天线基础知识(馈电原理)
- 格式:pdf
- 大小:137.85 KB
- 文档页数:33
天线基础知识天线⼯作原理 天线是⼀种变换器,它把传输线上传播的导⾏波,变换成在⽆界媒介中传播的电磁波,或者进⾏相反的变换。
以下是由店铺整理关于天线知识的内容,希望⼤家喜欢! 天线的定义 我们知道,通信、雷达、导航、⼴播、电视等⽆线电设备,都是通过⽆线电波来传递信息的,都需要有⽆线电波的辐射和接收。
在⽆线电设备中,⽤来辐射和接收⽆线电波的装置称为天线。
天线为发射机或接收机与传播⽆线电波的媒质之间提供所需要的耦合。
天线和发射机、接收机⼀样,也是⽆线电设备的⼀个重要组成部分。
天线的功⽤ 天线辐射的是⽆线电波,接收的也是⽆线电波,然⽽发射机通过馈线送⼊天线的并不是⽆线电波,接收天线也不能把⽆线电波直接经馈线送⼊接收机,其中必须经过能量转换过程。
下⾯我们以⽆线电通信设备为例分析⼀下信号的传输过程,进⽽说明天线的能量转换作⽤。
天线能量转换原理⽰意图 在发射端,发射机产⽣的已调制的⾼频振荡电流(能量)经馈电设备输⼊发射天线(馈电设备可随频率和形式不同,直接传输电流波或电磁波),发射天线将⾼频电流或导波(能量)转变为⽆线电波—⾃由电磁波(能量)向周围空间辐射(见图1);在接收端,⽆线电波(能量)通过接收天线转变成⾼频电流或导波(能量)经馈电设备传送到接收机。
从上述过程可以看出,天线不但是辐射和接收⽆线电波的装置,同时也是⼀个能量转换器,是电路与空间的界⾯器件。
天线的⼯作原理 当导体上通以⾼频电流时,在其周围空间会产⽣电场与磁场。
按电磁场在空间的分布特性,可分为近区,中间区,远区。
设R为空间⼀点距导体的距离,在时的区域称近区,在该区内的电磁场与导体中电流,电压有紧密的联系。
在的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压就要滞后⼀段时间,此时传播出去的电磁波已不与导线上的电流、电压有直接的联系了,这区域的电磁场称为辐射场。
必须指出,当导线的长度 L 远⼩于波长λ时,辐射很微弱;导线的长度 L 增⼤到可与波长相⽐拟时,导线上的电流将⼤⼤增加,因⽽就能形成较强的辐射。
微带线天线馈电原理微带线天线馈电原理微带线天线(Microstrip antenna)是一种平板式天线,由于其结构简单、易于制造和调整等优点,在卫星通信、雷达测量等领域得到了广泛应用。
而微带线天线的馈电方式也是很重要的一部分,下面就简单介绍一下微带线天线馈电的原理。
一、微带线天线结构微带线天线由两个主要部分构成:天线贴片和微带线馈线。
天线贴片是由介电材料和金属构成的,其形状和尺寸会对天线的辐射特性产生非常大的影响。
通常情况下,天线贴片的形状是圆形、方形或矩形的。
介电材料通常是PTFE或FR-4等。
微带线馈线是从天线贴片到源或负载之间的导体。
它是由铜箔覆盖在介电基板上,并用印刷电路技术制造而成。
微带线馈线使用也会影响到天线的辐射特性,所以具体的天线设计需要考虑到天线贴片和微带线馈线之间的相互影响。
二、微带线天线的馈电原理通常情况下,微带线天线的馈电方式有两种,一种是通过COAX和微带线过渡来实现馈电的;一种是直接在贴片上开孔,将馈线与贴片相连。
微带线天线的馈电原理可以通过微波模型进行模拟和理解。
在微波模型中,天线贴片是电容,微带线馈线是电感,通过调节它们之间的物理尺寸和位置,可以得到天线的输入阻抗等有关参数。
对于微带线天线来说,其馈电原理主要基于其在等效电路中的表现,即通过开孔或者过渡来实现本质上的电容与电感耦合,从而将微带线的能量转化成为微带线天线所需的电场和磁场,并产生全向或定向的辐射。
三、微带线天线馈电方式的特点1. 传输效率高:与传统天线相比,微带线天线利用电阻较小的铜箔、介质成本较低、简单易制造的技术,使馈电方式更加可靠和传输效率高。
2. 空间利用率高:微带线天线可以利用介质板上的空间进行设计,减少空间占用,提高空间利用率。
3. 频带宽度较宽:微带线馈线传输的电场和磁场能够交错在介质板上,从而产生多种共振模式,实现频段宽带的涵盖,提高天线的频带宽度。
总之,微带线天线馈电方式是微带线天线的重要组成部分,其具有优秀的传输效率、高空间利用率和较宽的频带宽度,能够为无线通信、雷达测量等领域提供更好的通讯和测量技术支持。
一.天线有哪几种?答:有全向天线、有定向天线包括单极化天线、双极化天线、双频双极化天线,电调天线。
二.天线有哪几个厂家、生产?答:有安德鲁,ADC,新西兰,首信。
德尔泰克、凯瑟琳、贾尔威武(法国)。
三.什么叫电磁波?M答:移动天线的类型很多,分类方位也很多,按其工作状态可分为两大类。
全向,定向,当高频率信号沿馈线从始端传向终端时,线上各点的电流或电压就会按高频振荡的节拍而变化,这种情形就象是在线路上激起一种看不见的波浪一样。
如果终端负载与馈线特性阻抗不匹配,负载不能将传来的高頻信号功率全部吸取,势必有一部分功率由终端再经馈线返回始端,前者称为入射波,后者称为反射波。
当终端负载匹配时,高频功率完全被终端所吸收,这时馈线上就只有入射波而没有反射波。
四.什么叫电波传播?答:无线电通信,是将信息变为电信号,再调制到高频振荡上,由发射天线把已调的高频电流,以电磁波的形式发射出去,电磁波传播到接收地点时,由接收天线将它接收下来,变成已调的高频电流通过合路器和双功器放大、解调、取出信息、从而达到通信的目的。
五.天线在无线电通信中的作用是什么?答:天线是一种换能器、发射天线是将高频电能转换成为电磁波的装置、接收天线则是将电磁波转换成高频电能的装置,因而它在无线电通信中占有极其种重要的地位、天线安装质量如何,对移动通信质量的好坏起着重要的作用,因此设计和安装天线时,必须十分重视保证质量。
六.对挂天线的抱杆要求90°为什么?答:抱杆900 天线抱杆是安装天线的基础,抱杆垂直、不垂直,关系到天线方位和倾角的调整。
七.抱杆要和大楼连接地线为什么?答:抱杆、框架和大楼地线连接是为了防止雷电伤害天线,使天线安全渡过雷电区,把雷电放入大地。
八.抱杆为什么要用热镀锌?答:抱杆是天线的支柱,抱杆的好坏确定天线的长久性。
热镀锌层,能够长久地耐受较苛刻条件下的腐蚀。
是因为镀锌层可以克服和减缓大气对钢铁的化学和电化学腐蚀。
九.抱杆上焊接避雷针,为什么?答:抱杆和天线上的避雷针起着及其重要的作用。
天线、射频器件、馈电器件工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!解析1. 天线的工作原理。
1.1 辐射原理。
天线馈电技术简述
天线馈电技术是指将发射机产生的电磁波能量传输给天线,或者将接收机接收到的天线感应的电磁波能量传输给接收机的技术。
以下是几种常见的天线馈电技术:
探针馈电(同轴线馈电):这是最常用的天线馈电技术之一。
同轴电缆由一根内导体与同轴外导体组成,源电压分别接在内导体与外导体上。
同轴电缆的外导体连接到接地层,中心导体延伸到微带天线。
1/4阻抗变换段:微带天线也可以通过使用特征阻抗为Z1的四分之一波长传输线与特征阻抗为Z0的传输线匹配,以调整输入阻抗。
倒装焊:这是一种通过直接在基板材料上焊接无引脚的微型元器件而组装电路板的一种方法,无需用连接器或其他封装载体,成本更低、生产效率更高。
缝隙耦合馈电:在微带天线设计中,缝隙耦合馈电是一种常见的馈电方式。
它通过在接地板上开缝,将能量耦合到天线辐射贴片上。
缝隙的大小和形状可以影响天线的性能。
耦合线馈电:耦合线馈电是指利用耦合线的电磁耦合效应,将主传输线上的信号耦合到另一条线上,实现信号的传输或测量。
镜像馈电:镜像馈电是指利用镜像原理,将一个天线的辐射场镜像到另一个天线上,实现两个天线间的能量转移。
这种馈电方式常用于双频天线或多频天线的设计中。
在实际应用中,需要根据不同的需求和场景选择适合的天线馈电技术。
第Research Institute of Antennas & RF TechniquesSchool of Electronic & Information Engineering第8讲内容yResearch Institute of Antennas & RF Techniques8.1 引言yResearch Institute of Antennas & RF Techniques8.2 考虑阻抗匹配的馈电方法yResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF Techniques8.3 巴伦yResearch Institute of Antennas & RF Techniquesu t h C h i n a U n i v e r s i t y o f T e c h n o l o g y Research Institute of Antennas & RF Techniques 同轴馈电由于有部分电流到同轴线的外表yResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesL是四分之一波长yResearch Institute of Antennas & RF Techniquesy Research Institute of Antennas & RF Techniques /4L RyResearch Institute of Antennas & RF TechniquesS o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g yResearch Institute of Antennas & RF Techniques 宽带微带切割式巴伦:yResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF TechniquesS o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g yResearch Institute of Antennas & RF Techniques 巴伦和变压器的结合yResearch Institute of Antennas & RF TechniquesyResearch Institute of Antennas & RF Techniques。
第一讲天线基本知识第一讲天线基本知识1.1天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。
1.2对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
两臂长度相等的振子叫做对称振子。
每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2 a 。
另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 bS12a1.3天线方向性的讨论发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。
垂直放置的半波对称振子具有平放的 “面包圈”形的立 体方向图(图1.3.1 a )。
立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。
从图1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。
天线相位馈电原理是一种通过对天线阵列中的各个天线单元施加不同相位的激励信号,从而控制天线阵列指向性和波束形成的技术。
这种原理广泛用于雷达、通信和遥感等领域。
在相位馈电天线阵列中,每个天线单元都具有相同的幅度和频率,但具有不同的相位。
通过改变这些相位的相对值,可以控制天线阵列的指向性和波束形状。
例如,当所有天线单元的相位相同(即同相)时,天线阵列的指向性最大,波束最窄。
而当相位差别较大时,天线阵列的指向性减小,波束变宽。
相位馈电天线阵列具有许多优点。
首先,它可以实现电子扫描,即通过改变馈电相位来改变天线阵列的指向,而无需物理移动天线阵列。
其次,相位馈电天线阵列具有较高的增益和波束控制能力,可以实现较窄的主波束和较低的旁瓣电平。
第三,相位馈电天线阵列具有较强的抗干扰能力,能够抑制来自不同方向的干扰信号。
相位馈电天线阵列的实现方法有很多种,其中最常见的方法是使用移相器。
移相器是一种能够改变信号相位的电子器件,通过改变移相器的控制电压,可以改变信号的相位。
相位馈电天线阵列在雷达、通信和遥感等领域得到了广泛的应用。
在雷达领域,相位馈电天线阵列用于实现电子扫描和波束形成,提高雷达的分辨率和探测距离。
在通信领域,相位馈电天线阵列用于实现波束成形和抗干扰,提高通信质量和信道容量。
在遥感领域,相位馈电天线阵列用于实现雷达成像和合成孔径雷达成像,获取地表和海洋的高分辨率图像。
相位馈电天线阵列是一种非常有用的天线技术,具有许多优点。
随着技术的发展,相位馈电天线阵列将在越来越多的领域得到应用。
以下是相位馈电天线阵列的一些具体应用实例:1. 雷达:相位馈电天线阵列用于实现电子扫描和波束形成,提高雷达的分辨率和探测距离。
例如,AN/SPY-1雷达系统使用相位馈电天线阵列来实现电子扫描,该系统能够探测到数百公里外的目标。
2. 通信:相位馈电天线阵列用于实现波束成形和抗干扰,提高通信质量和信道容量。
例如,5G通信系统使用相位馈电天线阵列来实现波束成形,该技术能够将信号集中在用户所在的方向,从而提高通信质量和信道容量。
偶极子天线馈电原理概述及解释说明引言1.1 概述偶极子天线是一种常见的无线通信装置,广泛应用于无线电、雷达、卫星通信等领域。
它具有结构简单、易于制造和调整的优点,被广泛用作天线系统中的辐射元件。
然而,在实际应用中,为了保证偶极子天线能够正常工作并发挥最佳性能,馈电原理起着至关重要的作用。
1.2 文章结构本文主要围绕着偶极子天线的馈电原理展开讨论,旨在从基本原理到常见馈电方式以及馈电原理对天线性能的影响因素进行全面介绍。
文章共分为四个主要部分:引言、偶极子天线的基本原理、常见的偶极子天线馈电方式和馈电原理对偶极子天线性能的影响因素。
最后,在结论部分对本文进行总结,并强调偶极子天线馈电原理的重要性。
1.3 目的本文旨在解释和说明偶极子天线的馈电原理,深入揭示不同馈电方式对其性能产生的影响,并探讨如何针对这些影响因素进行优化。
通过详细讨论和分析,希望读者能够全面了解偶极子天线的馈电原理,并能在实际应用中正确选择和配置合适的馈电方式,以提高天线系统的性能和效率。
2. 偶极子天线的基本原理:2.1 基本概念:偶极子天线是一种常见的无线通信天线,由于其结构简单且具有良好的接收和发射性能,在许多领域得到广泛应用。
偶极子天线基于偶极子理论,即将电磁信号分为电场和磁场两个部分,并利用在空间中摆动产生辐射以进行信息传输。
2.2 偶极子的结构和工作原理:偶极子天线通常由一个导体材料制成,外形呈直棒状或折叠形状。
它可以通过连接导线和馈电点与其他电路相连。
当交流信号通过导体时,导体上会形成一个起伏的电势差,从而产生电场和磁场。
这些起伏的电势差产生远距离传输能力。
2.3 馈电方式及其作用机理:偶极子天线可通过不同的馈电方式进行供电。
常见的馈电方式有平行馈电方式、垂直馈电方式和正交馈电方式。
- 平行馈电方式:这种方式中,导线与偶极子平行排列并与之相连。
当交流信号通过导线时,产生的电场沿着偶极子的方向辐射出去。
这种方式适用于需要较高增益和定向性的应用。
天线馈电技术涉及天线系统中的电源供应和信号传输。
它主要涉及将电能和信号传输到天线以及从天线接收的信号传回到接收设备。
在天线系统中,天线需要得到电源供应,同时也需要将接收到的信号传输回接收设备。
因此,天线馈电技术通常包括以下几个方面:
1.电源供应:天线需要电源供应来工作。
这可能是直流电源或者其他形式
的电源,根据天线的类型和工作方式而定。
2.信号传输:天线不仅需要电源供应,还需要将接收到的信号传输回接收
设备。
这可能涉及信号传输线、同轴电缆、光纤或其他传输媒介。
3.天线匹配与调谐:天线馈电技术也涉及到确保天线和接收设备之间的匹
配与调谐,以便最大限度地传输信号并提供最佳性能。
4.功率损耗和信号衰减:在信号传输的过程中,可能会有功率损耗或信号
衰减。
优化馈电技术有助于最小化这些损耗,确保信号的质量和稳定性。
天线馈电技术在不同类型的天线和通信系统中都是至关重要的,它直接影响到天线系统的性能和稳定性。
因此,设计和实施良好的天线馈电技术对于保障通信系统的正常运行非常重要。