杨可桢《机械设计基础》复习笔记和课后习题(含考研真题)详解(轴)
- 格式:pdf
- 大小:1.34 MB
- 文档页数:22
杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解第15章滑动轴承15.1复习笔记一、摩擦状态1.干摩擦(1)定义当两摩擦表面间无任何润滑剂或保护膜时,即出现固体表面间直接接触的摩擦,工程上称为干摩擦。
(2)特点①有大量的摩擦功损耗和严重的磨损;②在滑动轴承中表现为强烈的升温,使轴与轴瓦产生胶合。
注:在滑动轴承中不允许出现干摩擦。
2.边界摩擦(1)定义金属表面上的边界油膜不足以将两金属表面分割开,所以相互运动时,两金属表面微观的高峰部分仍将互相搓削,这种状态称为边界摩擦。
(2)特点金属表层覆盖一层边界油膜后,虽不能绝对消除表面的磨损,却可以起减轻磨损的作用。
(3)摩擦系数摩擦系数。
3.液体摩擦(液体润滑)(1)定义若两摩擦表面间有充足的润滑油,而且能满足一定的条件,则在两摩擦面间可形成厚度达几十微米的压力油膜。
它能将相对运动着的两金属表面分隔开,此时,只有液体之间的摩擦,称为液体摩擦,又称液体润滑。
(2)特点f ,显著地减少了两摩擦表面被油隔开而不直接接触,摩擦系数很小(0.001~0.01)摩擦和磨损。
4.混合摩擦(非液体摩擦)在一般机器中,摩擦表面多处于边界摩擦和液体摩擦的混合状态,称为混合摩擦。
二、滑动轴承的结构形式1.向心滑动轴承(径向滑动轴承)(1)向心滑动轴承主要承受径向载荷。
(2)轴瓦是滑动轴承的重要零件,其顶部有进油孔,内表面有油沟。
(3)轴瓦宽度与轴颈直径之比B/d称为宽径比,其大小:①对于液体摩擦的滑动轴承,常取B/d=0.5~1;②对于非液体摩擦的滑动轴承,常取B/d=0.8~1.5。
2.推力滑动轴承(1)轴所受的轴向力F应采用推力轴承来承受。
(2)常见的有固定式推力轴承和可倾式推力轴承。
三、轴瓦及轴承衬材料轴瓦材料应具备的性能有:(1)摩擦系数小;(2)导热性好,热膨胀系数小;(3)耐磨、耐蚀、抗胶合能力强;(4)有足够的机械强度和可塑性。
1.轴承合金轴承合金(又称白合金、巴氏合金)有锡锑轴承合金和铅锑轴承合金两大类。
第2章平面连杆机构2.1复习笔记【通关提要】本章主要介绍了平面四杆机构的基本类型、基本特性和设计方法。
学习时需要掌握铰链四杆机构有整转副的条件、急回特性的应用和计算、压力角与传动角以及死点位置的分析等内容。
本章主要以选择题、填空题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、平面四杆机构的基本类型及其应用(见表2-1-1)表2-1-1平面四杆机构的基本类型及其应用二、平面四杆机构的基本特性(见表2-1-2)表2-1-2平面四杆机构的基本特性图2-1-1图2-1-2连杆机构的压力角和传动角2.2课后习题详解2-1试根据图2-2-1所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双曲柄机构还是双摇杆机构。
图2-2-1答:(a)40+110=150<70+90=160满足杆长条件,且最短杆为机架,因此是双曲柄机构。
(b)45+120=165<100+70=170满足杆长条件,且最短杆的邻边为机架,因此是曲柄摇杆机构。
(c)60+100=160>70+62=132不满足杆长条件,因此是双摇杆机构。
(d)50+100=150<100+90=190满足杆长条件,且最短杆的对边为机架,因此是双摇杆机构。
2-2试运用铰链四杆机构有整转副的结论,推导图2-2-2所示偏置导杆机构成为转动导杆机构的条件(提示:转动导杆机构可视为双曲柄机构)。
图2-2-2答:根据铰链四杆机构有整转副的结论,则A、B均为整转副。
(1)当A为整转副时,要求AF能通过两次与机架共线的位置。
如图2-2-3中位置ABC′F′和ABC′′F′′。
在Rt△BF′C′中,因为直角边小于斜边,所以l AB +e<l BC。
同理,在Rt△BF′′C′′中,有l AB-e<l BC(极限情况取等号)。
综上,得l AB+e<l BC。
(2)当B为整转副时,要求BC能通过两次与机架共线的位置。
如图2-2-3中位置ABC1F1和ABC2F2。
杨可桢《机械设计基础》修订版考研笔记和考研真题第1章平面机构的自由度和速度分析1.1 复习笔记【通关提要】本章是本书的基础章节之一,主要介绍了平面机构自由度的计算和平面机构的速度分析。
学习时需要掌握平面机构运动简图的绘制、自由度的计算和速度瞬心的应用等内容。
本章主要以选择题、填空题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、运动副及其分类(见表1-1-1)表1-1-1 运动副及其分类二、平面机构运动简图机构运动简图指用简单线条和符号来表示构件和运动副,并按比例定出各运动副的位置,来表明机构间相对运动关系的简化图形。
1机构中运动副表示方法机构运动简图中的运动副的表示方法如图1-1-1所示。
图1-1-1 平面运动副的表示方法2构件的表示方法构件的表示方法如图1-1-2所示。
图1-1-2 构件的表示方法3机构中构件的分类(见表1-1-2)表1-1-2 机构中构件的分类三、平面机构的自由度活动构件的自由度总数减去运动副引入的约束总数称为机构自由度,以F表示。
1平面机构自由度计算公式F=3n-2P L-P H式中,n为机构中活动构件的数目;P L为低副的个数;P H为高副的个数。
机构具有确定运动的条件是:机构的自由度F>0且F等于原动件数目。
2计算平面机构自由度的注意事项(见表1-1-3)表1-1-3 计算平面机构自由度的注意事项四、速度瞬心及其在机构速度分析上的应用(见表1-1-4)表1-1-4 速度瞬心及其应用本书是杨可桢《机械设计基础》(第6版)教材的学习辅导书,主要包括以下内容:1.整理名校笔记,浓缩内容精华。
在参考了国内外名校名师讲授该教材的课堂笔记基础上,复习笔记部分对该章的重难点进行了整理,因此,本书的内容几乎浓缩了该教材的知识精华。
2.解析课后习题,提供详尽答案。
本书参考了该教材的国内外配套资料和其他教材的相关知识对该教材的课(章)后习题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
第14章轴14-1 在图14-1中1、Ⅱ、Ⅲ、Ⅳ轴,是心轴、转轴、还是传动轴?图14-1解:I为传动轴,II、IV为转轴,III为心轴。
14-2 已知一传动轴传递的功率为37 kW,转速n=900 r/min,如果轴上的扭切应力不许超过40 MPa,试求该轴的直径。
解:按扭转强度估算轴颈,可得:d 。
取37mm14-3 已知一传动轴直径d=32 mm,转速n=1725 r/min,如果轴上的扭切应力不许超过50 MPa,问该轴能传递多少功率?解:轴扭转强度条件:该轴能传递的功率:。
14-4 图14-2所示的转轴,直径d=60 mm,传递的转矩T=2300 N·m,F=9000 N,a=300 mm。
若轴的许用弯曲应力[σ-1b]=160 MPa,求x。
图14-2解:分析可知该轴的最危险截面位于F点作用截面处,且最大弯矩值为:认为该轴的扭转切应力为脉动循环,则当量弯矩:根据弯扭强度条件可得:即有:解得:。
14-5 图14-3所示为起重机动滑轮轴的两种结构方案,轴的材料为Q275,起重量w =10 kN,求轴的直径d。
图14-3解:最大弯矩发生在跨中截面处,值为:。
a)该方案中轴为转动心轴,弯曲应力为对称循环应力,取许用应力[σ-1b]=45 MPa。
根据弯曲强度校核条件可得:由于该轴上有键槽,因此将轴颈增大,取。
b)该方案中为固定心轴,弯曲应力按脉动循环,取许用应力[σ+1b]=75 MPa。
根据弯曲强度校核条件可得:d 。
取26mm14-6 已知一单级直齿圆柱齿轮减速器,用电动机直接拖动,电动机功率P=22 kW,转速n1=1470 r/min,齿轮的模数m=4 mm,齿数z1=18,z2=82,若支承间跨距l =180 mm(齿轮位于跨距中央),轴的材料用45号钢调质,试计算输出轴危险截面处的直径d。
解:根据轴的材料为45钢调质查表得其许用弯曲应力[σ-1b]=60 MPa输入轴传递的扭矩:作出输出轴的受力简图,如图14-4(a)所示,其中作用力:分别作出在圆周力和径向力作用下的弯矩图,如图14-4(b)(c)所示。
第17章 联轴器、离合器和制动器17.1 复习笔记联轴器和离合器主要用于轴与轴之间的连接,使它们一起回转并传递转矩。
用联轴器连接的两轴在机器运转时不能分离,停止时才能分离。
用离合器连接的两轴在运转中就能方便地分离和接合。
制动器是用来降低机械运转速度或迫使机械停止运转的装置。
目前,联轴器、离合器大都已经标准化,其选择过程如下:(1)计算转矩-由于机器起动时的惯性力和工作中可能出现的过载现象,计算转矩的计算公式为c A T K T =式中,T 为公称转矩,N ·m ;K A 为工作情况系数。
(2)确定型号根据轴径、计算转矩T c 、转速n 及所选的类型,按照公式c n T T ≤,p n n ≤从标准中选定合适的型号。
(3)必要时应对其中某些零件进行校核验算。
一、联轴器的种类和特性 1.刚性联轴器(1)固定式刚性联轴器固定式刚性联轴器中应用最广的是凸缘联轴器。
它是用螺栓连接两个半联轴器的凸缘,从而实规两轴的连接。
螺栓可以用普通螺栓,也可以用铰制孔螺栓。
如图17-1所示,这种联轴器主要有普通凸缘联轴器,如图17-1(a )所示和有对中榫的凸缘联轴器,如图17-1(b )所示两种结构形式。
(a ) (b )图17-1凸缘联轴器的结构简单,使用方便,可传递的转矩较大,但不能缓冲减振。
常用于载荷较平稳的两轴连接。
(2)可移式刚性联轴器可移式刚性联轴器的组成零件间构成动连接,具有某一方向或几个方向的活动度,因此能补偿两轴的相对位移。
常见的可移式刚性联轴器有以下3种。
①齿式联轴器:由于是多齿接触,因此承载能力大,能传递很大的转矩以及补偿适量的综合位移,常用于重型机械中。
但是,当传递巨大的转矩时,齿间的压力也随着增大,使联轴器的灵活性降低,且其结构笨重,造价较高。
②十字滑块联轴器:可补偿安装及运转时两轴间的相对位移。
但由于两轴线不对中,转速较高时,将产生较大的离心力,并带有附加动载荷,因此只适用于低速,且轴的转速一般不超过300 r/min的场合。
第14章轴
14.1 复习笔记
一、轴的功用和类型
轴是机器中的重要零件之一,用来支持旋转的机械零件和传递转矩。
1.按承受载荷的不同分类
(1)转轴
既传递转矩又承受弯矩的轴。
(2)传动轴
只传递转矩而不承受弯矩或弯矩很小的轴。
(3)心轴
只承受弯矩而不传递转矩的轴。
2.按轴线的形状不同分类
按轴线的形状可分为直轴、曲轴、挠性钢丝轴。
二、轴的材料
轴的材料常采用碳钢和合金钢。
1.碳钢
45号钢应用最为广泛,为了改善其力学性能,应进行正火或调制处理。
不重要或受力
较小的轴,则可采用Q235、Q275等碳素结构钢。
2.合金钢
合金钢具有较高的力学性能与较好的热处理性能,但价格高。
三、轴的结构设计
1.制造安装要求
(1)为便于轴上零件的装拆,常将轴做成阶梯形;
(2)对于一般剖分式箱体中的轴,其直径从轴端逐渐向中间增大;
(3)为使轴上零件易于安装,轴端及各轴段的端部应有倒角;
(4)轴上磨削的轴端,应有砂轮越程槽;
(5)车制螺纹的轴端,应有螺纹退刀槽;
(6)在满足使用要求的情况下,轴的形状和尺寸应力求简单,以便于加工。
2.轴上零件的定位
安装在轴上的零件,必须有确定的轴向定位。
阶梯轴上的截面尺寸变化处称为轴肩,可起到轴向定位的作用。
3.轴上零件的固定
(1)轴上零件的轴向固定
零件轴向固定的方法主要有轴肩、套筒、螺母或轴端挡圈等。
①当无法采用套筒或套筒太长时,可采用圆螺母加以固定。
②为保证轴上零件紧靠轴肩,轴肩的圆角半径r必须小于相配零件的倒角C1或圆角半径R,轴肩高h必须大于C1或R。
③轴向力较小时,零件在轴上的固定可采用弹性挡圈或紧定螺钉。
(2)轴上零件的周向固定
轴上零件的周向固定,大多采用键、花键或过盈配合等连接形式。
采用键连接时,为加工方便,各轴段的键槽宜设计在同一加工直线上,并应尽可能采用同一规格的键槽截面尺寸。
4.轴的各段直径和长度的确定
(1)轴径的确定
①有配合要求的轴段应尽量采用标准直径;
②安装有标准件的轴径,应符合各标准件内径系列的规定;
③套筒内径应与相配的轴径相同,并采用过渡配合。
(2)各轴段长度的确定
采用套筒、螺母、轴端挡圈作轴向固定时,应把装零件的轴段长度做得比零件轮毂短2~3 mm ,以确保套筒、螺母或轴端挡圈能靠紧零件端面。
5.改善轴的受力状况,减小应力集中
(1)合理布置轴上的零件可以改善轴的受力状况。
(2)改善轴的受力状况的另一重要方面就是减小应力集中。
(3)零件截面发生突然变化的地方,都会产生应力集中现象。
四、轴的强度计算
1.按扭转强度计算
(1)对于只传递转矩的圆截面轴,其强度条件为
MPa 式中,τ——轴的扭切应力,MPa ;
[]639.55100.2T T P W d n
ττ⨯==≤
T ——转矩,N ·mm ; W T ——抗扭截面系数,mm 3,对圆截面轴,
;
P ——传递的功率,kW ;
n ——轴的转速,r /min ;
d ——轴的直径,mm ;
[τ] ——许用扭切应力,MPa 。
(2)对于既传递转矩又承受弯矩的转轴,必须把轴的许用扭切应力[τ]适当降低,得改写后的设计公式为
式中,C 是由轴的材料和承载情况确定的常数。
应用上式求出的d 值,一般作为传递转矩轴段的最小直径。
2.按弯扭合成强度计算
(1)对于一般钢制的轴,由第三强度理论求出危险截面的当量应力σe ,其强度条件为
(14-1-1
)
式中,——危险截面上弯矩M
产生的弯曲应力;
τ——转矩T 产生的扭切应力。
①对于直径为d 的圆轴,则
式中,W ——抗弯截面系数;
W T
——抗扭截面系数。
[]e b σσ=≤b σ
②相关参量代入式(14-1-1),得
(2)对于一般的转轴,弯曲应力也为对称循环变应力,有
式中,——当量弯矩,
——折合系数。
①转矩不变时,;
②当转矩脉动变化时,;
③对于频繁正反转的轴,可作为对称循环变应力,α=1。
④若转矩的变化规律不清楚,一般可按脉动循环处理。
其中,分别为对称循环、脉动循环及静应力状态下的许用弯
曲应力。
(3)按弯扭合成强度计算轴径的一般步骤:
①将外载荷分解到水平面和垂直面内,求垂直面支承反力F V 和水平面支承反力F H ; ②作垂直面弯矩M V 图和水平面弯矩M H 图; ③作合成弯矩M 图,
; ④作转矩T 图;
⑤弯扭合成,作当量弯矩M e 图,
; ⑥计算危险截面轴径 b σ[]1e e b M W σσ-==e M e M α
式中,M e的单位为N·mm;[σ-1b]的单位为MPa。
五、轴的刚度的计算
1.弯曲变形计算
(1)按挠度曲线的近似微分方程式积分求解;
(2)变形能法。
2.扭转变形的计算
(1)等直径轴的扭角
式中,T——转矩,N·mm;
l——轴受转矩作用的长度,mm;
G——材料的切变模量,MPa;
d——轴径,mm;
I p——轴截面的极惯性矩。
(2)阶梯轴的扭角
式中,T i、l i、I pi分别代表阶梯轴第i段上所传递的转矩及该段的长度和极惯性矩。
六、轴的临界转速的概念。