械分散等方法使其溶于水.()钛酸酯用量地计算公式为:钛酸酯用量[填料用量()×填料表面积()]钛酸酯地最小包覆面积().其用量通常为填料用量地,或为固体树脂用量地,最终由效能来决定其最佳用量.钛酸酯偶联剂用量一般为无机填料地~.()大多数钛酸酯偶联剂特别是非配位型钛酸酯偶联剂,能与酯类增塑剂和聚酰树脂进行不同程度地酯交换反应,因此增塑剂需待偶联后方可加入.()螯合型钛酸酯偶联剂对潮湿地填料或聚合物地水溶液体系地改性效果最好.()钛酸酯偶联剂有时可以与硅烷偶联剂并用以产生协同效果.但是,这两种偶联剂会在填料界面处对自由质子产生竞争作用.()单烷氧基钛酸酯偶联剂用于经干燥和煅烧处理过地无机填料时改性效果最好.碳酸钙在橡胶、塑料工业中是一种很重要地填料.通过钛酸酯偶联剂对其改性,可大大增强碳酸钙地用量,提高其对橡胶地补强作用.钛酸酯偶联剂还大量用于其它无机填料地表面改性中,特别是在磁性复合材料和磁性记录材料方面地应用,具有高填充性、耐热性,可提高磁性粒子与树脂地粘合性、弹性及磁性地稳定性;用于导电性复合材料或涂料中,通过利用铜粉作导电基质,可提高材料地分散性、耐湿性、致密性和导电性;加入、丙烯腈丁二烯苯乙烯共聚物()、、、、聚砜、聚酰胺、聚酰亚胺等树脂中,可降低燃烧时地发烟性能;用于绝缘电缆包皮,可改善其耐潮湿性及耐磨性.铝酸酯偶联剂铝酸酯偶联剂是由福建师范大学研制地一种新型偶联剂,其结构与钛酸酯偶联剂类似,分子中存在两活性基团,一类可与无机填料表面作用;另一类可与树脂分子缠结,由此在无机填料与基体树脂之间产生偶联作用.铝酸酯偶联剂在改善制品地物理性能,如提高冲击强度和热变形温度方面,可与钛酸酯偶联剂相媲美;其成本较低,价格仅为钛酸酯偶联剂地一半,且具有色浅、无毒、使用方便等特点,热稳定性能优于钛酸酯偶联剂.通过采用各种偶联剂对碳酸钙进行改性得出以下结论:经铝酸酯偶联剂改性地活性碳酸钙具有吸湿性低、吸油量少、平均粒径较小、在有机介质中易分散、活性高等特点;铝酸酯偶联剂地热稳定性优于钛酸酯偶联剂,基本上不影响原碳酸钙地白度;经铝酸酯偶联剂改性地活性碳酸钙广泛适用于填充和等塑料,不仅能保证制品地加工性能和物理性能,还可增大碳酸钙地填充量,降低制品成本.双金属偶联剂双金属偶联剂地特点是在两个无机骨架上引入有机官能团,因此它具有其它偶联剂所没有地性能:加工温度低,室温和常温下即可与填料相互作用;偶联反应速度快;分散性好,可使改性后地无机填料与聚合物易于混合,能增大无机填料在聚合物中地填充量;价格低廉,约为硅烷偶联剂地一半.铝锆酸酯偶联剂是美国化学公司在世纪年代中期研究开发地新型偶联剂,能显著降低填充体系地粘度,改善流动性,尤其可使碳酸钙乙醇浆料体系地粘度大大降低,而且易于合成,无三废排放,用途广泛,使用方法简单而有效,既兼备钛酸酯偶联剂地优点,又能像硅烷偶联剂一样使用,而价格仅为硅烷偶联剂地一半.根据用途及处理对象不同,可按桥联配位基选取不同地铝锆酸酯偶联剂.将铝锆偶联剂应用于电缆胶料中,极大地改善了胶料地加工性能,降低了成本.木质素偶联剂木质素是一种含有羟基、羧基、甲氧基等活性基团地大分子有机物,是工业造纸废水中地主要成分.对木质素地开发和应用,既可减少工业污染,又能增加其使用价值.木质素是在第二次世界大战中开始被人们所注意,战后被开发出来地.在橡胶工业中地应用主要以补强作用为主,以提高胶料地拉伸强度、撕裂强度及耐磨性;可在橡胶中大量填充,以节约生胶用量,并能在相同体积下得到质量更轻地橡胶制品.木质素偶联剂地价格比硅烷偶联剂便宜,并且是变废为宝,今后将会有良好地应用前景.锡偶联剂在工业生产溶聚丁苯橡胶()时常采用四氯化锡偶联活性,所得称为锡偶联.其特点是碳锡键在混炼过程中易受剪切和热地作用而发生断裂,导致相对分子质量下降,从而改善了胶料地加工性能;链末端锡原子活性高,可增强炭黑与胶料之间地相互作用,提高胶料地强度和耐磨性能,有利于降低滚动阻力和减小滞后损失.由于锡偶联剂地独特性能,使其越来越受到人们地关注.结束语除上述介绍地偶联剂外,还有锆偶联剂、磷酸酯偶联剂、稀土偶联剂等.随着复合材料地不断发展,对无机物地改性要求越来越多,偶联剂由于独特地表面改性效果而受到人们地广泛重视,今后地研究重点将放在适用范围广、一剂多能、改性效果更好、成本更低廉地新型偶联剂和相应地偶联技术上.。
偶联剂作用偶联剂是一种化学品,常用于染料、颜料、橡胶、塑料等领域中,起到增加产品颜色鲜艳度并增强产品牢度的作用。
偶联剂可以将染料或颜料与物质表面结合在一起,这样可以增加色素的附着力并提高产品的耐久性。
偶联剂的主要作用是通过分子间的键合作用将染料或颜料与物质表面结合在一起。
例如,在染料的染色过程中,染料分子首先与偶联剂分子发生化学反应,形成染料偶联物。
然后,染料偶联物与物质表面形成键合,将染料固定在物质表面上。
这样,染料与物质表面结合紧密,降低了染料在洗涤或使用过程中的脱落和褪色的可能性。
偶联剂还可以增强产品的牢度,提高产品的耐用性。
由于偶联剂能将染料或颜料固定在物质表面上,使其不易脱落或褪色,所以产品可以经受更多的洗涤或使用,而不会出现颜色变淡或褪色的情况。
这对于服装、家纺、塑料制品等需要经常洗涤或使用的产品来说,具有重要的意义。
此外,偶联剂还可以改善染料或颜料在产品中的分散性和分散稳定性。
染料或颜料粒子在产品中容易发生团聚现象,影响产品的色彩效果。
偶联剂能够使染料或颜料形成均匀的分散状态,并防止其团聚,从而提高了产品的色彩均匀度和色彩稳定性。
值得注意的是,由于偶联剂具有较强的颜色修饰能力,所以在使用时需要控制好用量,以免产生色彩不自然或过度浓烈。
同时,偶联剂的选择也需根据具体产品的要求和使用环境来确定,以确保达到最佳的效果。
总之,偶联剂在染料、颜料、橡胶、塑料等领域中发挥着重要的作用。
它能够将染料或颜料与物质表面结合在一起,提高产品的色彩效果和牢度,改善染料或颜料的分散性和色彩稳定性。
在使用过程中,需要注意控制好用量和选择合适的偶联剂,以便达到最佳的效果。
偶联剂的种类特点及应用偶联剂是一类常用的有机化学品,广泛应用于染料、医药、橡胶、塑料等行业。
它们具有使染料分子与纤维或其他物质间产生化学键合的作用,从而将染料牢固地固定在材料表面的功能。
下面是几种常见的偶联剂以及它们的特点和应用:1.氨基偶联剂:氨基偶联剂是一种具有氨基官能团的有机化合物,它们能够与纤维表面上的一些活性基团(如羧基、酮基、羟基等)发生反应,形成牢固的偶联键。
氨基偶联剂具有较强的反应活性,可以在中性或微酸性条件下发挥良好的偶联效果。
在染料工业中,氨基偶联剂常用于染料与纤维间的偶联反应,提高染料的附着力和耐光、耐洗性能。
2.硅偶联剂:硅偶联剂是一类具有硅氢键或硅氧键的化合物,它们可以与无机材料(如玻璃、金属等)或有机材料(如橡胶、塑料等)发生化学结合,形成硅键,从而增加材料的表面活性和附着力。
硅偶联剂在涂料工业中常用于改善涂料对基材的粘附性能,提高涂层的耐候性和耐腐蚀性。
3.磷酸偶联剂:磷酸偶联剂是一类具有磷酸官能团的有机化合物,它们能够与金属表面上的氧化物或羟基发生反应,形成磷酸盐键,并在金属和有机物之间建立起良好的偶联效果。
磷酸偶联剂在涂料、橡胶等行业中常用于增强产品的粘附性、耐候性和抗氧化性能。
4.羧酸偶联剂:羧酸偶联剂是一类具有羧酸官能团的有机化合物,它们能够与纤维表面上的氨基或羟基反应,形成酯键或酰胺键,并将染料或其他有机物牢固地固定在纤维表面上。
羧酸偶联剂在染料工业中广泛应用,可以提高染色的牢固度和耐洗性。
以上所述只是几种常见的偶联剂种类,还有其他很多种类的偶联剂,如醛类偶联剂、异氰酸酯偶联剂、硫化物偶联剂等。
每种偶联剂都有其特定的化学性质和应用领域,可以根据具体的需求选择合适的偶联剂进行使用。
需要注意的是,在使用偶联剂时要控制好反应条件,以避免偶联剂的过量使用或反应过程中引发副反应。
此外,偶联剂的选择也需要根据具体的材料和工艺要求,进行系统的测试和研究,以获得最佳的偶联效果。
1.钛酸酯偶联剂钛酸酯偶联剂的分子可以划分为六个功能区,它们在偶联机制中分别发挥各自的作用。
六个功能区如下图所示:功能区①(RO)m -起无机物与钛偶联。
钛酸酯偶联剂通过它的烷氧基直接和填料或颜料表面所吸附的微量羧基或羟基进行化学作用而偶联。
由于功能区①基团的差异开发了不同类型偶联剂,每种类型对填料表面的含水量有选择性,各类型特点:1、单烷氧基型;单烷氧基钛酸酯在无机粉末和基体树脂的界面上产生化学结合,它所具有的极其独特的性能是在无机粉末的表面形成单分子膜,而在界面上不存在多分子膜。
因为依然具有钛酸酯的化学结构,所以在过剩的偶联剂存在下,使表面能变化,粘度大幅度降低,在基体树脂相由于偶联剂的三官能基和酯基转移反应,可使钛酸酯分子偶联,这就便于钛酸酯分子的变型和填充聚合物体系的选用。
该类偶联剂(除焦磷酸型外)特别适合于不含游离水,只含化学键合水或物理键合水的干燥填充剂体系,如碳酸钙、水合氧化铝等。
2、单烷氧基焦磷酸酯型:该类钛酸酯适合于含湿量较高的填充剂体系,如陶土、滑石粉等,在这些体系中,除单烷氧基与填充剂表面的羟基反应形成偶联外,焦磷酸酯基还可以分解形成磷酸酯基,结合一部份水。
i-单烷氧脂肪酸酯型ii-单烷氧磷酸酯型iii-单烷氧焦磷酸酯型3、配位型:可以避免四价钛酸酯在某些体系中的副反应。
如在聚酯中的酯交换反应,在环氧树脂中与羟基的反应,在聚氨酯中与聚醇或异氰酸酯的反应等。
该类偶联剂在许多填充剂体系中都适用,有良好的偶联效果,其偶联机理和单烷氧基型类似。
4、螫合型:该类偶联剂适用于高湿填充剂和含水聚合物体系,如湿法二氧化硅、陶土、滑石粉、硅酸铝、水处理玻璃纤维、灯黑等,在高湿体系中,一般的单烷氧基型钛酸酯由于水解稳定性较差,偶联效果不高,而该型具有极好的水解稳定性,在此状态下,显示良好的偶联效果。
氧乙酸螯合型乙二醇螯合型功能区② -(--O……)--具有酯基转移和交联功能。
该区可与带羧基的聚合物发生酯交换反应,或与环氧树脂中的羧基进行酯化反应,使填充剂、钛酸酯和聚合物三者交联。
偶联剂的种类特点及应用偶联剂是一类能够在染料分子中引入长碳链或含有活性金属原子的有机功能团的化合物。
它们在染料分子中的引入可以改变染料的染色性能、增强染料与纺织品的亲和力,并使染料分子更加稳定。
下面将介绍常见的几种偶联剂及其特点和应用。
1.二甲酰胺类偶联剂:二甲酰胺类偶联剂是应用最广泛的一类偶联剂。
它们能够将染料分子与纤维中的胺基或氨基结合,形成偶联物,从而增加染料与纤维的结合力和耐久性,并提高染色效果。
这类偶联剂具有较强的亲和性和对多种类型纤维的广泛适用性,因此广泛用于维纶、尼龙、丙纶、腈纶等合成纤维的染色。
2.重氮化合物类偶联剂:重氮化合物类偶联剂是指含有重氮基团的化合物。
它们主要通过与纤维中的酚类、芳香胺类等位点发生偶联反应,形成偶联物。
重氮化合物类偶联剂具有强大的亲和性和亲水性能,能够在染料分子中引入极性或离子性基团,从而提高染料的溶解性和亲水性,改善染料与纺织品间的亲和力,适用于棉纤维、麻纤维等天然纤维的染色。
3.金属络合物类偶联剂:金属络合物类偶联剂是指含有活性金属原子的化合物,如铜、铁等。
它们能够与染料分子中的可配位基团形成金属络合物,从而增强染料与纤维的结合力和耐久性。
金属络合物类偶联剂具有很强的亲和性和对多种类型纤维的广泛适用性,能够提高染料的溶解度和稳定性,并改善染色效果。
常用于棉纤维、涤纶、镍铜纤维等的染色。
4.硅涂覆剂:硅涂覆剂是一类含有有机硅结构的化合物。
它们能够在染料分子表面形成一层薄膜,增加染料与纺织品间的亲和力和染料的稳定性,从而实现染料的均匀染色和耐久性。
硅涂覆剂常用于织物的抗污、防水和抗晒等特殊染整处理中。
总的来说,不同类型的偶联剂在染料分子中的引入能够增强染料与纤维的结合力和耐久性,改善染色效果和稳定性,增加染料的溶解度和亲水性,从而提高染色的均匀性和色牢度。
它们在纺织品染色、印花和织物处理等方面均有广泛应用。
偶联剂什么用途偶联剂是一种在化学、材料科学和生物科学中广泛应用的化学品。
它们以其独特的性质和功能被用于各种不同的领域和应用。
下面将详细介绍偶联剂的用途:1. 表面活性剂偶联剂通常具有两个亲水基团和一个疏水基团,这使得它们能够在不同相之间降低界面张力,并促进这些相之间的混合。
这种性质使得偶联剂成为一种重要的表面活性剂。
例如,偶联剂可以用作洗涤剂、乳化剂和湿润剂。
它们能够在水和油之间形成胶束,有效地清洁和分散油污。
2. 涂料和油墨偶联剂被广泛用作涂料和油墨中的助剂。
它们可以改善涂层的附着力和耐久性,并增强颜料的分散性。
偶联剂还可以调节涂料和油墨的流变性能,提高其加工性能。
此外,偶联剂还能够在涂料和油墨中起到抗菌和防腐的作用。
3. 聚合反应偶联剂可以在聚合反应中起到交联和支化剂的作用。
它们能够与聚合物链进行共价键的形成,从而使聚合物网络更加稳定和坚固。
这种特性使得偶联剂在制备高分子材料和树脂时非常有用。
例如,偶联剂可用于制备聚酯、聚醚和聚氨酯等材料。
4. 金属表面处理偶联剂可以与金属表面形成化学键,改善表面的粘附性和耐腐蚀性。
它们可以被用来清洁金属表面、去除氧化层,并在金属表面形成保护性的膜层。
这些处理可以提高金属的机械性能、耐磨性和耐蚀性。
偶联剂还可以用于金属镀膜过程中的促进剂和稳定剂。
5. 生物医学应用偶联剂在生物医学领域也有广泛的应用。
它们可以用于改善药物的生物利用度和降低药物的毒副作用。
偶联剂还可以用于制备生物传感器和生物标记物,用于监测和诊断疾病。
此外,偶联剂还可以用于修饰生物材料的表面,提高其生物相容性和生物活性。
总之,偶联剂的用途非常广泛,涵盖了化学、材料科学和生物科学等多个领域和应用。
它们的功能主要体现在表面活性剂、涂料和油墨、聚合反应、金属表面处理以及生物医学应用等方面。
随着科学技术的不断发展,偶联剂的应用还将不断扩展和创新。
1.钛酸酯偶联剂钛酸酯偶联剂的分子可以划分为六个功能区,它们在偶联机制中分别发挥各自的作用。
六个功能区如下图所示:功能区①(RO)m -起无机物与钛偶联。
钛酸酯偶联剂通过它的烷氧基直接和填料或颜料表面所吸附的微量羧基或羟基进行化学作用而偶联。
由于功能区①基团的差异开发了不同类型偶联剂,每种类型对填料表面的含水量有选择性,各类型特点:1、单烷氧基型;单烷氧基钛酸酯在无机粉末和基体树脂的界面上产生化学结合,它所具有的极其独特的性能是在无机粉末的表面形成单分子膜,而在界面上不存在多分子膜。
因为依然具有钛酸酯的化学结构,所以在过剩的偶联剂存在下,使表面能变化,粘度大幅度降低,在基体树脂相由于偶联剂的三官能基和酯基转移反应,可使钛酸酯分子偶联,这就便于钛酸酯分子的变型和填充聚合物体系的选用。
该类偶联剂(除焦磷酸型外)特别适合于不含游离水,只含化学键合水或物理键合水的干燥填充剂体系,如碳酸钙、水合氧化铝等。
2、单烷氧基焦磷酸酯型:该类钛酸酯适合于含湿量较高的填充剂体系,如陶土、滑石粉等,在这些体系中,除单烷氧基与填充剂表面的羟基反应形成偶联外,焦磷酸酯基还可以分解形成磷酸酯基,结合一部份水。
i-单烷氧脂肪酸酯型ii-单烷氧磷酸酯型iii-单烷氧焦磷酸酯型3、配位型:可以避免四价钛酸酯在某些体系中的副反应。
如在聚酯中的酯交换反应,在环氧树脂中与羟基的反应,在聚氨酯中与聚醇或异氰酸酯的反应等。
该类偶联剂在许多填充剂体系中都适用,有良好的偶联效果,其偶联机理和单烷氧基型类似。
4、螫合型:该类偶联剂适用于高湿填充剂和含水聚合物体系,如湿法二氧化硅、陶土、滑石粉、硅酸铝、水处理玻璃纤维、灯黑等,在高湿体系中,一般的单烷氧基型钛酸酯由于水解稳定性较差,偶联效果不高,而该型具有极好的水解稳定性,在此状态下,显示良好的偶联效果。
氧乙酸螯合型乙二醇螯合型功能区② -(--O……)--具有酯基转移和交联功能。
该区可与带羧基的聚合物发生酯交换反应,或与环氧树脂中的羧基进行酯化反应,使填充剂、钛酸酯和聚合物三者交联。
酯交换反应性受以下几个因素支配:1、钛酸酯分子与无机物偶联部份的化学结构;2、功能区③上的OX基团的化学结构;3、有机聚合物的化学结构;4、其它助剂如酯类增塑剂的化学性质。
钛酸酯在聚烯烃之类的热塑性聚合物中不发生酯交换反应,但在聚酯,环氧树脂中或者在加有酯类增塑剂的软质聚氯乙烯塑料中,酯交换反应却有很大影响。
酯交换反应的活性太高会造成不良后果,例如象KR-9S那样的钛酸酯,当加入到聚合物中后,能迅速发生酯交换反应,初期粘度急剧升高,使填充量大大下降,而象KR-12那样的钛酸酯、酯交换反应的活性低,没有初期粘度效应,但酯交换反应可随着时间逐渐进行,这样不但初期的分散性良好,而且填充量可大为增加。
在涂料中可利用钛酸酯偶联剂的酯交换机制来交联固化饱和聚酯和醇酸树脂,从而可得到一种不泛黄的材料(因为不含不饱和结构),由于酯交换作用可以表现触变性,因此有较高酯交换活力的KR-9S具有触变性效果,TTS也有一定程度的酯交换能力。
功能区③ OX--连接钛中心的基团。
这一部位的OX基团随基结构不同,对钛酸酯的性能有不同影响,例如羧基可增加与半极性材料的相溶性,磺酸基具有触变性,砜基可增加酯交换活性,磷酸酯基可提高阻燃性,聚氯乙烯的软化性;焦磷酸酯基可吸收水份,改进硬质聚氯乙烯的冲击强度,亚磷酸酯基可提高抗氧性,降低聚酯或环氧树酯中的粘度等。
功能区④ R---热塑性聚合物的长链纠缠基团,钛酸酯分子中的有机骨架。
由于存在大量长链的碳原子数提高了和高分子体系的相溶性,引起无机物界面上表面能的变化,具有柔韧性及应力转移的功能,产生自润滑作用,导致粘度大幅度下降,改善加工工艺,增加制品的延伸率和撕裂强度,提高冲击性能,如果R为芳香基,可提高钛酸酯与芳烃聚物的相溶性。
功能区⑤ Y---热固性聚合物的反应基团。
当它们连接在钛的有机骨架上,就能使偶联剂和有机材料进行化学反应而连接起来,例如双键能和不饱和材料进行交联固化,氨基能和环氧树脂交联等。
功能区⑥)n 它代表钛酸酯的官能度,n可以为1-3,因而能根据需要调节,使它对有机物产生多种不同的效果,在这一点上灵活性要比象硅烷那样的三烷氧基单官能偶联剂大。
从上述六个功能区的作用,可以看出钛酸酯偶联剂具有很大的灵活性和多功能性,它本身既是偶联剂,也可以是分散剂、湿润剂、粘合剂、交联剂、催化剂等、还可以兼有防锈、抗氧化、阻燃等多功能,因此应用范围很广,胜过了其它偶联剂。
2.硅烷偶联剂硅烷偶联剂的水解速度取于硅官能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。
偶联剂使用方法:在选用偶联剂之前,应首先测定所用填充剂的含湿性,根据含湿状态和前述各类钛酸酯的特性决定具体品种,干燥填充剂宜用单烷氧基型,潮湿填充剂可选螯合型或单烷氧基焦磷酸型。
在选用偶联剂时还应考虑聚合物的熔点,结晶度、分子量、极性、芳香性、脂脚性、共聚结构等,对于热固性聚合物还要考虑到其固化温度和固化机理。
填充剂的形状、比表面、湿含量、酸碱性、化学组成等都可影响偶联效果。
一般粗粒子填充剂偶联效果不及细粒子好但对超微细(如CaCO3≥2000目)填充剂效果则有相反现象。
偶联剂的用量,一般为处理物重量的0.5-3%,推荐使用量为0.8-1.5%。
其用量与效果并非是正比关系,量太多则偶联剂过剩反而使性能下降,(在塑料中使拉伸、抗冲击等指标下降,在涂料中,会使附着力大为降低等)量太少,则因包复不完全,效果不显著。
所以在应用时要试验出最佳用量,做到既经济又有效。
偶联剂的作用机理:1. 单烷氧基型:单烷氧基钛酸酯在无机粉末和基体树脂的界面上产生化学结合。
一般认为只有一个异丙氧基是与无机物表面羟基偶联的水解基团,因此可以在无机颜、填料的表面形成单分子层。
在界面上不存在多分子膜。
预处理前处理后无机物树脂中分散效果图1 单烷氧基钛酸酯对无机物表面偶联机理依然具有钛酸酯的化学结构,在过剩的偶联剂存在下,使表面能变化,粘度大幅度降低。
在基体树脂相由于偶联剂的三官能基和酯基转移反应,可使钛酸酯分子偶联。
这就便于钛酸酯分子的变型和填充聚合物体系的选用。
见图2、3、4、5。
图2 偶联剂对无机填料作用机理图3 偶联剂在热塑型体系中的作用效果有机聚合物无机填料偶联剂混炼固化图4 钛酸酯偶联剂在热固性体系中的作用机理图示2.单烷氧基焦磷酸酯型:该类钛酸酯适合于含湿量较高的填充体系,如陶土、滑石等。
在这些体系中,除单烷氧基与填充剂表面的羟基反应形成偶联外,焦磷酸酯基还可以分解形成磷酸酯基,结合一部份水:如下式反应焦磷酸酯类偶联剂与填料表面羟基反应3.螯合型:该类偶联剂适用于含湿量较高的无极填料和含水树脂体系,如湿法二氧化硅、陶土、滑石、硅酸铝、水处理玻璃纤维、碳黑等;而且该偶联剂在高湿体系中具有极好的水解稳定性,在此状态下,显示良好的偶联效果。
二官能度羟基羧酸的偶联机理二官能度、乙二醇醋的偶联机理4.配位型:该类偶联剂可避免四价钛酸酯在某些体系中的副反应,如在聚酯中的酯交换反应,在环氧树脂中与羟基的反应,在聚氨酯中与聚醇或氰酸酯的反应等。
该类偶联剂在许多填充剂体系中都适用,有良好的偶联效果,其偶联机理与单烷氧基型类似:配位型钛酸酯偶联剂与填料作用机理图1.三乙氧基-1H,1H,2H,2H-十三氟-N-辛基硅烷三乙氧基(3,3,4,4,5,5,6,6,7,7,8,8,8-十三氟辛基)硅烷全氟辛基三乙氧基硅烷1H,1H,2H,2H-全氟辛基三乙氧基硅烷三乙氧基(-1H,1H,2H,2H-十三氟辛基)硅烷CB Number:CB9474048; CAS:51851-37-7分子式:C14H19F13O3Si分子量:510.36比重:1.33g/cm3它可被用作无机材料和氟聚合物之间的粘结促进剂。
沸点:95℃PH:5.5用法:乙醇溶液,加少量水,50℃,超声。
2.1H,1H,2H,2H-全氟癸基三乙氧基硅烷1H,1H,2H,2H-全氟十七烷三甲基氧硅烷CAS: 101947-16-4CB Number: CB4487133无色液体分子式:C16H19F17O3Si沸点:103~106℃水里分解3.全氟十八酸(18C)CAS号: 16517-11-6晶体沸点:235℃不能溶解于水4.全氟十二烷酸(12C)CAS号: 307-55-1沸点:245℃5.全氟辛酸(8C)CAS:335-67-1白色晶体分子式C8HF15O2熔点:58~60℃沸点189-192℃6.全氟十二烷基乙基碘CAS号: 146983-96-2分子式:C14H4F25I沸点:291.3℃7.全氟辛基磺酸钾CAS:2795-39-3商品名:HX-95锃雾抑制剂(对照美国3M公司牌号:FC-95)本品系全氟阴离子表面活性剂。
白色或微黄粉末状结晶。
分子式:C8F17SO3K熔点:390°C(分解) mp:285°C8.硅烷偶联剂KH550国内对应牌号(KH-550)国外对应牌号(美国联碳公司A―1100、日本信越KBM-903)化学名称γ―氨丙基三乙氧基硅烷化学结构式NH2CH2CH2CH2Si(OC2H5)3产品性质本品为氨基官能团硅烷,呈碱性。
外观为无色或微黄色透明液体,通用性强,可溶于有机溶剂,但丙酮、四氯化碳不适宜作稀释剂。
可溶于水,在水中水解,沸点217℃,密度P25'g/m1 0.946,折光率ND25:1.4205,闪点104℃,分子量221.4含量≥97%9.钛酸酯偶联剂TC-2技术指标:外观:无色至淡黄色粘稠体密度:D25 ≥0.80-1.04 g/cm3粘度:η25 80-300 mm2/s闪点:(开口)≥65℃折光率:ND25 约1.42-1.46PH值:(试纸)2-3分解温度:>280℃属磷酸型单烷氧基类钛酸酯,类似美国Kenrich公司KR-12。
是目前国内市场磷酸型的改性换代品,色浅、稳定、粘度小,分散性更好。
既适用于塑料,也适用于涂料及橡胶,是颜料、填料的表面活性剂,具有优良的分散效果。
具有优良的分散效果。