人教版高中化学选修三教案-金属晶体 第一课时
- 格式:doc
- 大小:39.50 KB
- 文档页数:3
第三节金属晶体
第二课时
知识目标:
1. 了解金属晶体内原子在平面中的几种常见排列方式。
2.了解金属晶体内原子在立体空间中的常见排列方式。
3.训练学生的动手能力和空间想象能力,培养学生的合作意识。
过程与方法:
1.建立金属原子为等径球体的模型观念。
2.通过亲自排列小球,探究金属原子在平面中的排列方式,以及排列的密集程度。
3.通过粘贴小球,体会原子在三维空间中的堆积过程。
情感态度价值观:
1.通过对金属原子的实际排列过程,锻炼同学的动手能力,在活动过程中,培养学生思考问题,解决问题的能力。
2.养成务实求真、勇于探索的科学态度,重点培养学生“主动参与、乐于探究、交流合作”的精神。
学习重难点:
1.金属晶体的4种基本堆积模型。
2.面心立方最密堆积和六方最密堆积的区别与联系。
3.4种堆积方式所对应的晶胞结果特点。
教学过程
板书设计
第三节金属晶体
一、金属键
二、金属晶体的原子堆积模型
1.简单立方堆积a=2R
空间利用率=52.36%
2.体系立方堆积√3 a = 4R 空间利用率=68.02% 3.体心立方堆积√2 a = 4R 空间利用率=74.05%
4.六方最密堆积a=b=2R 空间利用率=74.05%。
第三节金属晶体[核心素养发展目标] 1.宏观辨识与微观探析:能辨识常见的金属晶体,能从微观角度分析金属晶体中的构成微粒及微粒间的相互作用。
2.证据推理与模型认知:能利用金属晶体的通性推导晶体类型,从而理解金属晶体中各微粒之间的作用,理解金属晶体的堆积模型,并能用均摊法分析其晶胞结构。
一、金属键和金属晶体1.金属键(1)概念:金属阳离子与自由电子之间的强烈的相互作用。
(2)实质:金属原子脱落下来的价电子形成遍布整块晶体的“电子气〞,被所有原子所共用,从而把所有的金属原子维系在一起,形成一种“巨分子〞。
(3)特征:金属键没有方向性和饱和性。
2.金属晶体(1)金属晶体通过金属阳离子与自由电子之间的较强作用形成的晶体,叫做金属晶体。
(2)用电子气理论解释金属的性质(1)金属单质和合金都属于金属晶体。
(2)金属晶体中含有金属阳离子,但没有阴离子。
(3)金属导电的微粒是自由电子,电解质溶液导电的微粒是自由移动的阳离子和阴离子;前者导电过程中不生成新物质,为物理变化,后者导电过程中有新物质生成,为化学变化。
因而,二者导电的本质不同。
例1以下关于金属键的表达中,不正确的选项是( )A.金属键是金属阳离子和自由电子这两种带异性电荷的微粒间的强烈相互作用,其实质与离子键类似,也是一种电性作用B.金属键可以看作是许多原子共用许多电子所形成的强烈的相互作用,所以与共价键类似,也有方向性和饱和性C.金属键是带异性电荷的金属阳离子和自由电子间的相互作用,故金属键无饱和性和方向性D.构成金属键的自由电子在整个金属内部的三维空间中做自由运动[考点] 金属键和金属晶体[题点] 金属键的理解答案 B解析从基本构成微粒的性质看,金属键与离子键的实质类似,都属于电性作用,特征都是无方向性和饱和性;自由电子是由金属原子提供的,并且在整个金属内部的三维空间内运动,为整个金属的所有阳离子所共有,从这个角度看,金属键与共价键有类似之处,但两者又有明显的不同,如金属键无方向性和饱和性。
高中化学选修三第三章晶体结构与性质一、晶体常识1、晶体与非晶体比较2、获得晶体的三条途径①熔融态物质凝固.②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出.3、晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”.4、晶胞中微粒数的计算方法-—均摊法某粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学常见的晶胞为立方晶胞.立方晶胞中微粒数的计算方法如下:①晶胞顶角粒子为8个晶胞共用,每个晶胞占1/8②晶胞棱上粒子为4个晶胞共用,每个晶胞占1/4③晶胞面上粒子为2个晶胞共用,每个晶胞占1/2④晶胞内部粒子为1个晶胞独自占有,即为1注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状。
二、构成物质的四种晶体1、四种晶体的比较晶体类型分子晶体原子晶体金属晶体离子晶体质硬度一般较软很硬一般较硬,少部分软较硬熔沸点很低很高一般较高,少部分低较高溶解性相似相溶难溶于任何溶剂难溶于常见溶剂(Na等与水反应)大多易溶于水等极性溶剂导电传热性一般不导电,溶于水后有的导电一般不具有导电性(除硅)电和热的良导体晶体不导电,水溶液或熔融态导电延展性无无良好无物质类别及实例气态氢化物、酸(如HCl、H2SO4)、大多数非金属单质(如P4、Cl2)、非金属氧化物(如SO2、CO2,SiO2除外)、绝大多数有机物(有机盐除外)一部分非金属单质(如金刚石、硅、晶体硼),一部分非金属化合物(如SiC、SiO2)金属单质与合金(Na、Mg、Al、青铜等)金属氧化物(如Na2O),强碱(如NaOH),绝大部分盐(如NaCl、CaCO3等)2、晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体.金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。
如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
2020高中化学金属晶体教案金属阳离子所带电荷越高,半径越小,金属键越强,熔沸点越高,硬度也是如此。
接下来是小编为大家整理的2020高中化学金属晶体教案,希望大家喜欢!2020高中化学金属晶体教案一一、教材分析本节是人教版化学选修3《物质结构与性质》第三章第三节的教学内容,是在第三章第一节《晶体的常识》和第二节《分子晶体与原子晶体》基础上认识金属晶体。
学生已经具备了晶体和晶胞的初步知识,对微观粒子的排列也有了一定的认识。
能够较好的完成老师布置的课前预习。
本节教学内容包含知识点主要有金属的内部结构、、共性、电子气理论、金属晶体的结构与金属性质的关系、金属晶体的四种原子堆积模型等,需要三个课时才能完成。
本节课是第二课时,主要探究金属晶体4种基本堆积模型及与分子晶体、原子晶体比较。
二、教学目标1、知识技能目标:1)了解金属晶体内原子在二维空间的两种排列方式,2) 掌握简单立方堆积和体心立方堆积以及二者的特点和区别2 、过程方法目标:1)通过对金属晶体结构的学习与研究,培养学生观察能力,空间想像能力等2)通过两个学与问制作模型训练学生的动手能力和空间想象能力。
3、情感态度价值观:以小组讨论交流、实践活动制作模型的方式培养学生的合作意识和严谨的科学态度三、教学的重点和难点1、教学重点:金属晶体的4种基本堆积模型2、教学难点:金属晶体的4种基本堆积模型根据微观晶胞图片和动画的相关教学材料,制作成PPT,使微观的粒子直观化,形象化,增强学生的空间想象能力。
本节是第三节课,学生已经具备了晶体和晶胞的初步知识,对微观粒子的排列也有了一定的认识,在二维平面排列和非密置层堆积的问题上,学生能够独立完成。
本节中的难点在于密置层堆积形成的镁型和铜型的堆积方式,他正是本课的难点和重点,学生可以根据自己预习和模型的制作,再结合教师的多媒体展示,共同完成学习的目标。
四、教学方法:科学探究:质疑----实验----分析----解决---归纳---比较多媒体课件与自制教具相结合的互动探究式课堂教学模式师生探究模式:教师主动参与到学习小组的探究活动中,适时调控学生的探究进展和探究方向,在交流展示时适时恰当评价,调动学生的积极性,并形成集体性正确的观点和解题思路。
第4节离子晶体第一课时离子晶体学习目标:1.能通过电子的得失来说明离子键的形成,能根据离子化合物的结构特征来解释其物理性质。
2.了解NaCl晶体、CsCl 晶体、CaF2晶体的结构,掌握阴、阳离子的配位数。
3.了解影响晶体中离子配位数的因素——几何因素和电荷因素。
[知识回顾]1.什么是离子键?什么是离子化合物?答:阴、阳离子之间通过静电作用形成的化学键叫做离子键。
含有离子键的化合物称为离子化合物。
2.下列物质中属于离子化合物的是①②④⑤⑥⑦,只含离子键的离子化合物是①⑤⑥⑦。
①Na2O②NH4Cl③O2④Na2SO4⑤NaCl⑥CsCl⑦CaF23.我们已经学习过几种晶体?它们的结构微粒和微粒间的相互作用分别是什么?答:晶体类型分子晶体原子晶体金属晶体结构微粒分子原子金属阳离子和自由电子微粒间的相分子间作用力共价键金属键互作用力1.离子键(1)离子键的实质:是静电作用,它包括阴、阳离子之间的引力和两种离子的原子核之间以及它们的电子之间的斥力两个方面,当引力与斥力之间达到平衡时,就形成了稳定的离子化合物,它不显电性。
(2)离子键的特征:没有方向性和饱和性。
因此,以离子键结合的化合物倾向于形成紧密堆积,使每个离子周围尽可能多地排列异性电荷的离子,从而达到稳定的目的。
2.离子晶体(1)离子晶体:阳离子和阴离子通过离子键结合而成的晶体称为离子晶体。
(2)常见离子晶体的配位数:在NaCl晶体中阳离子和阴离子的配位数都是6;在CsCl晶体中,阳离子和阴离子的配位数都是8;在CaF2晶体中,Ca2+的配位数为8,F-的配位数为4。
(3)离子晶体中阴阳离子配位数的决定因素:几何因素、电荷因素和键性因素。
(4)离子晶体的物理性质:硬度大,难压缩,熔、沸点高。
知识点一离子键与离子晶体1.离子键(1)成键元素:活泼金属元素(如K、Na、Ca、Ba等,主要是第ⅠA族和第ⅡA族元素)和活泼非金属元素(如F、Cl、Br、O等,主要是第ⅥA族和第ⅦA族元素)相互结合时多形成离子键。
第一节晶体的常识[核心素养发展目标] 1.宏观辨识与微观探析:能从微观角度理解晶体的结构特征,并能结合晶体的特点判断晶体与非晶体。
2.证据推理与模型认知:能运用多种晶体模型来描述和解释有关晶体性质的现象,形成分析晶胞结构的思维模型(均摊法),能根据晶胞的结构确定微粒个数及化学式。
一、晶体与非晶体1.概念(1) 晶体:内部粒子(原子、离子或分子)在三维空间按一定规律呈周期性重复排列构成的固体物质。
如金刚石、食盐、干冰等。
(2)非晶体:内部原子或分子的排列呈杂乱无章的分布状态的固体物质。
如橡胶、玻璃、松香等。
2.晶体特点(1)晶体具有自范性。
①自范性:是晶体能自发地呈现多面体外形的性质。
②实质:晶体中粒子在微观空间里呈现周期性的有序排列的宏观表象。
(2)晶体具有固定的熔点。
(3)晶体具有各向异性。
它是指在不同的方向上表现出不同的物理性质,如强度、导热性、光学性质等。
3.获取途径(1)熔融态物质凝固。
(2)气态物质冷却不经液态直接凝固(凝华)。
(3)溶质从溶液中析出。
(1)晶体与非晶体的区别晶体非晶体自范性(本质区别) 有无是否均一均一不均一固定熔点有无某些物理性质的各向异性有无能否发生X射线衍射(最科学的区分方能不能(能发生散射)法)(2)区分晶体和非晶体的方法测熔点晶体有固定的熔点,非晶体没有固定的熔点测定方法科学方法对固体进行X射线衍射实验例1(2019·淄博高二检测)以下物质中属于晶体的是( )①橡胶②玻璃③食盐④水晶⑤塑料⑥胆矾A.①④⑤B.②③⑥C.①③④D.③④⑥[考点] 晶体与非晶体的判断与比较[题点] 晶体与非晶体的判断答案 D解析固体有晶体和非晶体之分,晶体是内部微粒(原子、离子或分子)在空间按一定规律呈周期性有序排列而构成的具有规那么几何外形的固体,如食盐、冰、金属、水晶、胆矾等都是晶体;非晶体中内部粒子的排列那么相对无序,如玻璃、橡胶、塑料等都是非晶体。
目标与素养:1.了解金属键的含义,能用“电子气理论”解释金属的一些物理性质。
(宏观辨识与微观探析)2.了解金属晶体的4种堆积模型。
(证据推理与模型认知)3.了解混合晶体石墨的结构与性质。
(宏观辨识与微观探析)一、金属键与金属晶体的性质1.金属键(1)概念:金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子所共用,从而把所有的金属原子维系在一起。
(2)成键粒子是金属阳离子和自由电子。
(3)金属键的强弱和对金属性质的影响1金属键的强弱主要决定于金属元素的原子半径和价电子数。
原子半径越大、价电子数越少,金属键越弱;反之,金属键越强。
2金属键越强,金属的熔、沸点越高,硬度越大。
2.金属晶体的性质(1)在金属晶体中,原子间以金属键相结合。
(2)金属晶体的性质:优良的导电性、导热性和延展性。
(3)用电子气理论解释金属的性质微点拨:1温度越高,金属的导电能力越弱。
2合金的熔、沸点比其各成分金属的熔、沸点低。
二、金属晶体的原子堆积模型1.二维平面放置金属原子在二维平面里放置得到两种方式,配位数分别为4和6,可分别称为非密置层和密置层。
2.三维空间模型(1)简单立方堆积:按非密置层(填“密置层”或“非密置层”)方式堆积而成,相邻非密置层原子的原子核在同一直线上的堆积,如图。
(2)体心立方堆积:按非密置层(填“密置层”或“非密置层”)方式堆积而成。
将上层金属原子填入下层的金属原子形成的凹穴中,并使非密置层的原子稍稍分离,每层均照此堆积,如图。
(3)六方最密堆积和面心立方最密堆积:六方最密堆积和面心立方最密堆积是按照密置层(填“密置层”或“非密置层”)的堆积方式堆积而成,配位数均为12,空间利用率均为74%。
六方最密堆积面心立方最密堆积按ABABABAB……的方式堆积按ABCABCABC……的方式堆积1.结构特点——层状结构(1)同层内,碳原子采用sp2杂化,以共价键相结合形成平面六元并环结构。
所有碳原子p轨道平行且相互重叠,p轨道中的电子可在整个碳原子平面中运动。
第三节金属晶体(第一课时)
【教学目标】
1、理解金属键的概念和电子气理论
2、初步学会用电子气理论解释金属的物理性质
【教学难点】金属键和电子气理论
【教学重点】金属具有共同物理性质的解释。
【教学过程设计】
【引入】大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?
【板书】一、金属键
金属晶体中原子之间的化学作用力叫做金属键。
【讲解】金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。
这种金属离子与自由电子之间的较强作用就叫做金属键。
金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。
金属键是一种遍布整个晶体的离域化学键。
【强调】金属晶体是以金属键为基本作用力的晶体。
【板书】二、电子气理论及其对金属通性的解释
1.电子气理论
【讲解】经典的金属键理论叫做“电子气理论”。
它把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子形成可与气体相比拟的带负电的“电子气”,金属原子则“浸泡”在“电子气”的“海洋”之中。
2.金属通性的解释
【展示金属实物】展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。
叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。
【教师引导】从上述金属的应用来看,金属有哪些共同的物理性质呢?
【学生分组讨论】请一位同学归纳,其他同学补充。
【板书】金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
⑴金属导电性的解释
在金属晶体中,充满着带负电的“电子气”,这些电子气的运动是没有一定方向的,但在外加电场的条件下电子气就会发生定向移动,因而形成电流,所以金属容易导电。
【设问】导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中电子气中的自由电子担当什么角色?
⑵金属导热性的解释
金属容易导热,是由于电子气中的自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。
⑶金属延展性的解释
当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。
因此,金属都有良好的延展性。
【练习】
1.金属晶体的形成是因为晶体中存在()
A、金属离子间的相互作用
B、金属原子间的相互作用
C、金属离子与自由电子间的相互作用
D、金属原子与自由电子间的相互作用
2.金属能导电的原因是()
A、金属晶体中金属阳离子与自由电子间的相互作用较弱
B、金属晶体中的自由电子在外加电场作用下可发生定向移动
C、金属晶体中的金属阳离子在外加电场作用下可发生定向移动
D、金属晶体在外加电场作用下可失去电子
课后阅读材料
1.超导体——一类急待开发的材料
一般说来,金属是电的良好导体(汞的很差)。
1911年荷兰物理学家H·昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4 K(即—269、)时汞的电阻“奇异”般地降为零,表现出超导电性。
后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。
2.合金
两种和两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质,叫做合金,合金属于混合物,对应的固体为金属晶体。
合金的特点①仍保留金属的化学性质,但物理性质改变很大;②熔点比各成份金属的都低;③强度、硬度比成分金属大;④有的抗腐蚀能力强;⑤导电性比成分金属差。
3.金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,使金属具有很多共同的性质。
(1)状态:通常情况下,除Hg外都是固体。
(2)金属光泽:多数金属具有光泽。
但除Mg、Al、 Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。
(3)易导电、导热:由于金属晶体中自由电子的运动,使金属易导电、导热。
(4)延展性
(5)熔点及硬度:由金属晶体中金属离子跟自由电子间的作用强弱决定。
金属除有共同的物理性质外,还具有各自的特性。
①颜色:绝大多数金属都是银白色,有少数金属具有颜色。
如Au金黄色Cu紫红色Cs银白略带金色。
②密度:与原子半径、原子相对质量、晶体质点排列的紧密程度有关。
最重的为锇(Os)铂(Pt)最轻的为锂(Li)
③熔点:最高的为钨(W),最低的为汞(Hg),Cs,为28.4℃Ca为30℃
④硬度:最硬的金属为铬(Cr),最软的金属为钾 (K),钠(Na),铯(Cs)等,可用小刀切割。
⑤导电性:导电性能强的为银(Ag),金(Au),铜 (Cu)等。
导电性能差的为汞(Hg)
⑥延展性:延展性最好的为金(Au),Al。