开关电源原理、分类及布线规则
- 格式:docx
- 大小:1.22 MB
- 文档页数:18
开关电源的工作原理与接法开关电源(Switching power supply)是一种将电能从一种形式转换为另一种形式的电源。
它通过高频开关管将输入电能按一定的方式转化为高频交流电能,再经过变压器、整流电路和滤波电路等部分,最终得到所需要的输出电能。
开关电源因其高效率、小体积和广泛适用性而得到广泛应用。
开关电源的工作原理可以分为四个主要步骤:能量存储、开关和控制、能量释放和滤波。
能量存储是指将输入电能转化为磁能或电能,以便在输出端提供所需的电能。
这一步骤主要是通过变压器完成的。
输入电能先经过整流电路变成直流电压,再通过一个变压器将其转换为所需的电压值。
变压器通过磁耦合作用来实现高效率的能量转换。
开关和控制是指通过高频开关管控制输入电能的通断,从而实现对输出电能的调节。
开关管的通断状态由控制电路控制,控制电路根据输出电能的需求来调整开关管的工作状态。
当开关管处于导通状态时,输入电能通过变压器传输到输出端;当开关管处于断开状态时,输入电能被切断,电感储能。
能量释放是指当开关管切断时,电感储能的能量会被释放出来,并经过滤波电路转换为平滑的直流电压。
当开关管切断时,电感储能的磁场崩溃,将能量反馈到输出端。
此时,由于输出负载的存在,电感储能的能量会被输出端吸收。
通过合理选择电感元件和电容元件,可以实现对噪音和纹波的有效滤除。
滤波是指通过选择合适的滤波元件,将输出端的脉动或纹波进行滤波,使得输出电能更加平稳稳定。
滤波电路通常由电感和电容组成。
电感元件用于滤除高频噪音,而电容元件则用于平滑输出电压。
通过合理选择滤波元件的参数,可以减小输出端的纹波和噪音,提高输出电能的质量。
除了以上四个主要步骤外,开关电源还包括其他辅助电路,如输入电压的稳压保护电路、过压保护电路、过流保护电路等。
这些保护电路能够保证开关电源在异常情况下能够及时停止工作,保护其自身和被供电设备的安全。
开关电源的接法主要涉及输入端和输出端的连接方式。
开关电源工作原理超全解读【实用版】目录1.开关电源的定义和分类2.开关电源的工作原理3.开关电源的优缺点4.开关电源的应用领域正文一、开关电源的定义和分类开关电源,又称为直流 - 直流(DC-DC)转换器,是一种利用现代电力电子技术,通过控制电子开关器件的导通和关断时间比率,来维持输出电压的稳定的电源。
根据电路拓扑的不同,开关电源可以分为多种类型,如 buck-boost、boost 和 buck 等。
二、开关电源的工作原理开关电源的工作原理主要基于电压斩波原理,通过对输入电压进行脉冲调制,使得输出电压可调并自动稳压。
开关电源的主要元器件包括电感器、开关管和二极管。
在电路中,电感器、开关管和二极管之间的节点被称为交换节点。
当开关管导通时,电感器中的电流流入交换节点,再通过二极管输出;当开关管关断时,电感器中的电流则通过开关管流出。
这样,在交换节点处,电流在二极管和开关管之间交替流动,使得节点电压在电感器两端电压跳变的同时,保持大范围跳动。
这种电压斩波方式使得开关电源具有较高的效率和较小的体积。
三、开关电源的优缺点1.优点:(1)高效率:开关电源的效率一般在 80%~90%,远高于传统的线性稳压电源(效率只有 40%~50%);(2)小体积:由于开关电源采用脉冲宽度调制技术,其电路结构较简单,体积较小;(3)可调性:开关电源的输出电压可以通过改变脉冲宽度进行调节,具有较好的可调性;(4)适应性强:开关电源能够适应不同电压、电流和负载的需求。
2.缺点:(1)复杂性:开关电源的电路结构相对较复杂,维修和调试难度较大;(2)电磁干扰:由于开关电源采用脉冲电流,会产生较强的电磁干扰,需要采取屏蔽和滤波措施;(3)噪声:开关电源在运行过程中,由于开关管的开关操作,会产生一定的噪声。
四、开关电源的应用领域开关电源广泛应用于个人电脑、通信设备、家电、工业控制等领域,为各种电子设备提供稳定的直流电源。
随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低待机功耗、提高供电效率成为亟待解决的问题。
开关电源分类及原理开关电源是一种常见的电源类型,广泛应用于各种电子设备中。
根据其工作原理和特点,可以将开关电源分为多种类型。
本文将介绍几种常见的开关电源分类及其原理。
一、开关电源的分类1. 基于工作方式的分类开关电源可以根据其工作方式进行分类,主要包括以下几种类型:(1)开关模式电源:开关模式电源是一种常见的开关电源类型,其工作原理是通过开关管的开关动作来控制电源的输出。
开关模式电源具有高效率、稳定性好等特点,广泛应用于计算机、通信设备等领域。
(2)开关逆变器电源:开关逆变器电源是一种将直流电转换为交流电的开关电源。
它通过开关管的开关动作,将直流电源转换为高频交流电,再通过滤波电路得到稳定的交流电输出。
开关逆变器电源在太阳能发电、电动汽车等领域有着广泛的应用。
(3)开关稳压电源:开关稳压电源是一种能够提供稳定输出电压的开关电源。
它通过反馈控制电路来实现对输出电压的调节,具有输出电压稳定、响应速度快等特点,常用于精密仪器、医疗设备等领域。
2. 基于拓扑结构的分类开关电源还可以根据其拓扑结构进行分类,主要包括以下几种类型:(1)开关电源的原理开关电源的工作原理是通过开关管的开关动作来控制电源的输出。
当开关管导通时,电源输出电压;当开关管关断时,电源停止输出。
通过不断地开关动作,可以控制输出电压的大小和稳定性。
(2)开关电源的优点开关电源相比传统的线性电源具有以下优点:- 高效率:开关电源采用开关管进行开关动作,能够实现高效率的能量转换,减少能量损耗。
- 小体积:开关电源采用高频开关动作,可以减小变压器和滤波电容的体积,使整个电源模块更加紧凑。
- 宽输入电压范围:开关电源能够适应较宽的输入电压范围,具有较好的电网适应性。
- 稳定性好:开关电源通过反馈控制电路来实现对输出电压的调节,具有较好的稳定性和响应速度。
(3)开关电源的应用领域开关电源广泛应用于各种电子设备中,包括计算机、通信设备、工业自动化设备、医疗设备等。
开关电源原理及分类1、12V/5V两路输出开关电源。
(1)原理图设计(参考PI软件给出的解决方案)(拓扑图)采用反激式。
/blog/100019999主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源/blog/100019740上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R 提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
开关电源PCB设计原则及走线技巧一、引言开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。
因为开关三极管总是工作在“开”和“关”的状态,所以叫开关电源。
开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。
开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,变压器反馈式振荡电路,能产生有规律的脉冲电流或电压的电路叫振荡电路,变压器反馈式振荡电路就是能满足这种条件的电路。
开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。
隔离电源按照结构形式不同,可分为两大类:正激式和反激式。
反激式指在变压器原边导通时副边截止,变压器储能。
原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。
正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。
按规格又可分为常规正激,包括单管正激,双管正激。
半桥、桥式电路都属于正激电路。
正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。
一般在小功率场合可选用反激式。
稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。
大功率输出,一般采用桥式电路,低压也可采用推挽电路。
反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。
在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。
本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。
输出功率大小与输出电压高低有关。
反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。
开关电源知识一、开关电源的概念和分类开关电源是一种将交流电转换为直流电供给电子设备使用的电源。
按照输出功率的大小,可以分为小功率开关电源和大功率开关电源。
按照工作方式的不同,可以分为单端开关电源和双端开关电源。
二、开关电源的工作原理1.整流滤波:将输入的交流电通过整流桥变成直流信号,再通过滤波器去除掉残留的交流成分,得到平滑的直流信号。
2.功率因数校正:由于负载变化导致输入功率因数不稳定,需要进行校正。
3.逆变:将直流信号通过高频变压器转换成高频交流信号。
4.输出整形:将逆变后得到的高频交流信号通过输出整形器转换成稳定的直流输出。
三、开关管1. MOSFET(金属氧化物半导体场效应晶体管):具有低导通阻抗、高速度等优点,常用于低压、小功率开关电源中。
2. IGBT(绝缘栅双极性晶体管):具有大功率承载能力、可靠性好等优点,常用于大功率开关电源中。
3. 晶闸管:具有低导通阻抗、高稳定性等优点,常用于直流电机控制中。
四、开关电源的优缺点1. 优点:效率高、体积小、重量轻、稳定性好。
2. 缺点:噪音大、EMI(电磁干扰)严重,需要进行滤波处理。
五、开关电源的应用1. 通讯领域:手机充电器、路由器、交换机等。
2. 工控领域:PLC(可编程逻辑控制器)、伺服驱动器等。
3. 家用电器领域:LED灯带驱动器、音响等。
六、开关电源的故障及维修1. 故障表现:输出电压不稳定,有杂音或噪声等。
2. 维修方法:(1)检查输入端是否接触良好;(2)检查整流桥是否损坏;(3)检查滤波器是否失效;(4)检查输出整形器是否正常工作。
开关电源工作原理超详细解析开关电源是一种常见的电源供应器件,它通过将输入电源的直流电转换为高频脉冲电流,再经过整流、滤波和稳压等环节,输出稳定的直流电。
本文将详细解析开关电源的工作原理,包括开关电源的基本组成部分、工作原理的流程、常见的开关电源拓扑结构以及其优点和应用。
一、开关电源的基本组成部分开关电源通常由以下几个基本组成部分构成:1. 输入电路:用于接收外部交流电源,并将其转换为适合开关电源工作的直流电压。
2. 整流电路:将输入电压转换为脉冲电流,通常采用整流桥或者整流电路来实现。
3. 滤波电路:用于平滑整流后的脉冲电流,以减小输出电压的波动。
4. 开关器件:通常采用晶体管或者功率MOSFET等开关器件,用于控制电流的开关状态。
5. 控制电路:用于控制开关器件的开关频率和占空比,以控制输出电压的稳定性。
6. 输出电路:将经过整流、滤波和稳压处理后的直流电压输出给负载。
二、开关电源的工作原理流程开关电源的工作原理可以分为以下几个流程:1. 输入电路接收交流电源:开关电源的输入电路通常采用变压器来降低输入电压,然后通过整流电路将交流电转换为直流电。
2. 整流电路将交流电转换为脉冲电流:整流电路通常采用整流桥或者整流电路来将交流电转换为脉冲电流,这样可以减小能量损耗。
3. 滤波电路平滑脉冲电流:滤波电路通常采用电容器和电感器来平滑脉冲电流,以减小输出电压的波动。
4. 控制电路控制开关器件的开关频率和占空比:控制电路通过对开关器件的控制,可以控制开关频率和占空比,从而控制输出电压的稳定性。
5. 输出电路将处理后的直流电压输出给负载:经过整流、滤波和稳压处理后的直流电压将被输出给负载,供其正常工作。
三、常见的开关电源拓扑结构开关电源有多种拓扑结构,常见的有以下几种:1. 单端开关电源:输入电源和输出电源共用一个地线,适用于低功率应用。
2. 双端开关电源:输入电源和输出电源分别有独立的地线,适用于高功率应用。
开关电源的基本原理与分类方法开关电源是指调整功率管以开关方式进行工作的稳压电源。
缩写为SPS(Switching Power Supply),开关电源的核心部分是一个直流变换器。
目前开关电源向着高频、高可靠性、低功耗、低噪声、抗干扰和模块化方向发展。
开关电源现在在社会上应用越来越广泛,需求也越来越大。
电源在一个典型系统中或者在一台机器中担当十分重要的角色,电源给系统的电路提供持续、稳定的能量,使得系统或者机器能够正常地工作。
电源的好坏直接影响了系统能否正常工作。
随着电源的应用和需求越来越广泛,人们对于电源的要求也越来越高。
人们对电源的效率、体积、重量、稳定性和可靠性等方面都有了更高的要求。
开关电源正是以其效率高、体积小、重量轻、稳定性高、零负载消耗低等多方面的优势逐步取代了效率低、又笨又重的线性电源。
现在社会上出现的需要应用开关电源的仪器、机器越来越多;利用开关电源作为驱动电源的产品也层出不穷,例如LED驱动开关电源的需求量越来越多。
而现代电力电子技术的发展,特别是大功率器件IGBT和MOSFET、各类电源芯片的迅速发展,将开关电源的工作频率提高到相当高的水平,使得开关电源的转换效率不断提高。
人们对于转换效率的不断要求也促使开关电源的开发技术将越来越高。
开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等部分构成。
开关带能源的工作原理:首先是将交流输入电源经整流滤波成脉动直流;然后通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;接着开关变压器次级感应出高频电压,经整流滤波供给负载;最后,输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
常见的开关电源的分类方法有下列几种:1.按激励方式的不同可以划分为他激式和自激式。
开关电源知识点总结开关电源是一种将交流电转换为直流电的电源设备。
它由输入端、输出端和控制电路组成。
开关电源具有体积小、效率高、稳定性好等优点,在现代电子设备中得到广泛应用。
本文将从开关电源的工作原理、分类、特点以及应用等方面进行总结。
一、开关电源的工作原理开关电源的工作原理是利用开关管的导通和截止来实现电流的开关控制。
其基本电路由输入整流滤波电路、功率变换电路和输出稳压电路组成。
当输入交流电经过整流滤波电路后转换为直流电,然后经过功率变换电路进行直流电压的变换和调整,最后经过输出稳压电路得到稳定的直流电输出。
二、开关电源的分类根据输入电源的不同,开关电源可以分为交流输入型和直流输入型。
交流输入型开关电源主要用于家用电器等领域,直流输入型开关电源主要用于电子设备和通信设备等领域。
根据输出电压的性质,开关电源可以分为恒压型和恒流型。
恒压型开关电源输出电压恒定,适用于大多数电子设备;恒流型开关电源输出电流恒定,适用于LED照明等需求电流稳定的设备。
三、开关电源的特点1.效率高:开关电源的效率通常在80%以上,远高于传统的线性电源。
2.体积小:由于开关电源使用高频开关元件,可以大大减小变压器的体积,使整个电源的体积更加紧凑。
3.稳定性好:开关电源采用反馈控制,能够实现输出电压的稳定性和负载调整性能较好。
4.可靠性高:开关电源具有过载、过压、过流、短路保护等功能,能够有效保护电源和负载设备的安全。
5.工作频率高:开关电源采用高频开关元件,工作频率通常在20kHz以上,避免了传统电源的60Hz低频干扰。
四、开关电源的应用开关电源在各个领域都有广泛的应用。
在电子设备中,开关电源广泛应用于计算机、手机、平板电脑、电视等消费电子产品;在通信设备中,开关电源用于无线基站、通信交换机等设备;在工业控制领域,开关电源被广泛应用于PLC、变频器、伺服系统等设备;在LED照明领域,开关电源用于LED灯带、LED灯泡等。
总结:开关电源是一种将交流电转换为直流电的电源设备,具有体积小、效率高、稳定性好等优点。
开关电源原理及分类1、12V/5V两路输出开关电源。
(1)原理图设计(参考PI软件给出的解决方案)(拓扑图)采用反激式。
/blog/100019999主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源/blog/100019740上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R 提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL 由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D 的负极流出,最后回到反电动势eL的负极。
对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反г型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。
串联式开关电源输出电压uo的平均值Ua为:1.2. 并联式结构并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。
由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。
并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。
例如boots拓扑型的开关电源就是属于并联型式的开关电源。
并联开关电源输出电压Uo为:boots拓扑输出电压Uo:Uo=Ui(1+D/1-D)=Ui(1/1-D)(D 为占空比)1.3.极性反转型变换器结构(inverting)极性反转——输出电压与输入电压的极性相反。
电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。
(也是串联式开关电源的一种,一般又称为反转式串联开关电源)开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。
反转式串联开关电源输出电压Uo为:由(1-27)式可以看出,反转式串联开关电源输出电压与输入电压与开关接通的时间成正比,与开关关断的时间成反比。
2. 隔离式电路的类型:隔离——输入端与输出端电气不相通,通过脉冲变压器的磁偶合方式传递能量,输入输出完全电气隔离。
2.1. 单端正激式 single Forward Converter(又叫单端正激式变压器开关电源)单端——通过一只开关器件单向驱动脉冲变压器(又叫单激)双激式(双端)变压器开关电源:所谓双激式变压器开关电源,就是指在一个工作周期之内,变压器的初级线圈分别被直流电压正、反激励两次。
与单激式变压器开关电源不同,双激式变压器开关电源一般在整个工作周期之内,都向负载提供功率输出。
双激式变压器开关电源输出功率一般都很大,因此,双激式变压器开关电源在一些中、大型电子设备中应用很广泛。
这种大功率双激式变压器开关电源最大输出功率可以达300瓦以上,甚至可以超过1000瓦。
推挽式、半桥式、全桥式等变压器开关电源都属于双激式变压器开关电源。
)(单激式变压器开关电源普遍应用于小功率电子设备之中,因此,单激式变压器开关电源应用非常广泛。
而双激式变压器开关电源一般用于功率较大的电子设备之中,并且电路一般也要复杂一些。
单激式变压器开关电源的缺点是变压器的体积比双激式变压器开关电源的激式变压器的体积大,因为单激式开关电源的变压器的磁芯只工作在磁回路曲线的单端,磁回路曲线变化的面积很小。
)正激式:就是只有在开关管导通的时候,能量才通过变压器或电感向负载释放,当开关关闭的时候,就停止向负载释放能量。
目前属于这种模式的开关电源有:串联式开关电源,buck拓扑结构开关电源,激式变压器开关电源、推免式、半桥式、全桥式都属于正激式模式。
反激式:就是在开关管导通的时候存储能量,只有在开关管关断的时候释放才向负载释放能量。
属于这种模式的开关电源有:并联式开关电源、boots、极性反转型变换器、反激式变压器开关电源。
正激变压器——脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。
所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。
(正激式变压器开关电源是推免式变压器开关电源衍生过来的,推免式有两个控制开关,正激式改成一个开关控制。
)U1是开关电源的输入电压,N是开关变压器,T是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,RL是负载电阻。
(对于加不加N3和D3主要由设计者来决定,如果不加N3和D3就得在变压器初级线圈N1的两端并联一个RC电路,用来吸收变压器产生的反激式输出能量,要么变压器初级线圈产生的反电动势非常高,很容易把电源开关管击穿。
这个反激式能量很大,如果用RC电路来吸收,能量会白白的浪费掉,使开关电源的工作效率大大下降。
因此,如果你不考虑工作效率,也可以不加N3和D3,而加一个RC电路。
)工作原理:开关管T导通时,D1也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管T截止时,电感L通过续流二极管D2 继续向负载释放能量。
在上图中,需要特别注意的是开关变压器初、次级线圈的同名端。
如果把开关变压器初线圈或次级线圈的同名端弄反,上图就不再是正激式变压器开关电源了该电路的最大问题是:开关管T交替工作于通/断两种状态,当开关管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个周期,直至电感器饱和,使开关器件烧毁。
图中的D3与N3构成的磁通复位电路,提供了泄放多余磁能的渠道。
优点:1)正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好。
2)正激式变压器开关电源的负载能力相对来说比较强,输出电压的纹波比较小。
(说明正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。
)缺点:1)电路中比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。
2)正激式变压器开关电源的变压器的体积要比反激式变压器开关电源的变压器的体积大。
3)变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。
(一般正激式变压器开关电源都设置有一个反电动势能量吸收回路,如的变压器反馈线圈N3绕组和整流二极管D3。
由于反电动势电压高因此,正激式变压器开关电源在输入电压为交流220伏的设备中很少使用,或者用两个电源开关管串联来使用)2.2. 单端反激式 Single F1yback Converter(单端反激式变压器开关电源)所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。
工作原理:当开关K 关闭时,变压器初级N1有电流 Ip,并将能量储存于其中(e1 =L1di/dt =Ui或者e1 = N1dф/dt = Ui).由于N1与N2极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关K打开时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通反激式变压器开关电源的输出电压为:(1-110)式中,Uo为反激式变压器开关电源的输出电压,Ui变压器初级线圈输入电压,D为控制开关的占空比,n为变压器次级线圈与初级线圈的匝数比。
一、反激式转换器的优点有:1. 电路简单比正反激式少用一个大储能滤波电感,以及一个续流二极管,因此,反激式的体积要比正激式变压器开关电源的体积小,且成本也要降低。
且能高效提供多路直流输出,因此适合多组输出要求.2. 转换效率高,损失小.3. 变压器匝数比值较小.4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在85~265V间.无需切换而达到稳定输出的要求.二、反激式转换器的缺点有:1. 电压和电流输出特性要比正激式变压器开关电源差,输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下.2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大.3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.2.3. 推挽 Push pull (变压器中心抽头)式这种电路结构的特点是:对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。