遥感概论第二章重点
- 格式:doc
- 大小:38.00 KB
- 文档页数:3
《遥感概论》复习纲要第一章遥感概述一、本章知识点1、遥感概念2、遥感技术系统3、遥感探测的特点4、遥感的分类5、遥感的应用领域6、发展历程和发展趋势7、RS、GIS、GPS的结合二、思考题1、名词解释(1)遥感:是从远处探测感知物体。
是不与目标对象直接接触的情况下,通过某种平台上装载的传感器获取其特征信息,然后对所获取信息进行提取、判定、加工处理及解译应用的综合性技术。
(2)光谱特性:地球上所有物体都在不停地发射、反射、吸收电磁波,而且不同物体对电磁波的发射、反射、吸收的特性不同。
物体的这种对电磁波固有的波长特性叫做光谱特性。
(3)遥感过程:是指遥感信息的获取、传输、处理及其判读分析和应用的全过程。
(4)遥感技术系统:是一个从地面到空中直至空间;从信息收集、存储、传输处理到分析判读、应用的完整技术系统。
是一个多维、多平台、多层次的立体化观测系统。
2、与传统对地观测手段比较,遥感有什么特点?(1)空间特性:宏观观测,大范围获取数据(范围广)(2)时相特性:动态监测,更新快(动态性)(3)光谱特性:技术手段多样,信息量大(信息量大)(4)应用特性:应用领域广,经济效益高(领域多)3、简述遥感卫星地面站,其生产运行系统的构成及各自的主要任务遥感卫星地面站:是一个复杂的高技术系统,它的任务是接收、处理、存档和分发各类遥感数据,并进行卫星接收方式、数据处理方法及相关技术的研究。
(1)接收站:主要负责完成捕获跟踪卫星、传送接收卫星数据的任务。
(2)数据处理中心:将原始遥感数据做一系列复杂的辐射校正及几何校正处理,消除畸变,恢复图像,提供给用户使用。
(3)光学处理中心:可以生产应用于不同用途的各种比例尺的图像产品。
4、遥感有哪几种分类?分类依据是什么?(1)按遥感平台分类:近地面遥感;航空遥感;航天遥感。
(2)按传感器的探测波段分类:紫外0.05-0.38;可见光0.38-0.76;红外0.76-1000微米;微波1mm-1m;多波段遥感。
遥感期末复习:1、什么是遥感:遥感即遥远的感知,是在不接触的情况下,对目标或者自然现象远距离探测和感知的一种技术2、电磁波是一种横波,具有波动性和粒子性,成为波动二象性。
波动性形成了光的干涉,衍射,偏振(在微波技术上称为:极化,遥感技术中的偏振摄影和雷达成像就利用了电磁波的偏振特性)3、电磁波谱:一般指收集,探测,记录地物的电磁波特征,即地物的发射,辐射或反射电磁波能量4、如果一个物体对于任何波长的电磁波辐射都全部吸收,则这个物体是绝对黑体5、绝对黑体表面上,单位面积发出的总辐射能与绝对温度的四次方成正比,称为斯忒藩-玻尔兹曼公式(传感器检测到它的辐射能后就可以利用这个公式概略推算出物体的总辐射能或绝对温度,热红外遥感就是利用这一原理探测和识别目标地物的)分谱辐射能量密度的峰值波长随温度的增加想短波方向移动,称为维恩定律,它表明,黑体的绝对温度增高时,它的辐射峰值波长向短波方向位移,若知道了某物体的温度,就可以推算它的辐射峰值波长,在遥感技术上常用这种方法选择遥感器和确定目标物进行热红外遥感的最佳波段,峰值高,说明反射率高,可以根据这个特性分辨出相应的地物,在微波波段黑体的微波辐射亮度与温度的一次方成正比6、太阳辐射光谱特征:太阳辐射的光谱是连续的,它的辐射特性与绝对黑体的辐射特性基本一致;就遥感而言,被动遥感主要利用可见光,红外等稳定辐射,因而太阳活动对遥感没有太大的影响;紫外到中红外波段区间的能量集中,稳定;第九页,太阳辐射照度分布曲线7、大气对辐射的影响:地球大气(对流层,平流层),大气对太阳辐射的吸收,散射以及反射作用,,大气窗口参考课本13页图1-10,辐射传输方程8、大气对太阳辐射的吸收,散射和反射作用在可见光波段,引起电磁波衰减的主要原因是分子散射,在紫外,红外与微波区,引起电磁波衰减的主要原因是大气吸收,引起大气吸收的主要成分是:氧气,臭氧,水和二氧化碳等,它们吸收电磁辐射的主要波段参照12页图1-99、大气对太阳辐射的吸收特点:大气分子吸收的影响主要是造成遥感影响暗淡;由于大气对紫外线有很强的吸收作用,现阶段的遥感中很少用到紫外线波段;太阳辐射到地面又反射到传感器的过程中,二次通过大气,传感器所接收的能量吃了反射光,还增加了散射光,这二次影响增加了信号中的噪音部分,造成遥感影像质量下降;散射的方式随电磁波波长与大气分子直径,气溶胶微粒大小之间的相对关系而变,主要有米氏散射,均匀散射,瑞利散射等;10、辐射传输方程:从遥感器探测方向的地物目标反射出来的辐射能量,经大气散射和吸收后,进入遥感器视场后含有目标信息,其中一部分未到达地面之前就被大气散射和吸收,其中一部分散射能量也能进入遥感器视场,但是这一部分能量不含有目标信息;还有一部分又被大气反射到目标表面,再次被目标表面反射,透过大气进入遥感器视场11、一般物体的发射辐射与绝对黑体和绝对白体相比较列于下面:绝度黑体,灰体,选择性辐射体,理想反射体(绝对白体)12、物体对电磁波的反射有三种形式:镜面反射,漫反射,方向反射13、光谱反射率:反射率是物体的反射辐射通量与入射辐射通量之比,这个反射率是在理想的漫反射体的情况下,整个电磁波长的反射率,实际上由于物体固有的物理特性,对于不同波长的电磁波有选择性的反射14、地物的反射辐射,课本18页开始,牢记在这个小节中各种地物的的反射波谱特征特征曲线15、影响地物光谱反射率变化的因素是:太阳位置,传感器位置,地理位置,地形,季节,气候变化,地面湿度变化,地物本身的差异,大气状况等16、测量地物的反射波谱曲线主要有以下三个作用:第一、它是选择遥感波谱段,设计遥感仪器的依据;第二、在外业测量中,它是选择合适的飞行时间的基础资料;第三、是用户判读,识别,分析遥感影像的基础17、什么是遥感平台:遥感中搭载传感器的工具统称为遥感平台,按平台距离地面的高度大体分为三类:地面平台——指用于安置遥感器的三脚架,遥感塔,遥感车等,高度在一百米以下在地面上放置地物波谱仪,辐射计,分光光度计等。
遥感导论重点知识梳理【7月7日3:00PM考前必背】第一章绪论1、遥感的基本概念:v广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
v 狭义:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
也是一门科学。
2、遥感系统的组成部分:1)被测目标的信息特征目标物电磁波特性,既是遥感的信息源,也是遥感探测的依据。
2)信息的获取信息获取主要由遥感平台、遥感器等协同完成。
3)信息的传输与接收空间数据传输与接收是空间信息获取和空间数据应用中必不可少的中间环节。
4)信息的处理首先地面站进行一系列的预处理,如信息的恢复、辐射校正、几何纠正、卫星姿态校正、投影变换等;地面站和用户再根据需要进行精校正处理和专题信息的处理和分类。
5)遥感信息的应用遥感获取信息的目的就是应用。
3、遥感的类型:按遥感平台分地面遥感、航空遥感、航天遥感航宇遥感按传感器的探测波段分紫外遥感:探测波段在0.05~0.38µm之间;可见光遥感:探测波段在0.38~0.76µm之间;红外遥感:探测波段在0.76~1000µm之间;微波遥感:探测波段在1mm~10m之间;多波段遥感:指探测波段在可见光波段和红外波段范围内,再分成若干窄波段来探测目标。
按工作方式分(1)主动遥感和被动遥感:主动遥感由探测器主动发射一定的电磁波能量并接收目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。
(2)成像遥感与非成像遥感:前者传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像;后者传感器接收的目标电磁辐射信号不能形成图像。
按遥感的应用领域(1)从大的研究领域可分为外层空间遥感、大气层遥感、陆地遥感和海洋遥感等。
(2)从具体应用领域可分为资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥感及灾害遥感、军事遥感等。
遥感概论阐释RS特点及其应用也许性第一节●遥感:碧空慧眼应用:遥感天地,看相识气●遥感分类:1、探测对象:宇宙遥感(所有波段)地球遥感(除γ、x射线、无线电波)2、平台:航天遥感、航空遥感(飞机气球)、地面遥感3、获取数据形式:成像方式遥感,非成像方式遥感4、传感器工作方式:被动遥感,积极遥感5、探测电磁波:可见光(白天)、红外(夜晚)、微波(雨雪天)、紫外6、遥感应用●遥感特性:时空特性,广;波段特性,多;时相特性,长;资料收集特性,便;经济特性,钱●电磁波四个特性:反射、吸取、透射、发射●发展状况:中华人民共和国:50年代60年代70—80年代90年代世界:初级阶段1839-1937 发展阶段1937-1960奔腾阶段1960-1980 实用阶段1990----第二节●遥感技术系统:遥感平台、传感器、遥感信息接受及解决、遥感图像判读和应用●遥感平台:遥感中搭载传感器运载工具1、地面遥感:<100m 三脚架、遥感车、遥感塔、遥感轮船特点1)可测光谱信息2)配合航空航天遥感3)不能反映环境综合性2、航空遥感:<12km 飞机、气球特点1)信息辨别率高2)不受地面条件控制3)收集资料以便4)用于局部资料分析3、航天遥感:>150km 人造地球卫星、宇宙飞船、空间轨道站、航天飞机特点:1)对地球进行宏观综合迅速动态观测2)开展资源环境监测3)辨别率比较低(大多数是民用)4)五大优越性(广、多、长、便、钱)●传感器:遥感系统核心某些1、照相方式传感器----无损波长0.3---1.3微米2、扫描方式传感器-------有损波段比较宽重要是光电转换3、雷达(水NO)全天候全天时0.8----30cm●遥感信息接受及解决:遥感信息只要是指由航空遥感和航天遥感所获取胶片和磁带1)直接回收方式:航摄结束后回收保密性强,时效性差2)视频传播:接受地物电磁波光电转换无线电给接受站保密性差,时效性好3)实时传播:及时给接受站4)非实时传播:回到地面给接受站Ps:辐射校正:恢复自身光谱特性,提高辨别精度几何校正:满足遥感制图和多波段套合(飞机颠簸)遥感地面实验场提高应用精度吉林长春●遥感图像判读和应用:图像判读分类:目视判读(定性)、计算机分类(定量)计算机分类:监督分类、非监督分类、模糊分类、神经元网络分类、模式辨认●总结:从地面到高空,从室内到室外多层次、多视野、多角度立体交叉作业系统。
问题第一章--绪论1、遥感的基本概念2、遥感探测系统组成3、遥感与常规观测手段的区别重点:遥感的概念及应用领域1.遥感的广义理解和狭义理解?P12.遥感探测系统包括哪几个部分?P13.遥感的特点?P54.遥感的信息源?遥感探测的依据?P35.遥感的类型?P3第二章--电磁辐射与地物光谱特征1、电磁波谱与电磁辐射的概念及特点2、太阳辐射及大气对辐射的影响3、地球的辐射与地物波谱重点:地物波谱特征难点:电磁辐射原理1.大气层次与成分?P262.散射现象的实质?P293.大气散射的三种情况?P294.根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云透雾能力而可见光不能?P295.物体的反射状况?(镜面反射、漫反射、实际物体反射)P376.大气窗口对于遥感探测的重要意义?P317.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象?8.从地球辐射的分段特性说明为什么对于卫星影象解译必须了解地物反射波谱特性?P35 9.黑体辐射定律?P19第三章--电磁辐射与地物光谱特征1、了解主要的遥感平台及各平台的工作特点。
2、摄影成像的基本原理及图像特征。
3、扫描成像的基本原理及扫描图像的特征。
4、微波成像与摄影、扫描成像的区别。
5、评价遥感图像质量的方法。
重点:摄影成像的基本原理及图像特征、评价遥感图像质量的方法难点:中心投影的原理1.主要遥感平台是什么,各有何特点?P462.摄影成像的基本原理是什么?其图象有什么特征?P53、P573.扫描成像的基本原理是什么?P674.扫描成像和摄影图象有何区别?5.微波成像与摄影、扫描成像有何本质的区别?6.如何评价遥感图象的质量?P80-P837.气象卫星特点?P488.海洋遥感的特点?P529.中心投影与垂直投影的区别?P5810.中心投影的透视规律?P5911.光/机扫描成像的概念?P6712.瞬时视场角(像元)的概念?P6813.总视场角的概念?P6814.固体自扫描成像的概念?P6915.高光谱成像光谱扫描的概念?P7016.微波遥感的特点?P7217.微波遥感方式和传感器?P74-P8018.遥感解译人员需要通过遥感图像获取的信息?P8019.遥感图像的特征?P80-P83第四章--遥感图象处理1、光学原理与光学处理2、数字图像的校正3、数字图像增强4、多源信息复合重点:数字图象的增强难点:数字图象的校正及数字图象增强的原理与计算方法1.影响亮度值的两个物理量?P982.引起辐射畸变的两个原因?P983.辐射校正的方法(直方图最小值去除法、回归分析法)?P1004.遥感影像变形的原因?P1035.几何畸变校正的方法(最近邻法、双线性内插法、三次卷积内插法)?P1076.空间滤波的概念以及手段?P1167.彩色变换?P1208.图像运算(差值运算、比值运算)?P1229.多光谱变换(主成分变换、缨帽变换)?P12310.遥感信息的复合(不同传感器的遥感数据复合、不同时相的遥感数据复合)?P128 11.遥感与非遥感信息的复合?P13012.简述多波段彩色变换的不同方法?P120第五章--遥感图像目视解译与制图1、遥感图像目视解译原理2、遥感图像目视解译基础3、遥感制图1.遥感图像目标地物识别特征?P1352.图像知觉形成的客观条件?P1423.摄影像片的特点?P1454.摄影像片的解译标志?P1455.遥感摄影像片的判读方法?P1496.遥感扫描影像的判读?P1537.遥感扫描影像特征?P1618.遥感影像主要解译方法?P1619.微波影像的特点?P16310.微波影像解译标志及地物影像特征?P16611.微波影像的判读方法?P17112.目视解译方法?P17113.目视解译步骤?P17414.遥感影像地图的主要特征?P17615.对比分析MSS影像与TM影像的不同特点?P154第六章--遥感数字图像计算机解译1、遥感数字图像的性质与特点2、遥感数字图像的计算机分类3、遥感图像多种特征的抽取重点与难点:遥感数字图像的计算机分类方法1.遥感数字图像计算机解译的概念及其难度?P1872.按波段数量,遥感数字图像的类型?P1903.多波段数字图像的存储与分发通常采用的数据格式?P1904.航空像片的数字化过程?P1925.遥感数字图像计算机分类原理?P1936.遥感数字图像计算机分类方法(监督分类方法、非监督分类方法)?P195、P196 7.遥感数字图像计算机分类基本过程?P1958.植被、水体及土壤反射波谱特征?P399.计算机分类存在的问题?P20110.地物边界跟踪的方法?P20311.遥感图像解译专家系统的组成?P214-P21712.计算机解译的主要技术发展趋势?P219第七章--遥感应用1、地质遥感的主要原理与应用2、水体遥感的主要原理与应用3、植被遥感的主要原理与应用4、土壤遥感的主要原理与应用5、高光谱遥感的应用1.地质遥感的任务?基础?P2252.从遥感影像上识别地质构造的内容?P2313.岩石的反射光谱特征是什么?如何对沉积岩、岩浆岩、变质岩的影像进行识别?P225-P230 4.如何进行地质构造识别?P2315.水体的光谱特征是什么?水体识别可包括哪些内容?P237-P2396.植物的光谱特征是什么?如何区分植物类型,监测植物长势?P240-P2447.作物估产的原理和方法是什么?P2458.土壤的光谱特征是什么?如何进行土类的识别?P249-P2529.什么是高光谱遥感?它与传统遥感手段有何区别?P25310.高光谱提取地质矿物成分的主要技术方法是什么?P25411.高光谱在植被研究中有哪些应用?主要技术方法是什么?P256第八章--3S综合应用1.GIS的基本概念及其基本功能?P2612.GPS的基本原理、作用及其组成?P2643.RS的作用?P267概念第一章--绪论1.传感器(遥感器):接收、记录目标物电磁波特征的仪器2.遥感平台:装载传感器的平台,包括地面平台、空中平台、空间平台3.地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等4.航空遥感:传感器设置于航空器上,主要是飞机、气球等5.航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等6.航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测7.主动遥感:由探测器主动发射一定电磁波能量并接收目标的后向散射信号8.被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量9.成像遥感:传感器接收的目标电磁辐射信号可转换成(数字或模拟)图象10.非成像遥感:传感器接收的目标电磁辐射信号不能形成图象第二章--电磁辐射与地物光谱特征1.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列2.朗伯源:辐射亮度与观察角无关的辐射源3.绝对黑体:一个对于任何波长的电磁辐射都全部吸收的物体4.太阳常数:不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量5.太阳光谱:通常指光球产生的光谱,是连续光谱,且辐射特性与绝对黑体辐射特性基本一致6.散射:辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开7.大气窗口:电磁波通过大气层时较少被反射、吸收或者散射的,透过率较高的波段8.比辐射率=发射率第三章--电磁辐射与地物光谱特征1.遥感平台:搭载传感器的工具2.低轨:近极地太阳同步轨道,卫星每天在固定的时间(地方时)经过每个地点的上空,使资料获得时具有相同的照明条件3.高轨:指地球同步轨道4.摄影机:成像遥感最常用的传感器,有分幅式和全景式摄影机之分,通常的遥感探测和制图大都采用分幅式摄影5.垂直摄影:摄影机主光轴垂直于地面或偏离垂线在3°以内,取得的像片称水平像片或垂直像片6.倾斜摄影:摄影机主光轴偏离垂线大于3°,有时为了获取较好的立体效果且对制图要求不高时采用7.像点位移:在中心投影的像片上,地形的起伏除引起像片比例尺变化外,还会引起平面上的点位在像片位置上的移动的现象,位移量就是中心投影与垂直投影在同一水平面上的"投影误差",位移量与摄影高度(航高)成反比8.感光特征曲线:横坐标为曝光量的对数值,纵坐标为胶片的光学密度9.光学密度:指胶片经感光显影后,影象表现出的深浅程度10.感光度:指胶片的感光速度。
遥感概论知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN遥感概论—刘朝顺第一章绪论一、遥感的概念1.广义::泛指各种非接触的、远距离的探测技术,包括对电磁场、力场、机械波(声波、地震波)等的探测。
2.狭义::是一门新兴的科学技术,主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。
二、什么是传感器1.地物空间信息主要由搭载在遥感平台上的传感器来获取。
2.传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
3.分类:摄影类型的传感器;扫描成像类型的传感器;雷达成像类型的传感器;非图像类型的传感器。
4.构造:1)收集器:收集地物辐射来的能量。
具体的元件如透镜组、反射镜组、天线等。
2)探测器:将收集的辐射能转变成化学能或电能。
具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。
3)处理器:对收集的信号进行处理。
如显影、定影、信号放大、变换、校正和编码等。
具体的处理器类型有摄影处理装置和电子处理装置。
4)输出器:输出获取的数据。
输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。
三、遥感的特点1空间特性:视域范围大,具有宏观特性。
2.光谱特性:探测的波段从可见光向两侧延伸,扩大了地物特性的研究范围。
3.时相特性:周期成像,有利于进行动态研究和环境监测。
4.大面积的同步观测。
5.时效性 - 动态、快速获取监测范围数据。
6.数据的综合性和可比性。
7.经济性-应用领域多,经济效益高。
8.局限性。
四、遥感的发展历史1.无记录的地面遥感阶段2.有记录的地面遥感阶段(萌芽阶段)3.航空遥感阶段4.航天遥感阶段第二章电磁辐射与地物光谱特征(理解PPT)一、电磁波谱1.电磁波谱:按照电磁波在真空中传播的波长或频率递增或递减排列形成的一个连续谱带称为电磁波谱。
遥感概论和普通的图象有什么异同?能从图象上得到什么?为什么要从那么高的空间对地成像?想了解有关的空间信息,通过什么途径?如何获取信息?遥感的作用或者目的?一、遥感定义:遥感广义的含义:泛指各种非接触的、远距离的探测技术,根据物体对电磁波的反射和辐射特性,以获取物体信息的一种技术。
遥感狭义的含义:指从远距离、高空以至外层空间的各种平台上,利用可见光、红外、微波等探测仪器,通过摄影或扫描,信息感应、传输和处理,从而识别地面物质的性质和运动状态的一门现代化科学技术。
遥感定义:指在高空和外层空间的各种平台上,运用各种传感器获取反映地表特征的各种参数,通过传输,变换,处理,提取有用的信息,实现研究地物形状、位置、性质、变化及与环境的相互关系的一门现代应用科学。
遥感技术:实现上述目的所采取的各种技术手段的总称。
二、遥感技术的特点:宏观性,综合性(覆盖范围大、信息丰富),多波段性(波段的延长使对地球的观测走向了全天候),多时相性(重复探测,有利于进行动态分析)。
三、遥感的分类1、按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。
2、按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等。
3、按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等4、按照资料的记录方式:成像方式、非成像方式5、按照传感器工作方式分类:主动遥感、被动遥感四、遥感技术系统:是一个从地面到空中直至空间;从信息收集、存储、传输、处理到分析判读、应用的完整技术系统。
第一章遥感的物理基础电磁波及电磁波谱光的波动性形成了干涉,衍射,偏振现象。
干涉:由两个或两个以上频率振动方向相同,相位相同或相位差恒定的电磁波在空间叠加时,合成波振幅为各个波的振幅的矢量和,因此会出现交叠区某些地方振动加强,某些地方震动减弱或完全抵消的现象。
凡是单色波都是相干波。
干涉对微波遥感的判读意义重大。
衍射:光通过有限大小的障碍物时偏离直线路径的现象。
一、电磁波的性质1.在真空中以光速传播c = f·λ2.反射、吸收、透射现象3.散射4.偏振二、电磁波与物体相互作用过程中,会出现三种情况:反射、吸收、透射,遵守能量守恒定律(如果是不透明的物体,物体的反射率大,发射率就小)三、反射的分类1.镜面反射(理想状态)2.漫反射(理想状态)3.混合反射:各个方向反射强度差不多4.方向反射:有一个方向反射特别强四、定义①反射:电磁辐射与物体作用后产生的次级波返回原来的介质,这种现象称反射。
该次级波便称之为反射波(辐射)。
反射率:物体的反射辐射通量与入射辐射通量之比。
②透射:电磁辐射与介质作用后,穿过该介质到达另一种介质的现象或过程。
透射率:透射能量与入射总能量之比。
③偏振:如果电磁波在各方向上振幅大小不相同,且各方向振动之间没有固定位相关系,极大值与极小值之间的夹角为90°,则称该波发生了偏振现象。
五、电磁波谱:按照电磁波的波长(频率的大小)长短,依次排列成的图表,称为电磁波谱。
按频率从短到长可分为γ射线、X 射线、紫外线、可见光、红外线、微波、无线电波 ①可见光谱中的各种颜色成分大致所属的波长区间:红:620~760nm橙:590~620nm黄:560~590nm绿:500~560nm青:470~500nm蓝:430~470nm紫:380~430nm②红外波段波长范围0.76~1000μm ,遥感所用波段如下:近红外: 0.7~3 μm中红外: 3~8 μm远红外: 8~15 μm③微波波长范围1mm~1m六、各种电磁波的不同与共性①不同点:传播的方向性、穿透性、可见性、颜色不同②共性:传播速度相同;遵守相同的反射、折射、透射、吸收和散射定律;都是横波,遵循横波的一切特性1)()()(=++λτλαλρ七、黑体:对任何波长的辐射,反射率和透射率都等于0黑体是一种理想的吸收体和辐射发射体,自然界没有真正的黑体(黑体的辐射通量密度按波长的分布是稳定的,仅与温度有关,与黑体的材料和性质无关)八、黑体辐射的规律①斯忒藩-玻尔兹曼定律:辐射通量密度随温度增加而迅速增加,与温度的4次方成正比(红外装置测试温度的理论根据)M=σT ˆ4 σ=5.67×10-12 W/cm-2·K-4 M 为总辐射出射度②维恩位移定律:黑体温度越高,其曲线的峰顶就越往左移,即往波长短的方向移动(高温物体发射较短的电磁波,低温物体发射较长的电磁波)λmax ·T=b b=2898 μm · K九、实际物体的辐射基尔霍夫定律:M=εM 。
遥感概论复习资料总结遥感概论复习资料第⼀章遥感的基本概念(1)⼴义:泛指⼀切⽆接触的远距离探测技术。
包括对电磁场、⼒场、机械波(声波、地震波)等的探测。
(2)狭义:是应⽤探测仪器,不与探测⽬标相接触,从远处把⽬标的电磁波特性记录下来,通过分析,揭⽰出物体的特征性质及其变化的综合性探测技术。
不同于遥测和遥控。
遥感系统包括(1)被测⽬标的信息特征(2)信息的获取(通过传/遥感器、遥感平台)(3)信息的传输与记录(4)信息的处理(5)信息的应⽤遥感的构成(遥感系统)◇⽬标地物的电磁波特性、◇信息的采集与获取、◇信息的传输和接收◇地⾯定标及实况调查、◇信息的处理和加⼯、◇信息的分析与应⽤遥感的类型(1)按遥感平台分类:地⾯遥感、航空遥感、航天遥感、航宇遥感(2)按遥感器的探测波段分类µ之间紫外遥感:探测波段在0.05-0.38mµ之间可见光遥感:探测波段在0.38-0.76mµ之间红外遥感:探测波段在0.76-1000m微波遥感:探测波段在1mm-1m之间多波段遥感:探测波段在可见光和红外波段范围内,再分成若⼲窄波段来探测⽬标。
(3)按⼯作⽅式分类:主动遥感和被动遥感主动遥感,由探测器主动发射⼀定电磁波能量并接受⽬标的后向散射信号;被动遥感,传感器不向⽬标发射电磁波,仅被动接收⽬标物的⾃⾝发射和对⾃然辐射源的反射能量。
(4)按是否成像分类:成像遥感和⾮成像遥感遥感的特点(1)⼤⾯积同步观测传统地⾯调查实施困难,⼯作量⼤,遥感观测可以不受地⾯阻隔等限制。
(2)时效性可以短时间内对同⼀地区进⾏重复探测,发现地球上许多事物的动态变化,传统调查,需要⼤量⼈⼒物⼒,⽤⼏年甚⾄⼏⼗年时间才能获得地球上⼤范围地区动态变化的数据。
因此,遥感⼤⼤提⾼了观测的时效性。
这对天⽓预报、⽕灾、⽔灾等的灾情监测,以及军事⾏动等都⾮常重要。
(3)数据的综合性和可⽐性遥感获得地地物电磁波特性数据综合反映了地球上许多⾃然、⼈⽂信息。
遥感概论—刘朝顺第一章绪论一、遥感的概念1.广义::泛指各种非接触的、远距离的探测技术,包括对电磁场、力场、机械波(声波、地震波)等的探测。
2.狭义::是一门新兴的科学技术,主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。
二、什么是传感器1.地物空间信息主要由搭载在遥感平台上的传感器来获取。
2.传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
3.分类:摄影类型的传感器;扫描成像类型的传感器;雷达成像类型的传感器;非图像类型的传感器。
4.构造:1)收集器:收集地物辐射来的能量。
具体的元件如透镜组、反射镜组、天线等。
2)探测器:将收集的辐射能转变成化学能或电能。
具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。
3)处理器:对收集的信号进行处理。
如显影、定影、信号放大、变换、校正和编码等。
具体的处理器类型有摄影处理装置和电子处理装置。
4)输出器:输出获取的数据。
输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。
三、遥感的特点1空间特性:视域范围大,具有宏观特性。
2.光谱特性:探测的波段从可见光向两侧延伸,扩大了地物特性的研究范围。
3.时相特性:周期成像,有利于进行动态研究和环境监测。
4.大面积的同步观测。
5.时效性- 动态、快速获取监测范围数据。
6.数据的综合性和可比性。
7.经济性-应用领域多,经济效益高。
8.局限性。
四、遥感的发展历史1.无记录的地面遥感阶段2.有记录的地面遥感阶段(萌芽阶段)3.航空遥感阶段4.航天遥感阶段第二章电磁辐射与地物光谱特征(理解PPT)一、电磁波谱1.电磁波谱:按照电磁波在真空中传播的波长或频率递增或递减排列形成的一个连续谱带称为电磁波谱。
讲稿第一章遥感概述§1.1遥感概念1.遥感(remote sensing)的定义:在远离被测物体或现象的位置上,使用一定的仪器设备,接收、记录物体或现象反射或发射的电磁波信息,经过对信息的传输、加工处理及分析与解译,对物体及现象的性质及其变化进行探测和识别的理论与技术。
2.光谱特性(spectral characteristics):地球上每一物质作为其固有的性质都会反射、吸收、透射及辐射电磁波,物体的这种对电磁波固有的波长特性叫做光谱特性。
§1.2遥感技术系统遥感技术系统:是一个从地面到空中,乃至空间,从信息收集、存储、处理到判读分析和应用的完整技术体系。
一、遥感过程:是指遥感信息的获取、传输、处理及其判读分析和应用的全过程。
二、传感器及遥感平台1.传感器(remote sensor):接收从目标中反射或辐射来的电磁波的装置。
如:照相机,扫描仪等。
2.遥感平台(remote platform):指搭载传感器的载体。
如:地面三角架、遥感车、气球、航空飞机、航天飞机、人造地球卫星等。
三、遥感探测的特点1.宏观观测,大范围获取数据资料2.动态监测,快速更新监控范围数据3.技术手段多样,可获取海量信息4.应用领域广泛,经济效益高四、遥感分类1、按遥感平台分地面遥感:传感器设置在地面平台上航空遥感:传感器设置在航空器上航天遥感:传感器设置在环地球的航天器上航宇遥感:传感器设置在星际飞船上2、按传感器的探测波段分紫外遥感:探测波段0.05~0.38μm可见光遥感:探测波段0.38~0.76μm红外遥感:探测波段0.76~1000μm微波遥感:探测波段1㎜~10m多波段遥感:在可见光波段和红外波段的范围内,在分成若干窄波段来探测3、按传感器的工作原理分主动遥感:探测器主动发射一定电磁波能量被动遥感:探测器不向目标发射电磁波4、按遥感资料的获取方式分成像遥感:目标电磁辐射信号能转换成图象非成像遥感:目标电磁辐射信号不能形成图象5、按波段宽度及波谱的连续性分高光谱遥感(hyperspectral remote sensing ):是利用很多狭窄的电磁波波段(波段宽度通常小于10nm)产生光谱类型的图像数据。
《遥感概论》课程笔记第一章:绪论1.1 遥感及其技术系统遥感(Remote Sensing)是指不直接接触对象物体,通过分析从远处感知到的电磁波信息来识别和探测地表及其上方环境的技术。
遥感技术系统是由多个组成部分构成的复杂体系,主要包括以下几部分:- 传感器(Sensor):用于探测和记录目标物体发射或反射的电磁波的设备。
- 遥感平台(Remote Sensing Platform):携带传感器的载体,如卫星、飞机、无人机等。
- 数据传输系统(Data Transmission System):将传感器收集的数据传回地面的设备。
- 数据处理与分析系统(Data Processing and Analysis System):对遥感数据进行处理、分析和解释的软件和硬件。
1.2 遥感门类及技术特点遥感技术根据不同的分类标准可以分为以下几类:- 按照电磁波波长:可见光遥感、红外遥感、微波遥感等。
- 按照传感器工作方式:主动遥感(如激光雷达)和被动遥感(如摄影相机)。
- 按照平台类型:卫星遥感、航空遥感、地面遥感等。
遥感技术的主要特点包括:- 大范围覆盖:遥感技术可以覆盖广阔的地表区域,对于大规模的地理现象监测具有优势。
- 高效快速:遥感平台可以快速穿越监测区域,获取数据的时间周期短。
- 多维信息:遥感可以提供关于地表及其上方环境的多种信息,如形状、纹理、温度等。
- 非侵入性:遥感技术不需要直接接触目标物体,因此对环境的影响较小。
1.3 遥感行业应用概况遥感技术在多个行业中有着广泛的应用,以下是一些主要的应用领域:- 农业领域:通过遥感技术监测作物生长状况、评估产量、监测病虫害、进行土地资源调查等。
- 环境保护:监测森林覆盖变化、湿地保护、沙漠化趋势、大气污染等环境问题。
- 灾害管理:利用遥感技术进行地震、洪水、飓风、火灾等自然灾害的预警、监测和评估。
- 城市规划:通过遥感图像分析城市扩张、交通布局、土地利用效率等,为城市规划提供依据。
一、电磁波的性质
1.在真空中以光速传播
c = f·λ
2.反射、吸收、透射现象
3.散射
4.偏振
二、电磁波与物体相互作用过程中,会出现三种情况:反射、吸收、透射,遵守能量守恒定律(如果是不透明的物体,物体的反射率大,发射率就小)
三、反射的分类
1.镜面反射(理想状态)
2.漫反射(理想状态)
3.混合反射:各个方向反射强度差不多
4.方向反射:有一个方向反射特别强
四、定义
①反射:电磁辐射与物体作用后产生的次级波返回原来的介质,
这种现象称反射。
该次级波便称之为反射波(辐射)。
反射率:物体的反射辐射通量与入射辐射通量之比。
②透射:电磁辐射与介质作用后,穿过该介质到达另一种介质的现象或过程。
透射率:透射能量与入射总能量之比。
③偏振:如果电磁波在各方向上振幅大小不相同,且各方向振动之间没有固定位相关系,极大值与极小值之间的夹角为90°,则称该波发生了偏振现象。
五、电磁波谱:按照电磁波的波长(频率的大小)长短,依次排列成的图表,称为电磁波谱。
按频率从短到长可分为γ射线、X 射线、紫外线、可见光、红外线、微波、无线电波 ①可见光谱中的各种颜色成分大致所属的波长区间:
红:620~760nm
橙:590~620nm
黄:560~590nm
绿:500~560nm
青:470~500nm
蓝:430~470nm
紫:380~430nm
②红外波段波长范围0.76~1000μm ,遥感所用波段如下:
近红外: 0.7~3 μm
中红外: 3~8 μm
远红外: 8~15 μm
③微波波长范围1mm~1m
六、各种电磁波的不同与共性
①不同点:传播的方向性、穿透性、可见性、颜色不同
②共性:传播速度相同;遵守相同的反射、折射、透射、吸收和散射定律;都是横波,遵循横波的一切特性
1)()()(=++λτλαλρ
七、黑体:对任何波长的辐射,反射率和透射率都等于0
黑体是一种理想的吸收体和辐射发射体,自然界没有真正的黑体(黑体的辐射通量密度按波长的分布是稳定的,仅与温度有关,与黑体的材料和性质无关)
八、黑体辐射的规律
①斯忒藩-玻尔兹曼定律:辐射通量密度随温度增加而迅速增加,与温度的4次方成正比(红外装置测试温度的理论根据)
M=σT ˆ4 σ=5.67×10-12 W/cm-2·K-4 M 为总辐射出射度
②维恩位移定律:黑体温度越高,其曲线的峰顶就越往左移,即往波长短的方向移动(高温物体发射较短的电磁波,低温物体发射较长的电磁波)
λmax ·T=b b=2898 μm · K
九、实际物体的辐射
基尔霍夫定律:M=εM 。
ε为比辐射率或发射率 M 。
为实际辐射出射度
十、太阳常数:不受大气影响,在距离太阳一个天文单位(约 15,000万公里 )的区域内,垂直于太阳辐射方向的单位面积、单位时间的黑体所接收的辐射能量。
(1.95W/cm2· min ) 十一、太阳辐照度与太阳高度角的关系:sinh '
⋅=I I
十二、太阳辐射为5900K 的黑体辐射,为短波辐射(太阳辐射总能量的40%集中于0.4-0.76um 的可见光范围内,51%在0.76-1.4um 近红外部分)
十三、从太阳辐照度分布曲线可以看出:
①太阳辐射的光谱是连续的
②它的辐射特性与绝对黑体的辐射特性基本一致
③从近紫外到中红外(0.3-6μm )这一波段区间能量最集中而且相对来说较稳定;被动遥感主要利用可见光、红外等稳定辐射
十四、地球辐射主要包括:可见光、近红外、中红外和远红外的辐射
十五、地球辐射的分段特性:
①0.3-2.5微米波段(主要在可见光与近红外波段),地表以反射太阳辐射为主,地球自身的辐射可忽略。
②2.5-6.0微米波段(主要在中红外波段),地表以反射太阳辐射和地球自身的热辐射,均为被动遥感的辐射源。
③6.0微米以上的热红外波段,地球自身的热辐射,地表反射太阳辐射可忽略。
十六、散射:电磁辐射与结构不均匀的物体作用后,向各个方向传播的现象。
它是反射、折射、衍射的综合反映。
主要发生在可见光波段(太阳辐射通过大气层时,受到大气中气体分子的散射和大气中固体、微粒、液体的散射)
十七、大气散射的类型
①瑞利散射:由较小的大气分子引起的。
当微粒直径d 比辐射波长λ小得多时,即λ<<d ,所引起的散射称瑞利散射。
它主要由大气分子对可见光的散射引起的,所以也叫分子散射。
当波长大于1m μ时,瑞利散射可不予考虑,故红外线和微波可以不考虑瑞利散射的影响。
但在可见光中由于波长愈短,瑞利散射的影响愈大,如晴空呈兰色,由于大气中的气体分子把波长较短的兰光散射到天空中的缘故。
②米氏散射:当微粒直径与波长相差不大,即λ≈d 时,所引起的散射。
米氏散射主要由大气中的气溶胶所引起的。
由于大气中的云、雾等悬浮粒子的大小与0.76~15m μ的红外线的波长相近,因此云、雾对红外线的米氏散射有影响。
③非选择性散射:当微粒的直径比波长大得多时,即λ>>d 时,所发生的散射称为非选择
性散射。
当λ>d 时,0=ϕ,γ为一常数,散射强度与波长无关,即任何波长的散射强度相同。
因此大气中的水滴、雾、烟尘等气溶胶对太阳辐射常常出现这种散射。
常见的云或雾均由大水滴组成,即λ>>d ,对各种波长的可见光散射均相同,呈白色。
这种散射将使传感器接收到的数据受到严重影响。
十八、大气窗口:电磁波在大气中传输过程中吸收和散射很小,透射率很高的波段。
十九、大气窗口的主要光谱段:
①0.3-1.3um : 即紫外、可见光、近红外波段
②1.5-1.8um,2.0-3.5um :近、中红外波段
③3.5-5.5um :中红外波段
④8-14 um :远红外波段
⑤0.8-2.5cm :微波波段
二十、反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即称为该物体的反射波谱特性曲线。
物体的反射波谱限于紫外、可见光和近红外,尤其是后两个波段。
物体的反射波谱受物体的组成成分、结构、表面状态以及物体所处环境的控制和影响。
二十一、绿色植被反射波谱曲线特性:
①可见光( 0.4~0.76 μm )绿光处有一小反射峰,两侧 0.45μm 蓝和 0.67 μm 红是两个吸收带,所以叶片呈现绿色。
②近红外波段( 0.7~0.8μm )红外反射率急剧上升,在 0.8微米达到顶峰,这区间反射率曲线很陡峻,几乎为近垂直的直线( 植被红外陡坡效应 ),是植被独有的特征。
③到达顶峰后植被反射率变化平缓,形成略有起伏的高平台 (红外平台)
④中红外波段( 1.3~2.5μm ) 受到含水量的影响,以 1.45μm 、 1.95μm 、 2.7μm 为中心是水的吸收带,形成低 谷。
二十二、水体反射波谱特性曲线特性:蓝、绿波段为反射带;近、中红外波段为完全吸收带 二十三、土壤反射波谱特性曲线特性:
①自然状态下土壤表面的反射率没有明显的峰值和谷值 。
②土壤的反射波谱特性曲线与土壤质地组成有关
③土壤反射波谱特性曲线较平滑,因此在不同光谱段的遥感影像上,土壤的亮度区别不明显。