华理概率论答案第六册
- 格式:pdf
- 大小:173.82 KB
- 文档页数:11
华东理工大学2005–2006学年第二学期《概率论与数理统计》课程考试试卷 A 2006.6开课学院: 理学院 ,专业:大面积 ,考试形式:闭卷 , 所需时间:120分钟 考生姓名: 学号: 班级: 任课教师:一、 选择题:(每小题5分)1、设随机变量ξ服从正态分布2(,)N μσ,则概率{}2P x μσ-≥( D )。
A 、随μ的增加而增大 B 、随μ的增加而减小C 、随σ的增加而增大D 、等于一个常数(与μ和σ的大小没有关系)。
2、设随机变量ξ和η满足条件()E E E ξηξη=⋅,则以下命题中一定正确的是( C )。
A 、()D D D ξηξη=⋅ B 、ξ和η一定相互独立 C 、()D D D ξηξη+=+ D 、ξ和η一定不相互独立3、设随机变量ξ密度函数为()p x ,则31ηξ=-的密度函数()p y η为( A )。
A 、11()33y p +B 、13()3y p +C 、1(3(1))3p y + D 、13()3y p -4、样本),,,(21n X X X 取自正态分布2(,)N μσ,1,n X S -分别为样本均值及样本标准差,则( B )。
A 、2~(,)X N μσB 2)~(0,)X N μσ-C 、221~()ni n χ=∑ D 、221~()ni n χ=⎛⎫∑二、 填空题:(每小题5分)1、已知()0.2,()0.5P A B P A -==,则()P AB = 0.7 。
2、已知随机变量ξ的密度函数为:1/3,[0,1]()1/6,[2,6]0,[0,1][2,6]x p x x x ∈⎧⎪=∈⎨⎪∉⎩,且{}1/4P a ξ≥=,则a = 4.5 。
3、设随机变量X 服从参数为2的指数分布,则2()X E e -== 0.5 。
4、设随机变量X 与Y 分别服从正态分布(1,4)N 和(2,9)N ,且相互独立,如果有1{}2P X Y c -≥=,则c = 1- 。
二、(12分)在某种牌赛中,5张牌为一组,其大小与出现的概率有关。
一付52张的牌(四种花色:黑桃、红心、方块、梅花各13张,即2-10、J=11、Q=12、K=13、A=14),求(1)同花顺(5张同一花色连续数字构成)的概率;(2)3张带一对(3张数字相同、2张数字相同构成)的概率;(3)3张带2散牌(3张数字相同、2张数字不同构成)的概率。
三、(10分)某安检系统检查时,非危险人物过安检被误认为是危险人物的概率是0.02;而危险人物又被误认为非危险人物的概率是0.05。
假设过关人中有96%是非危险人物。
问:(1)在被检查后认为是非危险人物而确实是非危险人物的概率?(2)如果要求对危险人物的检出率超过0.999概率,至少需安设多少道这样的检查关卡?四、(8分)随机变量X 服从),(2σμN ,求)0( >=a a Y X 的密度函数五、(12分)设随机变量X、Y的联合分布律为:已知E(X+Y)=0,求:(1)a,b;(2)X的概率分布函数;(3)E(XY)。
六、(10分)某学校北区食堂为提高服务质量,要先对就餐率p进行调查。
决定在某天中午,随机地对用过午餐的同学进行抽样调查。
设调查了n个同学,其中在北区食堂用过餐的学生数为m,若要求以大于95%的概率保证调查所得的就餐频率与p之间的误差上下在10% 以内,问n应取多大?七、(10分)设二维随机变量(X,Y)在区域:{}b y a x <<<<0,0上服从均匀分布。
(1)求(X,Y)的联合概率密度及边缘概率密度;(2)已知36,12==DY DX ,求参数a 、b ;(3)判断随机变量X 与Y 是否相互独立?八、(8分)证明:对连续型随机变量ξ,如果c E =3||ξ存在,则0>∀t ,3)|(|t ct P ≤>ξ。
九、(12分)设(X ,Y )的密度函数为⎩⎨⎧<<<<=其他010,10,),(y x Axy y x f 求(1)常数A ;(2)P(X<0.4,Y<1.3);(3)sY tX Ee +;(4)EX ,DX ,Cov(X ,Y)。
概率论与数理统计答案(华东师大魏宗舒版)第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩ 令 ⎩⎨⎧==.2211μμA A求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx n i ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆni i x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01ni i x d L p n dp p p =-=-=-∑01)(ln 1=---=∑=pn x p ndp p L d ni i 解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由2()2()x f x μσ--=(1)2σ已知,似然函数221()()2211()(,)ni i i x nx n nii i L f x eμμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x nx ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i ix n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni i x n L d d 解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22n ii x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33ni i x x n θ===∑ (3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:2121222222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i n i i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L 0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβn i i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。
华东理工大学概率论答案【篇一:华东理工大学概率论答案-15,16】选择题:1. 设随机变量?密度函数为p(x),则??3??1的密度函数p?(y)为( a )。
1y?1y?11y?1) b、3p() c、p(3(y?1)) d、3p() a、p(333332. 设随机变量?和?相互独立,其分布函数分别为f?(x) 与f?(y),则 ?=max(?,?) 的分布函数f?(z) 等于( b ) a.max{f?(z),f?(z)}b. f?(z)f?(z)1c.[f?(z)?f?(z)] d. f?(z)?f?(z)?f?(z)f?(z)2二. 填空:已知?~n(0,1),??? 三. 计算题, 则?的概率密度为??(y)?3y22?e?y62。
1. 已知随机变量?~u[0,2],求???2的概率密度。
?p{?y???解: f?(y)?p{??y}??0?2y}y?0?f?(y)?f?(?y)??y?0?0y?0y?0?1p(y)?p?(?y)?故p?(y)??2y??0????1y?0?=?4yy?0??00?y?4其他2. 设随机变量x求y?sin(?2x)的概率分布。
x?4k?1x?2k k?1,2,? x?4k?3??1x??解:由于sin()??02?1?故随机变量y的可能取值为:-1,0,1。
随机变量y的p{y??1}??p{x?4k?1}?? k?1k?1??124k?1?112??; 8115?124p{y?0}??p{x?2k}??k?1?1111???; 2k143k?12?122??p{y?1}??p{x?4k?3}??k?1k?1?124k?3?118??, 2115于是随机变量y的分布律为:3.设?~u(0,1) ,求? =?解:对应于? =?ln?ln?的分布。
lnx,y?x?e(lnx)2?f(x) ,由于f(x)?e(lnx)21?2lnx? 。
xlny当x?(0,1)时,??1x?f(y)?ef(x)?0 ,lny?1?e??1??(y)=??(x)|x?f?1(y)|(f(y))|??2ylny?0?其中当y?(??,1]时,,y?(1,??),.其它y??(y)=0是由x?(0,1)时y?(1,??) 而导出的。
第六章大数定理和中心极限定理一、大纲要求(1)了解契比雪夫不等式;(2)了解辛钦大数定律,伯努利大数定律成立的条件及结论;(3)了解独立同分布的中心极限定理和棣莫佛—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)的条件和结论,并会用相关定理近似计算有关随机事件的概率.二、重点知识结构图三、基本知识1. 马尔科夫不等式若X 为只取非负值的随机变量,则对任意常数0ε>,有{}EXP X εε≥≤.2. 契比雪夫不等式若DX 存在,则{}2DXP X EX εε-≥≤.3. 辛钦大数定律定理 1 设12,,,,n X X X 是独立同分布的随机变量序列,且具有有限的数学期望()a X E n =,则对任意的0ε>,有{}lim 0n n P X a ε→∞-≥=4. 伯努利大数定律定理2 设()p n B X n ,~,其中n=1,2, …,0<p<1 。
则对任意ε>0,有5.独立同分布的中心极限定理定理3 (林德伯格-列维定理) 设12,,,,n X X X 为独立同分布的随机变量,22,,0,i i EX a DX σσ==<<∞则对任意实数x 有12lim )()n n P X X X na x x →∞⎫++-≤=Φ⎬⎭式中, ()x Φ是标准正态分布(0,1)N 的分布函数,即2/2()t x e dt +∞--∞Φ=6. 棣莫佛-拉普拉斯中心极限定理定理3(棣莫佛-拉普拉斯定理) 设12,,,,n X X X 独立同分布,i X 的分布是{}{}1,01,(01)i i P X p P X p p ====-<<则对任意实数x ,有12lim )()n n P X X X np x x →∞⎧⎫⎪++-≤=Φ⎬⎪⎭0lim =⎭⎬⎫⎩⎨⎧≥-∞→εp n X P n n四、典型例题例1 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据契比雪夫不等式{}6_____P X Y +≥≤.解 因为 ()0E X Y E X E Y +=+= ()2c o v (,D X Y D X D Y X Y +=++2DX DY ρ=++ 1420.52=+-⨯⨯= 根据契比雪夫不等式{}2DXP X EX εε-≥≤所以 {}3163612P X Y +≥≤= 例2 某保险公司经多年资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中以被盗的索赔户数为随机变量,利用中心极限定理,求被盗的索赔户大于14户且小于30户的概率近似值.[分析]本题的随机变量服从参数100,0.2n p ==的二项分布.如果要精确计算,就要用伯努利二项公式:{}291001001514300.20.8kk k k P X C -=<<=∑.如果求近似值,可用契比雪夫不等式估计.解 由于~(100,0.2)X N ,所以1000.220EX np ==⨯=168.02.0100)1(=⨯⨯=-=p np DX{}1430P X P <<=<<=Φ(2.5)-Φ(-1.5)()927.0)5.1(5.2=-Φ+Φ因此被盗的索赔户大于14户且小于30户的概率近似值为0.927.例3 某车间有200台机床,它们彼此工作独立,开工率都为0.6,工作时耗电都为1kW,问供电所至少给这个车间多少度电,才能以99.9%的概率保证这个车间不会因供电不足而影响生产.解 用X 表示工作的机床台数,则~(200,0.6)X B .设要向车间供电a kW,则有由棣莫佛-拉普拉斯定理得{}P o X a P ⎧⎫<≤=<≤020p q ⎛⎫⎛⎫⎫⎫≈Φ-≈⎪⎪⎪⎪⎪⎪⎭⎭⎭⎭()0.999 3.1≈Φ≥=Φ即3.1≥ 因此120 3.48141a ≥+= 例4 用契比雪夫不等式确定当掷一均匀硬币时,需掷多少次,才能保证使得出现正面的频率在0.4~0.6之间的概率不小于90%,并用正态逼近计算同一个问题.解 设需掷n 次,用n S 表示出现正面的次数,则1~(,)2n S B n ,有契比雪夫不等式得0.40.60.50.1n n S S P P n n ⎧⎫⎧⎫<<=-<⎨⎬⎨⎬⎩⎭⎩⎭211110022110.900.014n n n⨯⨯≥-=-≥ 所以10002504n ≥=. 由棣莫佛-拉普拉斯定理得0.40.6n S P P n ⎧⎫<<=<⎨⎬⎩⎭(((0.2210.90=Φ-Φ-=Φ-≥即(Φ≥0.95,查表得 1.645>,故68n ≥.例5 假设12,,,n X X X 是独立同分布的随机变量,且()k k i a X E =(1,2,3,4)k =,证明当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.证 由12,,,n X X X 是独立同分布的随机变量序列可知, 22212,,,nX X X 独立同分布,且有()22a X E i =, 2242i DX a a =-2211n n i i EZ EX a n ===∑, 2242211n n i i a a DZ DX n n=-==∑由林德伯格-列维定理可知,对任意x 有⎰∞--∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧<--x t n n dte x n a a a Z P 22242221lim π即n Z 近似服从正态分布2422(,)a a N a n-. 例6 有一批建筑房屋用的木柱,其中80%的长度超过3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?解 设10i X ⎧=⎨⎩()31,2,,1003i m i i m = 当所取的第根木柱短于当所取的第根木柱不短于 则()~1,0.2i X B ,记1001i i X X ==∑,则()~100,0.2X B .由棣莫佛-拉普拉斯定理得{}{}30130P X P X ≥=-<1P =-≤()302011 2.50.0062100.4-⎛⎫≈-Φ=-Φ= ⎪⨯⎝⎭例7 假设男婴的出生率为2243,某地区有7000多名产妇,试估计她们的生育情况.[分析] n 重伯努利实验中A 出现的频率nu n依概率收敛于它的概率p ,当n 很大时,有n u np ≈.解 设10i X ⎧=⎨⎩()1,2,,7000i i = 第名产妇生男婴否则显然, 12,,,n X X X 独立同分布且均服从01-分布2243p ⎛⎫= ⎪⎝⎭,1nn i i u X ==∑表示7000名产妇中生男婴的人数,有伯努利大数定理得()2243n u n n →→∞ 由于7000n =已是足够大,因此227000358143n u ≈⨯≈即该地区估计有3581名男婴出生.例8 某电视机厂每月生产10000台电视机,但它的显像管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显像管,该车间每月应生产多少只显像管?解 设显像管正品数为X ,月总产量为n ,则有()~,0.8X B n ,从而 0.8E X n =, ()n p np DX 16.01=-=为了使电视机都装上正品的显像管,则每月至少生产10000只正品显像管,即所求为{}100000.997P X n ≤<=由棣莫佛-拉普拉斯定理得{}100000.997P X n P ≤<=≤<=即997.05.016.08.016.08.010000=⎭⎬⎫⎩⎨⎧<-≤-n n n X n n P(0.997Φ-Φ=由题意可知,0<,且n 较大,即(1Φ≈,所以0.997Φ=2.75=,故)(1027.14只⨯≈n因此,每月至少要生产41027.1⨯只显像管才能以0.997的概率保证出厂的10000台电视机都能装上正品的显像管.例9 一养鸡场购进1万个良种鸡蛋,已知每个鸡蛋孵化成雏鸡的概率为0.84,每只雏鸡发育成种鸡的概率为0.90,试计算这批鸡蛋得到种鸡不少于7500只的概率.解 设{}k A k =第只鸡蛋孵化成雏鸡, {}k B k =第只鸡蛋育成种鸡,令 ()11,2,,100000k k k B X k B ⎧==⎨⎩ 当发生当不发生 则诸k A 独立同分布,且{}{}{}{}{}{}1k k k k k k k k P X P B P A P B A P A P B A ===+0.840.900.756=⨯+={}{}244.00===k k B P X P显然, 100001kk X X==∑表示10000个鸡蛋育成的种鸡数,则()~10000,0.756X B ,而64.1844244.07560)1(,7560756.010000=⨯=-=⨯=p np np根据棣莫佛-拉普拉斯定理可得()~0,1nkXnpN -=∑于是,所求概率为{}10000756075001k X P X P ⎧⎫-⎪⎪≥=≥≈-Φ⎪⎪⎩⎭∑()1.400.92=Φ= 因此,由这批鸡蛋得到的种鸡不少于7500只的概率为92%.五、课本习题全解6-1 设11nn i i Y X n ==∑,再对n Y 利用契比雪夫不等式:{}12222220n i i n n n n D X DY n P Y EY n n εεεε=→∞⎛⎫ ⎪⎝⎭-≥≤=≤−−−→∑ 故{}n X 服从大数定理. 6-2 设出现7的次数为X ,则有 ()~10000,0.1,1000,900X B E X n p D X === 由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015X P X P --⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-3 11,212i i EX DX ==由中心极限定理可知,10110i X -⨯∑,所以101011616110.136i i i i P X P X ==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X ,则.100,100==DX EX . 由棣莫佛-拉普拉斯定理可得()0228.021*********}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DX EX X P X P6-5 设()11,2,,100000i i X i i ⎧==⎨⎩ 第个人死亡第个人没有死亡,则{}{}10.006,00.994i i P X P X ====总保险费为51210000 1.210⨯=⨯(万元)(1) 当死亡人数在达到51.210/1000120⨯=人时,保险公司无收入.4100.00660,0.1295np =⨯==所以保险公司赚钱概率为)()12100000.129512060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()7.771=Φ=因而亏本的概率为10P P '=-=.(2)若利润不少于40000,即死亡人数少于80人时,)()12100000.12958060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.590.9952=Φ= 若利润不少于60000,即死亡人数少于60人时,)()12100000.12956060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()00.5=Φ=若利润不少于80000,即死亡人数少于40人时,)()12100000.12954060P X X X np ⎧⎫⎪++-≤⨯-⎬⎪⎭()2.5920.0048=Φ-=6-6 设总机需备Y 条外线才能有95%的把握保证每个分机外线不必等候,设随机变量()11,2,,2600i i X i i ⎧==⎨⎩ 第架电话分机用外线第架电话分机不用外线,则{}{}10.04,00.96P X P X ====0.04,0.040.00160.0384i i EX DX ==-=由中心极限定理可得16%950384.026004.02602601≈=⎪⎭⎫⎝⎛⨯⨯-Φ=⎭⎬⎫⎩⎨⎧≤∑=Y Y Y X P i i6-7 密度函数为 ()10.50.50x f x -<<⎧=⎨⎩当其他故数学期望为 0.50.50E X x d x -==⎰()0.52220.5112DX EX EX x dx -=-==⎰(1)设i X 为第i 个数的误差,则9973.01)3(251515300130013001=-Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≤∑∑∑===i i i i i i DX X P X P30030011151150.0027i i i i P X P X ==⎧⎫⎧⎫>=-≤=⎨⎬⎨⎬⎩⎭⎩⎭∑∑(2)110210.9440.77n i i P X n =⎧⎫≤=Φ-≥⇒≤⎨⎬⎩⎭∑ (3)3001210.99714.855i i Y P X Y Y =⎧⎫⎛⎫≤=Φ-≥⇒≤⎨⎬ ⎪⎝⎭⎩⎭∑6-8 kg kg EX 32105,105--⨯=⨯=σ (1)设i X 为第i 个螺钉的重量,则23100510,5100.05nEX --=⨯⨯⨯=0228.0)2(105.051.51.510011001=Φ-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=⎭⎬⎫⎩⎨⎧>∑∑==σn nEX X P X P i i i i(2)设()1.11,2,,5000.1i i Y i i ⎧==⎨⎩ 第个螺钉的重量超过5kg第个螺钉的重量不超过5kg,则33.3)1(4.11=-=p np np9951.0)58.2(33.34.1120)1(450050015001=Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->--=⎭⎬⎫⎩⎨⎧⨯<∑∑==p np np Y P Y P i i i i %6-9 设随机变量()11,2,,10000i i X i ⎧==⎨⎩ 第个人按时进入掩体其他,按时进入掩体的人数为Y ,则()1,~10000,0.9ni i Y X Y B ==∑,所以有10000.9900,9000.190EY DY =⨯==⨯=设有k 人按时进入掩体,则916884645.19090095.090900===-=⎪⎪⎭⎫⎝⎛-Φk k k k 或所以至少有884人,至多有916.六、自测题及答案1.设随机变量X 服从(),B n p ,则对区间(),a b ,恒有lim _______.n P a b →∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭2.一大批产品中优质品占一半,现每次抽取一个,看后放回再抽,问在100次抽 取中取到优质品次数不超过45的概率等于_______.3. 129,,X X X 相互独立, ()1,11,2,9i i EX DX i === ,则对任意给定的0ε>,有( ).9922119922111(A)11(B)119(C)91(D)919i i i i i i i i P X P X P X P X εεεεεεεε--==--==⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫-<≥--<≥-⎨⎬⎨⎬⎩⎭⎩⎭∑∑∑∑4.设12,,,,n X X X 为独立随机变量序列,且()1,2,i X i = 服从参数为λ的泊松分布,则有().()()()()111(A)lim (B)0,1(C),(D)n i n ni i n i i n i i X n P x x n X N n X N n n n P X x x λλλ→∞===⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭⎧⎫≤=Φ⎨⎬⎩⎭∑∑∑∑当充分大的时,近似服从当充分大的时,近似服从当充分大的时,5.设12,,X X 为独立随机变量序列,且服从服从参数为λ的指数分布,则( ).()()()()112211(A)lim (B)lim 1(C)lim (D)lim n n i i i i n n nni i i n n n X X P x x P x x n X n X n P x x P x x n λλλλλλ==→∞→∞=→∞→∞⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪⎪≤=Φ≤=Φ⎬⎨⎬⎪⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭∑∑∑∑6.设随机变量12,,,n X X X 相互独立, 12n X X X X =+++ ,根据林德伯格-列维定理,当n 充分大时, X 近似服从正态分布,只要12,,,n X X X ( )(A)(B)(C)(D)有相同的数学期望有相同的方差服从同一指数分布服从同一离散型分布7.某校有1000名学生,每人以80%的概率去图书馆自习,问图书馆至少应设多少个座位,才能以99%的概率保证去上自习的同学都有座位坐?8.某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400σ=.为了估计μ,随机地取n 只这种器件,在时刻0t =投入测试(设测试是相互独立的)直到失败,测得寿命为12,,,nX X X ,以11ni i X X n ==∑作为μ的估计,为了使{}10.95P X μ-<≥,问n 至少为多少?9.利用中心极限定理证明11lim !2i n n n i n e i -→∞=⎡⎤=⎢⎥⎣⎦∑ [答案]1. 由棣莫佛-拉普拉斯定理可得22lim t b a n P a b dt -→∞⎧⎫⎪⎪<≤=⎨⎬⎪⎪⎩⎭⎰2. 令Y 表示100次抽取中取得优质品的次数()11,2,,1000i i X i i ⎧==⎨⎩ 当第次取到优质品当第次没有取到优质品则 ()1001,~100,0.5i i Y X Y B ==∑那么 1000.5,1000.50.E Y D Y =⨯=⨯⨯=由棣莫佛-拉普拉斯定理可得{}504515Y P Y P P -⎧⎫≤=≤=≤-⎨⎬⎩⎭()()11110.84130.1587≈Φ-=-Φ=-=3.由题意可得 99119,9i i i i EX EX DX DX ======∑∑又因为 9211i i DXP X EX εε=⎧⎫-<≥-⎨⎬⎩⎭∑故(D)项正确.4.因为()1,2,i X i = 服从参数为λ的泊松分布,故,i i EX DX λλ==,由林德伯格-列维定理得()lim n i n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑ 当n 充分大时,1nii X=∑近似服从(),N n n λλ分布,故C 项正确.5.由题意可知 211,i i EX DX λλ==由林德伯格-列维定理可得()22limntixnX nP x dt xμ-→∞⎧⎫-⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰即()l i mninX nP x xλ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑6.由于林德伯格-列维定理要求12,,,nX X X独立同分布,且具有有限的数学期望与方差.因此C项正确.7.设X表示同时去图书馆上自习的人数,并设图书馆至少有n个座位,才能以99%的概率保证去上自习的同学都有座位,即n满足{}0.99P X n≤≥.因为()~1000,0.8X B,所以{}⎪⎭⎫⎝⎛⨯⨯⨯-Φ-⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈≤2.08.010008.01000`2.08.010008.01000`nnXP8000.9912.65n-⎛⎫=Φ≥⎪⎝⎭查表得8002.3312.65n-≥,故829.5n≥.因此图书馆至少应有830个座位.8.由于12,,,nX X X独立同分布,且2,400i iEX DXμσ===.由林德伯格-列维定理得{}1P X Pμ⎫⎛-<=<≈Φ-Φ⎝⎭⎝⎭21210.95=Φ-=Φ-≥⎝⎭⎝⎭即0.975Φ≥⎝⎭,查表得 1.9620≥,故2400 1.961536.64n≥⨯=.因此n至少为1537.9.设{}n X为独立同服从参数为1的泊松分布的随机变量序列,则1nkkX=∑服从参数为n的泊松分布,因此有101!!k k n n nn nn k k k k n n P X n e e e k k ---===⎧⎫≤==+⎨⎬⎩⎭∑∑∑由林德伯格-列维定理可得()11lim lim 02n k n k n n k X n P X n P →∞→∞=⎧⎫-⎪⎪⎧⎫≤=≤=Φ=⎨⎬⎩⎭⎪⎪⎩⎭∑∑ 所以11lim lim !k n n n n k n n k k n e P X n e k --→∞→∞==⎧⎫⎡⎤⎧⎫=≤-⎨⎨⎬⎬⎢⎥⎩⎭⎣⎦⎩⎭∑∑ 11lim lim 2n n k n n k P X n e -→∞→∞=⎧⎫=≤-=⎨⎬⎩⎭∑第7章数理统计的基础知识一、大纲要求(1)理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解直方图和样本分布函数的意义和作用.(2)了解2χ分布、t分布、F分布的概念和性质,了解分位数的概念并掌握查表计算.(3)了解正态总体的抽样分布.二、重点知识结构图三、基本知识1.总体和个体在数理统计中,把研究对象的全体称为总体或母体,把组成总体的每一个研究对象(元素或单元)称为个体.总体分为有限总体和无限总体.有限总体是指其总体中的成员只有有限个.相应的,无限总体是指其总体中的成员有无限个.2.样本在一个总体中,抽取n 个个体12,,,n X X X ,这n 个个体总称为总体X 的样本或子样, n 称为样本容量.样本特性:① 代表性,样本中的每一个分量()1,2,i X i n = 与总体X 有相同的分布。