数字万用表的原理和使用
- 格式:pdf
- 大小:296.21 KB
- 文档页数:3
数字万用表的原理与使用实验报告一、实验目的:1.了解数字万用表的工作原理;2.学会使用数字万用表测量电路中的电压、电流和电阻。
二、实验器材:数字万用表、电源、电阻、电容、电感、电路板、导线等。
三、实验原理:数字万用表是一种常用的电子测试仪器,它可以测量电路中的电压、电流和电阻等参数。
其工作原理基于电流表和电压表的原理,通过内部的模拟电路将电压和电流转换为数字信号,并显示在液晶屏幕上。
数字万用表有多种测量功能,如直流电压、交流电压、直流电流、交流电流、电阻、电容、电感等。
不同的测量功能需要选择不同的测量档位,以保证测量精度。
四、实验步骤:1.连接电路:将电源、电阻、电容、电感等元件按照电路图连接在一起。
2.设置测量档位:根据测量的参数选择相应的测量档位,如测量电压时选择直流电压档位或交流电压档位。
3.测量电压:将数字万用表的探头分别连接在电路中的正负极上,读取数字万用表上显示的电压值。
4.测量电流:将数字万用表的探头分别连接在电路中的电流路径上,读取数字万用表上显示的电流值。
5.测量电阻:将数字万用表的探头分别连接在电阻两端,读取数字万用表上显示的电阻值。
五、实验结果:通过实验,我们了解了数字万用表的工作原理和使用方法,掌握了测量电路中电压、电流和电阻的技能。
在实验中,我们需要注意选择正确的测量档位,保证测量精度。
同时,我们也需要注意安全,避免电路短路或过载等情况的发生。
六、实验结论:数字万用表是一种常用的电子测试仪器,它可以测量电路中的电压、电流和电阻等参数。
其工作原理基于电流表和电压表的原理,通过内部的模拟电路将电压和电流转换为数字信号,并显示在液晶屏幕上。
在实验中,我们掌握了数字万用表的使用方法,可以准确地测量电路中的电压、电流和电阻。
万用表nplc原理
万用表是一种用于测量电压、电流和电阻的电子设备。
在数字万用表中,NPLC(Normal Power Line Cycles)是一个重要的参数,它代表了测量时间周期的长度。
NPLC的原理和数字万用表的工作方式密切相关。
当使用数字万用表进行测量时,它需要将输入的模拟信号转换为数字信号,然后进行处理和显示。
在这个过程中,NPLC决定了测量时间周期的长度,从而影响了测量的精度和稳定性。
具体来说,NPLC表示一个电网周期的数量,即在一个完整的电网周期内,万用表会进行多少次测量。
例如,在50Hz的电网频率下,一个电网周期是20ms。
如果设置NPLC为1,那么万用表会在20ms 内进行一次测量;如果设置NPLC为10,那么万用表会在200ms内进行10次测量,并将结果平均。
增加NPLC的值可以提高测量的精度和稳定性,因为更多的测量次数可以减少噪声和干扰的影响,使得测量结果更加准确。
然而,增加NPLC的值也会增加测量的时间,因此在选择NPLC的值时需要权衡精度和时间的要求。
总之,NPLC是数字万用表中的一个重要参数,它决定了测量时间周期的长度,从而影响了测量的精度和稳定性。
通过合理设置NPLC 的值,可以在保证测量精度的同时,尽可能减少测量的时间。
数字万用表的原理及应用1. 引言数字万用表,也称为数字多用表或数字电表,是一种常用的电子测量仪器。
它可以用于测量电压、电流、电阻、频率等各种电气参数。
本文将介绍数字万用表的基本原理和常见应用。
2. 数字万用表的原理数字万用表的核心是电路中的模数转换器(ADC)和微处理器。
模数转换器用于将模拟输入信号转换为数字信号,同时微处理器负责对转换后的数字信号进行处理、显示和计算。
数字万用表的测量原理主要分为以下几个步骤:2.1 电压测量数字万用表通过将待测电压与内部参考电压进行比较,利用模数转换器将电压转换为数字形式。
通常,数字万用表可以测量直流电压和交流电压,通过选择不同的测量范围和设置。
2.2 电流测量在电流测量时,数字万用表需要在测量电路中串联一个电阻,将电流转换为电压值进行测量。
通过欧姆定律,可以得到电流值,同时注意选择适当的测量范围,以防止过载。
2.3 电阻测量数字万用表利用恒流源或恒压源为待测电阻提供一个电压或电流,测量电阻的电压下降或电流上升,然后通过计算电阻大小。
2.4 频率测量在频率测量中,数字万用表利用计数器和定时器等功能来测量待测信号的周期时间,通过倒数得到频率。
3. 数字万用表的应用数字万用表作为一种常用的电子测量仪器,在各个领域都有广泛的应用。
以下是一些常见的应用领域:3.1 电子维修数字万用表在电子设备维修中起着重要的作用。
通过测量电压、电流和电阻等参数,可以快速定位和解决故障。
它可以用于检测电路板上的元件故障,如电阻、电容和二极管等,帮助维修人员快速准确定位故障点。
3.2 电路设计和测试在电路设计和测试中,数字万用表用于测量电路设计中的各种参数,如电压分压比、电流流经的电阻值等。
同时,数字万用表还可以用来检测电路的稳定性、频率响应等性能指标。
3.3 电力行业数字万用表在电力行业中也有广泛的应用。
它可以用于测量电力设备的电压、电流、功率因素等参数,以确保电力系统的安全运行。
此外,数字万用表还可以用于对电能质量进行监测和分析,找出电力系统中的问题并进行修复。
两种万用表的使用万用表是一种多功能多量程的便携式电工测量仪表,主要有指针式万用表和数字式万用表两类。
其中,指针式万用表适用于测量强电回路的电压、电流和电阻等,可判断二极管、三极管、晶闸管和电解电容等元件的好坏与及测量集成电路引脚的静态电阻值等;数字式万用表为直接读数,用来测量电压、电流、电阻、三极管放大倍数和电容,同时可用其蜂鸣器挡测量电路的通断,以判定印制电路的走向。
机械指针式万用表是用一只灵敏的磁电式直流电流表,即微安表作为表头的,当有微小电流通过表头,机械指针就会有所指示。
为了让表头通过的电流能使其正常工作指示,所以,在表头上并联和串联了一系列的电阻来进行分流与降压,这样也就能在需测的电路中测出电压,电阻,电流了。
在使用过程中我们可以用小平口起子调节指针调节旋钮,使其指针在未工作时左边处于零位,以保证测量数值的精确性。
万用表的红表笔应插在+处,黑表笔应插在—处。
1-表笔插孔2-晶体管插孔3-读数装置(表头)4-机械调零旋钮5-欧姆调零旋钮6-挡位旋钮图-1 MF-47C型万用表一、指针式万用表1、指针式万用表的结构组成型号繁多的指针式万用表在结构上主要由三部分组成,即读数装置(表头)、测量电路和转换装置。
其中,读数装置通常由磁电式直流微安表(个别为毫安表)组成,包括测量项目、测量范围、电压灵敏度、刻度、数字符、标识符、消除视差装置、等级指数及电平修正表等内容;测量电路的主要作用是把被测的电量转变成适合于表头指示用的电量;转换装置一般由挡位旋钮、表笔插孔或接线柱、调零旋钮等组成。
(1)读数装置的测量项目。
指针式万用表的测量项目一般包括直流电压、交流电压、直流电流、交流电流和电阻等基本项目,还设有分贝(dB)、电感(L)、电容(C)、三极管静态放大系数(hFE)、负载电流(LI)及负载端电压(LV)等备选项目。
少数万用表设有表内工作电源状态显示,用BAD和GOOG分别表示电池不良与电池良好;有的万用表设有蜂鸣档,以方便测试。
数字万⽤表⼆极管档测试原理与使⽤⽅法1.引⾔模拟式万⽤表(俗称指针式万⽤表)的电阻档能够⽅便地⽤于半导体元件性能的鉴别,但数字万⽤表的电阻档则⽆能为⼒。
究其原⽥,主要是数字万⽤表电阻档所能提供的测试电流太⼩,就常⽤的DT 830型(以下均以此型为例)⽽⾔,它的20K档不⼤于7.5U A,⽽20M档仅仅只有75nA 。
由于半导体元件具有⾮线性特性,其PN结的正、反电阻与通过其中测试电流的⼤⼩密切相关,以如此微弱的测试电流测试元件的正、反向电阻,其⼯作点注定要落在PN结伏安特性曲线的弯曲区段,即死区范围。
困此,在电阻档测出的阻值⽐正常使⽤的值相差甚远⽽不⾜为奇,故⼀般数字万⽤表都专门另设⽤于测试⼆极管的档位---⼆极管测试档(简称⼆极管档)。
2.⼆极管档测试⼯作原理该档位电路如图1所⽰,它是在200MV基本表基础上扩展⽽成的,+2.8V的集成电路内部基准电压由由“V+”端(IC1脚)引出,经过电阻R17,R16和Rt,向被测⼆极管VDx提供测试电流,在被测⼆极管未接⼊之前,分压电路A,B两点的电压分别为VA= ((Rl4+R15)/(R17+RI6+Rt+Rl4+R15))V+= ((274+30.1)/(1+0.47+0.5+274+30.1))× 2.8=2.782 VVB= (R15/(R17+R16+Rt+R14+R15)) V+=[30.1/(1+0.47+0 .5+274+30.1)]×2.8= 0.275V集成电路7106当前的输⼋电压为V IN=VB=0.275V=275m V 。
由于该值超出了基本表电压量程200mV ,所以显⽰屏读数应为溢出状态(显⽰ 1”)。
当被测⼆极曾VDx接⼊电路之后, A点电压由2.782V被箝位到⼆极管的正向压降VF(硅管为0 .7V左右,锗管为0.3V左右),⽽此时集成电路7106的输⼊电压变为VIN= (R15/(R14+R15)) VF= [30.1/(274+ 30.1)]VF≈ 0.1 VF由此可见,在集成电路输⼊端,VF被衰减了10倍,这相当于将200mV的基本表扩展到了2V的量程,并且在显⽰屏上直接显⽰出被测⼆极管的正向压降VF。
数字万用表的基本框图原理、面板旋钮的作用和使用方法数字万用表是近年来消失的先进测量仪表。
国际上已消失袖珍式数字万用表代替传统的指针式万用表的趋势。
由于它采纳了大规模集成电路,具有数字化显字功能,因此仪表的结构轻松、测量精度高、输入阻抗高、显示直观、过载力量强、功能全、耗电省等优点,深受人们欢迎。
目前国内使用较多的DT-830、DT-840和DT-845三种型号。
本节主要介绍DT-830型万用表的基本框图原理、面板旋钮的作用和使用方法。
其面板图如图1所示。
图1 DT-830型数字万用表的面板图1. 基本工作原理数字万用表的种类较多,但基本工作原理则是大同小异,其基本方框图如图2所示。
图2 DT-830型数字万用表的基本方框图虚线框表示直流数字电压表DVM,它由阻容滤波器、A/D转换器、LCD显示器组成。
在数字电压表的基础上再增加沟通-直流(AC -DC)转换器、电流-电压(I-V)转换器和电阻-电压(Ω-V)转换器,这就构成了数字万用表。
2. 面板旋钮的作用万用表面板如图1所示,上面排列着液晶显示屏、量程开关、输入插口、hFE插口和电源开关五个部分,各部分的功能如下:(1)液晶显示屏:万用表的显示位数是4位,因最高位(千位)只能显示数字“1”或者不显示数字,故算半位,总称位(读作三位半)。
最大显示数为1999或-1999。
当测量直流电压和直流电流时,仪表有自动显示极性功能,若测量值为负,显示的数字前面将带“-”号。
当仪表输入超载时,屏上消失“1”或“-1”。
(2)量程开关:旋转式量程开关位于面板中心,是转换工作种类和量程用的。
开关四周用不同的颜色和分界线标出各种不同工作状态的范围。
(3)输入插口:输入插口是万用表通过表笔和测量点连接的部位,共有“COM”、“V.Ω”、“mA”和“10A”四个孔。
负表笔始终置于“COM”插口,正表笔要依据工作种类和测量值的大小置于“V.Ω”、“mA”或“10A”中。
数字万用表测电容原理
在数字万用表测量电容的原理中,使用了一种称为RC振荡电
路的方式。
RC振荡电路由一个电阻(R)和一个电容(C)串
联组成。
当数字万用表测量电容时,它会通过内部的电路将电容器与
RC振荡电路连接起来。
首先,数字万用表会将一个已知频率
的电压信号输入到RC振荡电路中。
这个电压信号会导致RC
振荡电路开始振荡。
然后,数字万用表会测量RC振荡电路输出的振荡频率。
由于
振荡频率与电容值成反比,因此可以通过测量振荡频率来间接测量电容值。
数字万用表会根据振荡频率和已知的电压信号频率之间的关系,计算出电容器的电容值。
具体而言,数字万用表会测量RC振荡电路的振荡周期,即振
荡一个完整周期所需的时间。
然后,它会通过将振荡周期除以已知的电压信号周期来计算出电容值。
需要注意的是,为了获得准确的测量结果,需要保证已知的电压信号频率稳定且准确。
此外,数字万用表在测量电容时还会考虑其他因素,如内部电路的漏电流等,以提高测量的精确度。
数字多用表的测量原理和应用实验原理数字万用表是测量电路中电阻、电流和电压的一种电子仪器,它可以将模拟量信号转化为数字信号,实时地显示出来,方便了电子工程师或者电气工程师进行电路设计、测试和维修。
数字多用表的测量原理和应用实验原理是工程师们在使用该仪器时需要了解的知识点。
数字多用表的测量原理:数字多用表主要是依靠一些传感器来获取电路中的基本物理量,然后经过处理后,显示在多用表的数字显示屏上。
不同的传感器可以通过不同的测量原理来实现。
下面是数字多用表所使用的常见传感器的测量原理:1. 电流传感器电流传感器是一种通过磁感应原理来测量电流的传感器。
当电流通过一根导线时,会在其周围产生一个磁场。
电流传感器可以将这个磁场检测出来,然后将检测到的信号转换为电流大小的数字信号。
2. 电压传感器电压传感器主要是通过利用分压原理来测量电路中的电压。
电压传感器几乎是以相同的方式构造的,它们都有两个电极。
当它们接触到电路的两端时,可以生成一个分压信号,这个信号可以通过与分压器电阻配对来测量电路中的电压。
3. 电阻传感器电阻传感器可以通过测量电路中的电阻来计算电路中的其它物理量。
它们的测量原理是通过使用代表性电流来测量材料的电压差和电位差。
通过将材料的电压和电位差组合起来,可以计算出电路中的电阻。
数字多用表的应用实验原理:数字多用表的应用实验原理主要围绕着它的应用场景进行说明。
数字多用表在电力工程、电气工程、电子工程等方面都有广泛的应用。
其中,以下是常见的几种应用场景:1. 电路参数的测量数字多用表可以用来测量电路中的电压、电流、电阻等参数。
在电子工程领域,数字多用表经常用来测量电路中电子元件的参数,例如电容器、电感器和晶体管。
使用数字多用表可以快速准确地测量电路中的参数。
2. 故障诊断数字多用表可以用来检测电路中是否存在问题,例如短路、开路、接触不良等。
在电气工程中,数字多用表可以用来诊断电路中发生故障的原因。
如果电路中存在故障,数字多用表可以用来定位这个故障并找到修复它的方法。
数字万用表实验报告
实验报告
实验名称:数字万用表实验
实验日期:XXX年XX月XX日
实验目的:通过使用数字万用表测量电路中电压、电流、电阻等参数,熟悉数字万用表的使用方法和测量技巧。
实验仪器:数字万用表、电源、电阻、电路板等。
实验原理:数字万用表是一种用来测量电路中电压、电流、电阻、频率等参数的仪器。
它通过将被测电路与电源和万用表相连,根据电路参数的不同选择适当的测量档位,并读取显示屏上的数值来进行测量。
实验步骤:
1. 将电路板与电源相连,确保电路正常工作。
2. 将数字万用表的电源引线与电路板的正负极相连。
3. 根据需要选择适当的测量档位,比如测量电压时选择直流电压档位、测量电流时选择直流电流档位。
4. 将数字万用表的测试引线分别与电路中需要测量的点相连,根据实验需要依次测量电压、电流和电阻。
5. 读取数字万用表显示屏上的数值,并记录下来。
6. 将测量完成的数据整理,进行必要的计算和分析。
实验结果:根据实验步骤进行测量,得到的数据为......
实验讨论:根据测量结果可以得出结论......
实验总结:本次实验通过使用数字万用表进行测量,掌握了数字万用表的使用方法和测量技巧。
实验结果表明......
注意事项:在进行测量时,需要注意选择适当的测量档位,避免对数字万用表造成损坏;同时,在进行测量时需保证电路稳定工作,避免测量误差的发生。
数字万用表原理数字万用表是一种用来测量电压、电流、电阻和其他电学量的仪器。
它是电子测量仪器中的一种,由数字显示屏、旋钮、测量插口等部分组成。
数字万用表原理是基于电子测量技术和电路原理,通过测量电压、电流和电阻来实现对电路及电器设备的检测和分析。
首先,数字万用表的原理是基于电压、电流和电阻的测量。
在测量电压时,数字万用表通过将待测电路与测量插口相连,利用电压测量电路将电压转换为相应的数字信号,并在显示屏上显示出来。
而测量电流时,数字万用表需要将待测电路中断,然后将数字万用表与待测电路串联,通过电流测量电路将电流转换为相应的数字信号,并在显示屏上显示出来。
在测量电阻时,数字万用表需要将待测电阻与测量插口相连,利用电阻测量电路对电阻进行测量,并在显示屏上显示出来。
其次,数字万用表的原理还涉及到测量插口的选择和旋钮的调节。
不同的测量需要选择不同的测量插口,如测量电压需要选择电压测量插口,测量电流需要选择电流测量插口,测量电阻需要选择电阻测量插口。
而旋钮则用来调节测量范围和测量模式,以确保测量结果的准确性和可靠性。
另外,数字万用表的原理还包括其内部电路结构和工作原理。
数字万用表内部包含模拟电路、数字电路、显示电路等部分,通过这些电路来实现对电压、电流、电阻等电学量的测量和显示。
数字万用表工作时,会根据测量插口的选择和旋钮的调节,自动切换相应的测量电路和显示电路,从而实现对待测电学量的准确测量和显示。
总之,数字万用表原理是基于电子测量技术和电路原理,通过测量电压、电流和电阻来实现对电路及电器设备的检测和分析。
它的工作原理涉及到测量插口的选择、旋钮的调节,以及内部电路结构和工作原理。
掌握数字万用表的原理对于正确使用和维护数字万用表具有重要意义,也有助于对电路和电器设备进行准确的测量和分析。
数字万用表测试阻值的原理数字万用表是一种常用的测试电路参数的工具,其中之一就是测试阻值。
那么,数字万用表是如何测试阻值的呢?下面将从基本原理、测量方法以及相关注意事项三个方面进行详细介绍。
1.基本原理:数字万用表测量电阻值的基本原理是利用欧姆定律,通过在待测电阻上加上一定的电压,同时将电流测量到的大小与所加电压之比来计算电阻值。
根据欧姆定律,电阻值R等于电压U与电流I之比,即R=U/I。
2.测量方法:(1)选择合适的测量档位:在数字万用表上一般有多个测量档位可供选择,根据所要测量电阻的范围大小选择合适的档位。
若电阻值未知,则先从大档位开始测量,若数值过大则逐渐减小测量档位,直到能够显示精确数值。
(2)连接测试电路:将被测电阻与数字万用表的两个测量引线分别连接到待测电路的两端,确保接触良好,避免接触不良造成测量误差。
(3)记录测量数值:启动数字万用表,等待一段时间使其稳定后,读取显示屏上的电阻数值,并进行记录。
需要注意的是,不同型号的数字万用表显示方式可能会有所不同,有些可能会显示阻值的单位,如欧姆(Ω)。
(4)计算实际电阻值:根据所测得的电压和电流值,应用欧姆定律计算出实际的电阻值。
当然,现代的数字万用表已经内置了计算功能,可直接显示实际电阻值,无需手动计算。
3.注意事项:(1)杜绝接触不良:测量前应确保被测电路的两端及测量引线的接触良好,尤其是插针与待测电路之间的连接必须牢固,以免引起测量误差。
(2)避免干扰:在数字万用表测试过程中,应尽量避免外界电磁场、电压干扰等对测量结果的影响,例如在测量电阻时远离强磁场、高频电磁辐射源等。
(3)选择合适的测量档位:根据待测电阻的范围,选择合适的测量档位可提高测量的精确度。
使用过小的档位可能导致溢出,而过大的档位可能导致测量值过小,影响准确性。
(4)观察显示值的稳定性:在进行测量时,注意观察显示屏上数值的稳定性。
若数值能够稳定在一个固定值附近,则可认为是较为准确的测量结果。
数字万用表姓名:XXX 学号:XXXXXX 专业:08电子信息工程X班数字万用表DMM(Dital MultiMeter)采用大规模集成电路和液晶数字显示技术,具有结构简单、测量精度高、输入阻抗高、显示直观、过载能力强、功能全、耗电省、自动量程转换等优点,许多数字万用表还带有测电容、频率、温度等功能。
本课题的主要内容是理解DT-830型数字万用表的基本结构和原理,通过数字万用表的组装与调试,培养电子产品安装测试技能。
万用表的概述数字万用表是采用集成电路模/数转换器和液晶显示器,将被测量的数值直接以数字形式显示出来的一种电子测量仪表。
1.数字万用表的组成数字万用表是在直流数字电压表的基础上扩展而成的。
为了能测量交流电压、电流、电阻、电容、二极管正向压降、晶体管放大系数等电量,必须增加相应的转换器,将被测电量转换成直流电压信号,再由A/D转换器转换成数字量,并以数字形式显示出来。
它由功能转换器、A/D转换器、LCD显示器、电源和功能/量程转换开关等构成。
常用的数字万用表显示数字位数有三位半、四位半和五位半之分。
对应的数字显示最大值分别为1999,19999和199999,并由此构成不同型号的数字万用表。
2.数字万用表的面板(1)液晶显示器:显示位数为四位,最大显示数为±1999,若超过此数值,则显示1或-1。
(2)量程开关:用来转换测量种类和量程。
(3)电源开关:开关拨至"ON"时,表内电源接通,可以正常工作;"OFF"时则关闭电源。
(4)输入插座:黑表笔始终插在"COM"孔内。
红表笔可以根据测量种类和测量范围分别插入"V·Ω "、"mA"、"10A"插孔中。
1模数转换与数字显示电路常见的物理量都是幅值连续变化的所谓模拟量。
指针式仪表可以直接对模拟电压、电流进行显示,而对数字式仪表,需要把模拟电信号转换成数字信号,再进行显示和处理。
数字万用表测量电流的方法和技巧全文共四篇示例,供读者参考第一篇示例:数字万用表是电子工程师们必备的工具之一,它可以测量电流、电压、电阻等电学参数。
在电路调试和故障排查过程中,测量电流是非常重要的一项工作。
本文将介绍如何使用数字万用表来测量电流,并提供一些技巧和注意事项。
为了测量电流,我们需要了解数字万用表的电流测量范围。
不同型号的数字万用表有不同的最大电流测量范围,通常为毫安或安培。
在进行电流测量前,需要选择合适的电流测量档位,否则可能导致数字万用表烧毁。
接下来,我们可以将数字万用表的电流测量功能与被测电路连接起来。
在测量电流时,需要打开电路并将数字万用表的电流测量端子与电路中的电流路径相连接。
一般来说,电流的测量是串联测量的,即将数字万用表的电流测量端子接入电路中的串联位置。
在连接好之后,可以打开电路并读取数字万用表上显示的电流数值。
需要注意的是,当电流值较大时,数字万用表的显示屏可能会出现波动,这是正常现象,不必过分担心。
在测量电流时,需要保持数字万用表与电路连接良好,避免出现接触不良导致测量不准确的情况。
为了提高测量的准确性,我们还可以采取一些技巧。
可以选择合适的电流测量档位,尽量使被测电流落在该档位的中间位置,以保证测量精度。
还可以通过调整电路中的连接方式,使电流可通过数字万用表测量,这样可以更方便地获取准确的电流数值。
在进行电流测量时,需要注意一些安全事项。
不要将数字万用表连接到超过其电流测量范围的电路中,以免损坏数字万用表。
测量电流时要保持手部干燥,避免发生触电事故。
在测量完毕后,要将数字万用表的电流测量端子与电路断开,以免对电路产生干扰。
使用数字万用表测量电流是一项非常重要的工作,在电路调试和维修中起着至关重要的作用。
通过选择合适的测量档位、良好的连接和注意安全事项,可以确保测量结果准确可靠。
希望以上介绍的方法和技巧对大家在实际工作中有所帮助。
第二篇示例:数字万用表是电子测量仪器中最为常见的一种,它在电路测试、电压检测、阻抗测量、电流测试等多种测量中都有着重要的应用。
数字式万用表测量电路原理(1)直流电压测量电路
直流电压档电路原理图,如图3所示:
图3 直流电压档电路原理图
(2)沟通电压测量电路
沟通电压档电路原理图,如图4所示:
图4 沟通电压档电路原理图
(3)直流电流测量电路
直流电流档电路原理图,如图5所示:
图5 直流电流档电路原理图
(4)电阻测量电路
电阻档电路原理图,如图6所示:
图6 电阻档电路原理图
3、技术指标DT-830
DT830数字万用表技术指标,如表1所示:
表1 DT830数字万用表技术指标
4、使用及修理说明
(1)在数字万用表中使用的时候应首先依据说明书的技术指标选择正确的功能和量程。
在检查修理的时候应依据故障的现象进行检查修理。
首先必需检查电源。
然后,依据显露出来的故障迹象,可分别检查显示规律、显示器,A/D转换器。
(2)假如有一种功能不正常,比如,测量电流时不能精确读数,而其他的功能在各个量程上都是正确的。
明显,故障肯定消失在电流一电压转换电路。
这一部分还打算于参考信号源,还应对参考信号源进行检查排故。
(3)对数字规律部分,没有必要进行任何校准,而对模拟部分(特殊是A/D转换器,电阻和沟通变直流的变换电路中),每次更换元件后都应进行校准调整。