第2章 最小二乘法和线性回归模型(更新至0510)
- 格式:ppt
- 大小:9.76 MB
- 文档页数:150
线性回归模型与最小二乘法线性回归1、基本概念线性回归假设因变量与自变量之间存在线性关系,因变量可通过自变量线性叠加而得到,即因变量和自变量之间可用如下方式表示。
式中为自变量,为权重系数,为偏置。
线性回归就是要解决如何利用样本求取拟合出上述表达式,获得最佳直线的问题。
最常用的就是最小二乘法。
最小二乘法:最佳拟合线下,将已知样本的自变量代入拟合直线,得到的观测值与实际值之间的误差平方和最小。
2、一元线性回归为了好理解,先从简单的情况开始,即一元线性回归。
2.1、利用方程组来解系数假设因变量和自变量可用如下函数表示:对于任意样本点有误差误差平方和那什么样的a和b会使得误差平方和最小呢?上面是求最值的问题,我们会想到导数和偏导数,这里在偏导数等于0的地方能取到极值,并且也是最值。
分别对a和b求偏导得到如下表达式:通过对二元一次方程组进行求解,可以得到如下解:上面的数学过程用代码表示如下:import numpy as npimport matplotlib.pyplot as pltdef calcAB(x,y):n = len(x)sumX, sumY, sumXY, sumXX = 0, 0, 0, 0for i in range(0, n):sumX += x[i]sumY += y[i]sumXX += x[i] * x[i]sumXY += x[i] * y[i]a = (n * sumXY - sumX * sumY) / (n *sumXX - sumX * sumX)b = (sumXX * sumY - sumX * sumXY) /(n * sumXX - sumX * sumX)return a, bxi = [1,2,3,4,5,6,7,8,9,10]yi = [10,11.5,12,13,14.5,15.5,16.8,17.3,18,18.7] a,b=calcAB(xi,yi)print('y = %10.5fx + %10.5f' %(a,b))x = np.linspace(0,10)y = a * x + bplt.plot(x,y)plt.scatter(xi,yi)plt.show()python数据散点和拟合的直线如下:2.2、利用矩阵的方法来求解系数函数也可以表示成如下的形式式中对于n个样本,此时损失函数(即误差平方和)为:假如我们将样本表示成如下形式:则进一步,可以将损失函数表示如下形式:L对W求导,可得到令导数为0,则有从而进而可以求得上面的数学过程用代码表示如下:x = [1,2,3,4,5,6,7,8,9,10]y = [10,11.5,12,13,14.5,15.5,16.8,17.3,18,18.7] X = np.vstack([np.ones(len(x)),x]).TY = np.array(y).TW=np.dot(np.matrix(np.dot(X.T,X))**-1,np.dot(X.T,Y))yi=np.dot(X,W.T)#这里公式里是不需要转置的,但由于矩阵运算时W自动保存成一行多列的矩阵,所以多转置一下,配合原公式的计算。
线性回归与最小二乘法线性回归是一种常用的统计分析方法,也是机器学习领域的基础之一。
在线性回归中,我们通过寻找最佳拟合直线来对数据进行建模和预测。
最小二乘法是线性回归的主要方法之一,用于确定最佳拟合直线的参数。
1. 线性回归的基本原理线性回归的目标是找到一条最佳拟合直线,使得预测值与实际值之间的误差最小。
我们假设线性回归模型的形式为:Y = β₀ + β₁X₁ +β₂X₂ + … + βₙXₙ + ε,其中Y是因变量,X₁、X₂等是自变量,β₀、β₁、β₂等是回归系数,ε是误差项。
2. 最小二乘法最小二乘法是一种求解线性回归参数的常用方法。
它的基本思想是使所有样本点到拟合直线的距离之和最小化。
具体来说,我们需要最小化残差平方和,即将每个样本点的预测值与实际值之间的差的平方求和。
3. 最小二乘法的求解步骤(1)建立线性回归模型:确定自变量和因变量,并假设它们之间存在线性关系。
(2)计算回归系数:使用最小二乘法求解回归系数的估计值。
(3)计算预测值:利用求得的回归系数,对新的自变量进行预测,得到相应的因变量的预测值。
4. 最小二乘法的优缺点(1)优点:最小二乘法易于理解和实现,计算速度快。
(2)缺点:最小二乘法对异常点敏感,容易受到离群值的影响。
同时,最小二乘法要求自变量与因变量之间存在线性关系。
5. 线性回归与其他方法的比较线性回归是一种简单而强大的方法,但并不适用于所有问题。
在处理非线性关系或复杂问题时,其他方法如多项式回归、岭回归、lasso回归等更适用。
6. 实际应用线性回归及最小二乘法广泛应用于各个领域。
在经济学中,线性回归用于预测GDP增长、消费者支出等经济指标。
在医学领域,线性回归被用于预测疾病风险、药物剂量等。
此外,线性回归还可以应用于电力负荷预测、房价预测等实际问题。
总结:线性回归和最小二乘法是统计学和机器学习中常用的方法。
线性回归通过拟合一条最佳直线,将自变量与因变量之间的线性关系建模。
最小二乘法与线性回归模型线性回归是一种常用的统计分析方法,用于研究因变量与一个或多个自变量之间的关系。
在线性回归中,我们经常使用最小二乘法来进行参数估计。
本文将介绍最小二乘法和线性回归模型,并探讨它们之间的关系和应用。
一、什么是最小二乘法最小二乘法是一种数学优化技术,旨在寻找一条直线(或者更一般地,一个函数),使得该直线与一组数据点之间的误差平方和最小化。
简而言之,最小二乘法通过最小化误差的平方和来拟合数据。
二、线性回归模型在线性回归模型中,我们假设因变量Y与自变量X之间存在线性关系,即Y ≈ βX + ε,其中Y表示因变量,X表示自变量,β表示回归系数,ε表示误差。
线性回归模型可以用来解决预测和关联分析问题。
三、最小二乘法的原理最小二乘法的基本原理是找到一条直线,使得该直线与数据点之间的误差平方和最小。
具体而言,在线性回归中,我们通过最小化残差平方和来估计回归系数β。
残差是观测值与估计值之间的差异。
在最小二乘法中,我们使用一组观测数据(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ),其中x表示自变量,y表示因变量。
我们要找到回归系数β₀和β₁,使得残差平方和最小化。
残差平方和的表达式如下:RSS = Σ(yᵢ - (β₀ + β₁xᵢ))²最小二乘法的目标是最小化RSS,可通过求导数等方法得到最优解。
四、使用最小二乘法进行线性回归分析使用最小二乘法进行线性回归分析的一般步骤如下:1. 收集数据:获取自变量和因变量的一组数据。
2. 建立模型:确定线性回归模型的形式。
3. 参数估计:使用最小二乘法估计回归系数。
4. 模型评估:分析回归模型的拟合优度、参数的显著性等。
5. 利用模型:使用回归模型进行预测和推断。
五、最小二乘法与线性回归模型的应用最小二乘法和线性回归模型在多个领域都有广泛的应用。
1. 经济学:通过线性回归模型和最小二乘法,经济学家可以研究经济指标之间的关系,如GDP与失业率、通胀率之间的关系。
线性回归和最小二乘法线性回归是一种常见的统计分析方法,用于建立自变量和因变量之间的线性关系模型。
而最小二乘法则是线性回归的一种常用求解技术。
本文将详细介绍线性回归和最小二乘法的原理、应用和计算方法。
一、线性回归的原理线性回归假设自变量和因变量之间存在一个线性函数关系,即y = α + βx,其中α是截距,β是斜率。
线性回归的目标是找到最佳的α和β,使得模型能够准确地描述数据。
二、最小二乘法的原理最小二乘法是一种优化方法,用于通过最小化误差的平方和来确定回归系数。
假设有n个样本数据,标记为{(x1,y1),(x2,y2),...,(xn,yn)},其中xi是自变量,yi是因变量。
最小二乘法的目标是使所有样本点到回归直线的距离之和最小化,即最小化误差E = Σ(yi - α - βxi)²。
三、线性回归的应用线性回归广泛应用于各个领域,特别是经济学、金融学和社会科学中。
它可以用来分析自变量和因变量之间的关系,预测未来的趋势和趋势的变化,评估变量对因变量的影响程度等。
四、最小二乘法的计算步骤1. 计算自变量和因变量的均值,分别记为x_mean和y_mean。
2. 计算自变量和因变量的差值与均值的乘积之和,分别记为Sxy。
3. 计算自变量的差值的平方和,记为Sxx。
4. 计算回归系数的估计值,β = Sxy / Sxx。
5. 计算截距的估计值,α = y_mean - β * x_mean。
6. 得到线性回归方程,y = α + βx。
五、线性回归的评估评估线性回归模型的好坏可以用均方误差(MSE)和决定系数(R²)来衡量。
MSE越小,表示模型拟合效果越好;R²越接近1,表示自变量对因变量的解释程度越高。
六、线性回归的局限性线性回归的前提是自变量和因变量之间存在线性关系,如果关系是非线性的,线性回归模型将失效。
此外,线性回归对异常值敏感,如果数据中存在异常值,模型的预测结果可能会受到影响。