湖泊内源污染治理技术的研究进展PPT
- 格式:ppt
- 大小:435.52 KB
- 文档页数:55
第30卷 第1期2011年 1月环 境 化 学E NV I RONMENTAL C H E M I STRY V o.l 30,N o .1Janua ry 20112010年6月30日收稿.*国家自然科学基金NSFC 云南联合基金(U0833603)资助.**通讯联系人,Te:l 0871 *******;E ma i :l xjpan @kmu st .edu .cn湖泊内源氮磷污染分析方法及特征研究进展*李 辉1 潘学军1** 史丽琼1 米 娟1 宋 迪1赵 磊2 刘晓海2 贺 彬2(1.昆明理工大学环境科学与工程学院,昆明,650093; 2.云南省环境科学研究院,中国昆明高原湖泊研究中心,昆明,650034)摘 要 湖泊的内源氮磷污染已成为湖泊富营养化治理的一大难题.本文总结了沉积物中氮磷赋存形态、沉积物 水界面氮磷迁移释放行为和沉积物中氮磷的生物有效性三方面的研究进展,提出了目前研究存在的问题,并对未来发展趋势和研究方向进行了展望,以期为湖泊内源氮磷污染机理分析和湖泊富营养化治理控制技术提供参考.关键词 富营养化,内源氮磷,释放,生物有效性.大量湖泊的水体富营养化已经成为全球面临的一个重大环境问题.湖泊富营养化的特征性表现即藻类水华现象.藻类水华暴发会导致水体缺氧、鱼类死亡、产生异味及藻毒素释放等,给湖区人民的正常生产和生活产生严重影响[1].据调查显示,全球范围内有40%左右的湖泊和水库遭受不同程度的富营养化;而在我国,到20世纪90年代中后期,富营养化湖泊已占被调查湖泊数的77%[2].由此可见,我国已成为世界上湖泊富营养化范围及程度最严重、面临问题最严峻的国家之一.Va llne tyne 及Stumm 等的分析研究表明,氮和磷是限制水生植物生产量最主要的营养元素[3],因此,氮磷在湖泊中水体及沉积物中的赋存形态及其迁移释放行为,对湖泊富营养化起着决定性的作用;伴随着相关法律法规的出台及截污工程等措施的实施,外源性污染物已经相对有所控制[4];因此对内源氮磷污染的研究显得格外重要,尤其是对内源氮磷的赋存形态、迁移释放行为及其影响因素、生物有效性等内源氮磷污染机理方面的分析研究更是迫在眉睫.本文从氮磷赋存形态特征及其分布、沉积物 水界面氮磷迁移释放、氮磷生物有效性等方面,总结国内外学者在内源氮磷污染方面的研究工作,为湖泊富营养化机理及其控制技术等方面的研究提供借鉴.1 沉积物中氮磷赋存形态氮磷在湖泊沉积物及水体中的形态分布,决定着沉积物是源还是汇.而水体中的氮磷形态分析相对简单,因此沉积物中的氮磷赋存形态分析尤为重要.1.1 沉积物中氮赋存形态湖泊沉积物中氮的赋存形态、含量及分布,一定程度上反映了水体和沉积环境的演变过程,是研究其环境行为的前提[5].综合国内外的研究,一般将沉积物中的氮形态分为有机态氮和无机态氮;且主要化学形态为有机态氮,可以占到70% 90%,主要以颗粒有机氮的形式进入沉积物中,无机氮所占比例相对较小[6].1.1.1 沉积物中的有机氮沉积物中有机氮主要是蛋白质、核酸、氨基酸和腐殖质四类,大部分是腐殖质[7].有机氮主要来源于浮游植物、细菌和高等植物.其化学形态主要分为NH 3 N 、氨基酸氮、己糖氮、酸解未知氮(HUN )和非酸解氮[6].研究表明,氨基酸氮是有机氮的主要化学形态,约占有机氮的30% 60%;从氨基酸的组合特征纪念专辑稿件来看,以甘氨酸、天门冬氨酸、谷氨酸、丙氨酸、丝氨酸、苏氨酸及赖氨酸为主,约占氨基酸总量的70%以上[8].尽管有机氮在氮的生物地球化学循环中并不活跃,但是由于有机氮的矿化作用,环 境 化 学30卷282使得有机氮依然在氮的生物地球化学循环中扮演重要的角色,即沉积物中的有机态氮在微生物的作用下,经氨基化作用逐步分解为简单的有机态氨基化合物,氨化作用释出的氨大部分与有机或无机酸结合成铵盐,或被植物吸收,或在微生物作用下氧化成硝酸盐.1.1.2 沉积物中的无机氮沉积物中的无机氮可分为可交换态氮(E N)、固定态铵(F NH4)等.沉积物中的可交换态氮(Exchangeab le N itrogen,EN)是沉积物 水界面发生氮的迁移释放最主要最活跃的氮形态,是参与氮的生物地球化学循环中的重要组分.可交换态氮主要包括硝态氮和铵态氮,即NO2 N、NO3 N以及NH+4 N;其中的铵盐被称为可交换态铵,沉积物中的可交换态铵是由于沉积物颗粒对水体中的NH+4进行可交换吸附,这类吸附是发生在颗粒物表面的离子交换反应.EN易于为藻类、水草等浮游植物这类初级生产者吸收,EN的减少会促进有机氮的矿化,从而提供湖泊再生产所需氮源[9].沉积物中的固定态铵则是指固定吸附于颗粒物质内部,进入晶格结构的NH+4 N,也称作非交换态铵.这是由于沉积物中的粘土矿物层中的硅氧层之间发生同晶替代,产生负电荷,为使电性中和,这些负电荷吸引吸附在颗粒物质晶格之外的阳离子;而吸附在沉积物上的NH+4脱去水化膜进入晶格之中,就被固定下来[10].同时晶层收缩,这样NH+4因此固定态铵一般情况下很难通过离子交换等方式释放到水体中来,大量研究表明,固定态铵在沉积物总氮中占有一定的比例,De Lange等[11]研究指出在海洋和某些湖泊沉积物中固定态铵可达到总氮含量的10% 96%.所以说,固定态铵是湖泊沉积物中氮的重要储存库.1.1.3 沉积物中氮的连续分级浸取研究及其应用在上述氮的分类中,并没有具体体现出各类形态氮与沉积物的物理化学结合能力,因此仅仅通过分析沉积物中总氮、无机氮和有机氮,并不能准确解释有关氮在沉积物 水界面上发生的迁移释放行为.各形态氮与沉积物的结合能力强弱,对于评价各形态氮对沉积物 水界面氮循环的贡献,具有重要意义.针对这一问题,不少学者[12 19]对大量海洋以及湖泊的沉积物中氮进行连续分级浸取,采用不同的浸取剂,来划分不同形态氮与沉积物结合能力大小,将沉积物中的氮分类为不同结合态,测得不同结合态氮的丰度,由此解释分析并推测沉积物 水界面的氮循环过程.吴丰昌等[12]1996年对云贵高原4个湖泊(云南泸沽湖、洱海,贵州百花湖、阿哈湖)等湖泊沉积物进行研究,基于土壤学中的土壤理化分析将沉积物中氮形态进行简单的分级,是国内沉积物中氮连续分级浸取研究的开始.将沉积物氮的结合态分为可溶性NH+4 N,NO3 N、可交换态NH+4 N,NO3 N、有效态氮和残渣态氮,有效态氮指无机的矿物态氮和部分有机质中易分解的无机氮,残渣态氮主要是有机氮.这一方法开创了水体沉积物中氮分级浸取的先河,但是并没有具体的根据浸取剂得出各形态氮的化学结合能力.马红波[13]等2002年根据Ruttenberg[20]1992年提出的沉积物中磷的连续分级浸取方法,加以改进,将沉积物中氮分为可转化态氮和非转化态氮,可转化态氮根据浸取剂提取能力的强弱来决定浸取出来的氮与沉积物结合的牢固程度;依次分为离子交换态氮(I EF N)、碳酸盐结合态氮(CF N)、铁锰氧化态氮(I M OF N)、有机态和硫化物结合态氮(OSF N).非转化态氮通过总氮与可转化态氮差减得到.这一方法在进行下一步提取之前,用蒸馏水洗涤沉积物,一定程度上避免了上一级提取氮重吸附于沉积物,但是实验设计上并没有考虑各级提取剂的提取效率.马红波等打开了沉积物中氮连续分级提取研究的新领域,表征了各形态氮的相应化学结合能力.之后的研究者对沉积物中氮进行连续分级提取时,多数都是沿用这一方法,或进行一些小的改进.如吕晓霞等[14]对北黄海、戴纪翠等[15]对胶州湾、王圣瑞等[16]对五里湖等湖泊沉积物及海洋沉积物中氮的研究,均是直接使用其方法或者稍微加以改进.王圣瑞等[16]2007年对五里湖、月湖、东太湖、贡湖等不同程度富营养化湖泊沉积物中氮进行连续分级提取.其采用的方法与马红波等基本一致,但只研究了沉积物中的可转化态氮,并将其依次分为离子交换态氮(I E F N)、弱酸浸取态氮(WAEF N)、强碱浸取态氮(SAEF N)、强氧化剂浸取态氮(SOEF N).I EF N是4种可转化态氮形态中与沉积物结合能力最弱的赋存形态,因此也是参与沉积物 水界面1期李辉等:湖泊内源氮磷污染分析方法及特征研究进展283氮迁移释放最活跃的形态;WAEF N与沉积物的结合能力略高,相当于碳酸盐的结合能力;SAEF N的结合能力相当于铁锰氧化物的结合能力,稍高于WAEF N;SOEF N主要是有机形态氮,也称可转化有机氮,是最难浸取的可转化形态[14 16].王圣瑞法[16]与马红波法[13]区别在于第一步提取,采用的是1m ol L-1KC l溶液,而马红波法中采用的是1m o l L-1M g C l2溶液进行浸取.由于沉积物吸附NH+4生成固定态铵所需静电力与K+进入沉积物粘土矿物层中的硅氧层晶格所需的静电力来源相同,因此KC l溶液可能会具有更好的提取效率.基于这一点,一些研究者认可了王圣瑞的方法,且KC l提取性质稳定,不含干扰测定的物质[21],后续对沉积物中氮进行连续分级提取时,多采用王圣瑞法.如何桐等[17]对大亚湾表层沉积物氮形态的研究、郑国侠等[18]对南海深海盆表层沉积物氮形态的研究等.钟立香等[19]2009年对吴丰昌法进行改进提出了新的连续分级浸取方法,该法的特点是并不着重于各形态氮与沉积物结合力强弱,而是依据对释放影响的程度依次分为游离态氮(FN)、可交换态氮(EN)、酸解态氮(HN)、残渣态氮(RN).该法中F N是将间隙水中的营养盐浓度(m g L-1)换算成为沉积物中的营养盐浓度(m g kg-1),这主要是基于沉积物 水界面氮循环主要通过间隙水与上覆水中营养盐交换来实现这一点考虑;EN则主要是针对沉积物中有机质矿化生成的NH+4,NH+4在FN和E N之间不断根据外界环境条件分配,故EN是沉积物中较活跃的氮形态;酸解态氮可鉴别的有机化合物主要是氨基酸态氮(AAN)、氨基糖态氮(ASN)、氨态氮(AN)以及一些未鉴别的含氮化合物(UN);RN主要是有机环态.表1列出了沉积物中氮连续分级浸取方法的发展历程.表1 沉积物中氮的连续分级提取研究Table1 R esearch on t he nitrogen sequential frac ti on ex tracti on i n sedi m ents研究者浸取方法氮分级形态应用对象参考文献沉积物高速离心,0.4 m滤膜过滤可溶性氨氮、硝氮吴丰昌等(1996)40mL20%NaO H溶液,经0.45 m过滤,测滤液中可交换性氨氮、硝氮可交换性氨氮、硝氮云南泸沽湖、洱海;[12]上一步沉淀物使用碱解蒸馏法测定有效态氮有效态氮贵州百花湖、元素分析仪测定沉积物中总氮,并与上述三形态氮进行差减残渣态氮阿哈湖1m ol L-1M gC l2溶液离子交换态氮HAC N a AC(p H=5)溶液碳酸盐结合态氮马红波等(2003)0.1m ol L-1Na OH溶液铁锰氧化态氮渤海湾[13]K2S2O8(碱性)溶液(0.24mo l L-1N a OH, K2S2O820g L-1)有机态和硫化物结合态氮总氮与上述四种可转化态差减非转化态氮1m ol L-1KC l溶液离子交换态氮五里湖HAC N a AC(p H=5)溶液弱酸浸取态氮月湖王圣瑞等(2007)0.1m ol L-1Na OH溶液强碱浸取态氮东太湖[16] K2S2O8(碱性)溶液(0.24mo l L-1N a OH,K2S2O820g L-1)强氧化剂浸取态氮贡湖沉积物高速离心,过0.45 m滤膜游离态氮钟立香等(2009)2mo l L-1KC l溶液,振荡2h可交换态氮巢湖[19] 6mo l L-1HC l溶液,120 ,酸解24h酸解态氮浓硫酸,加速剂催化残渣态氮1.1.4 沉积物中氮形态分布特征沉积物中氮主要以有机态存在.Ke m p等[22]对Ontar i o湖表层沉积物中氮研究表明,有机氮含量约占总氮的92%,何桐等[17]对大亚湾表层沉积物中氮形态研究表明,有机氮约占沉积物中总氮的77 32%.沉积物中无机氮由可交换态氮和固定态铵构成,可交换态氮是湖泊初级生产力的直接氮源,固定态铵(F NH4)则是其潜在氮源[9].王圣瑞等[9]、王雨春等[5]研究表明,F NH4是无机氮中的主要形态,环 境 化 学30卷284EN也占有一定的比例;E N中的主要形态是NH+4 N(74.61% 85.85%),这是因为沉积物 水界面大量有机质的矿化分解;其次是NO3 N(13.93% 25.15%),NO2 N含量很低(0.17% 0.27%);而三者之间在不同环境和微生物作用下进行硝化反硝化作用实现相互转化,这主要与沉积物自身性质(例如含有机质的多少)、沉积物环境(氧化还原条件、微生物多少、温度等)有关[6].EN占沉积物中可转化态氮的比例大约在10% 40%[8,13,17],沉积物中可转化态氮的主要存在形态为SOEF N[13 14,17 18],这显然与沉积物中有机态氮占总氮比例有关.吕晓霞等[14]在北黄海的研究表明,SOEF N在沉积物垂直分布上,一般呈现出在表层0 3c m迅速降低的趋势;同样,I EF N在0 3c m 范围内自上而下逐渐降低,自次表层(0 6c m)以下,无明显变化,这是因为沉积物中有机质的矿化作用主要发生在表层含氧区.一般而言,SOEF N是沉积物中可转化态的绝对优势形态,I EF是可转化无机态氮的绝对优势形态[23].WAEF N、SAEF N占可转化态氮的比例极小[13],两者大小依据沉积物环境的改变而有所不同.沉积物氮形态分布与沉积物粒度有着非常重要的关系.吕晓霞等[8]对黄海沉积物氮粒度结构进行研究表明,不同形态氮在不同粒度沉积物中的分布规律相同,不同形态氮绝对含量随沉积物粒度的增大而减小,这可能是因为粗粒度沉积物中有机氮的分解速率常数比细粒度沉积物中的高一个数量级,是中粒度沉积物中的2倍;这也是SOEF N的含量随粒度大小变化最为明显的原因,因为SOEF N的主要形态是有机氮.尽管三种可转化无机氮的绝对含量随着沉积物粒度减小而增大,但是由于SOEF N的增幅太大,这三种可转化态无机氮的相对含量都有所降低.吕晓霞等[23]指出,细粒级沉积物对氮循环的贡献可能最大.而这一点与王圣瑞等[16]对云贵高原四湖泊研究结果一致.1.2 沉积物中磷赋存形态一般而言,沉积物中的磷可分为有机磷和无机磷,无机磷又分为可溶性无机磷和难溶性无机磷.可溶性无机磷包括钙结合态磷(Ca P)、铁结合态磷(Fe P)、铝结合态磷(A l P)等,难溶性磷主要是闭蓄态磷酸盐,这部分磷被包裹在铁铝氧化物膜内.1.2.1 沉积物中磷的分级浸取研究与沉积物中氮不同,由于湖泊富营养化一般是磷控制,所以湖泊沉积物中磷的分级提取研究较多[20,24 29].1957年,Chang和Jackson[24]根据土壤学中相应的化学方法,将土壤中磷分为不稳性磷(Labile P, LP)、Fe P、Ca P、可还原水溶性磷(RSP)、惰性磷(Refractory P).这一方法主要关注于沉积物中的无机态磷,对沉积物中磷化合物的化学形态进行分类,从而便于研究沉积物 水界面磷的迁移释放机制,也有助于解释环境因素(例如钙铝铁、DO、p H、Eh等)对沉积物 水界面磷迁移释放的影响.后续许多研究者只是针对C J法存在的缺陷进行改进,而在磷形态分级的思想上与C J法一致.例如H ie ltjes等[26]将沉积物中磷分为LP、Fe/A l P、Ca P;Psenner[27]将沉积物中磷分为水溶性磷(H2O P)、可还原水溶性磷(RSP)、Fe/A l P、Ca P和惰性P;Go lter m an等[30]将沉积物中磷分为Fe P、Ca P、酸可溶性有机磷(ASOP)、残余有机磷(ROP).国内金相灿等[7]的方法与C J法一脉相承,欧盟推荐发展方法(S MT法)[29]在选取浸取剂时的思路也与C J法一致.这两类方法是目前国内外应用较多的方法[31 36].金相灿法是对C J法中连续提取法的改进,将磷的形态分为LP、A l P、Fe P、C a P、OP和Org P等6种形态.NH4C l提取LP,中性NH4F提取铝结合态磷,N a OH提取铁结合态磷,稀硫酸提取钙结合态磷,还原络合提取闭蓄磷.该法每级磷形态的释放活性有明显不同,LP很容易释放;铝结合态磷和铁结合磷在氧化还原环境改变的条件下可以转化成可溶解性磷,进入上覆水体,具有很强的释放活性,也称为活性磷,它们是内源负荷的重要来源;钙结合态磷和闭蓄态磷则很难被分解参与短时相的磷循环.因为各级释放活性的差异,使用该法可以得到湖泊沉积物中可释放磷的丰度,以便进行沉积物 水界面的释放模型的建立,预测湖泊富营养化状况.SMT法[29]是由欧盟推荐发展的方法,该方法将磷形态划分为总磷(TP)、无机磷(I P)、有机磷(OP)、非磷灰岩磷(N on apatite I norgan ic Phosphorus,NA I P)及磷灰岩磷(Apatite Phosphor us,AP).该法分为三步:(1)将冷干沉积物450 煅烧3h,残渣用3.5m ol L-1HC l浸取,测其SRP(溶解态活性磷),得到TP;(2)将冷干沉积物用1m ol L-1HC l浸取测其SRP,得到I P,其残渣煅烧后用1m o l L-1H C l浸取1期李辉等:湖泊内源氮磷污染分析方法及特征研究进展285测其SRP,得到OP;(3)将冷干沉积物用1m ol L-1Na OH浸取测其SRP,取其残渣加入1m ol L-1H C l测其SRP,得到AP,再取其上清液加入3.5m ol L-1HC l测其SRP,得到NA I P.其中每一步的冷干沉积物样品质量均为0.2g.SMT法提取的步骤并非连续的,因此该法可同时进行各个形态的测定,能大量节省时间;其次,该方法在提取各形态磷时具有统一性,都是通过HC l来提取上清液中的SRP,各测定结果之间具有可对比性;此方法实验所需的试剂均为常用试剂,提高了方法的适用性及普遍性.W illia m s等[25]提出的方法并没有遵循C J法分级思路,该法更多的是从沉积物中磷的矿物形态上来来进行区分,将沉积物磷分为磷灰岩磷(AP),非磷灰岩磷(NAP)以及有机磷.这样的分级方法更为简单,着重点在于磷的矿物性和来源.部分学者也沿用了这一思想,例如Ruttenber g[20]提出的SEDEX提取法,将沉积物分为可交换性磷、碳酸氟磷灰岩盐(CF AP)、氟磷灰岩磷(FAP)、有机磷等,这两种方法现多用于海洋和河口沉积物中磷的分级研究.Ruttenber g法[20]考虑到了每一级提取的磷可能重吸附于残余沉积物,因此,在每级提取之前都用M gC l2溶液和H2O分别洗涤沉积物;但是该方法提取剂效率不高[37].实际上,S MT[29]法尽管在选用提取剂时思路与C J法相同,但分类也是来源于W illia m s等[25]的方法.表2列出了几种重要的磷分级提取方法.表2 几种重要的沉积物中磷分级提取方法Tab l e2 I m portant m ethods o f phospho rus frac ti on ex tracti on i n sedi m ents研究者提取剂分级形态参考文献1m ol L-1NH4C l不稳性磷0.5m ol L-1NH4F,pH=8.2铝结合态磷Chang&J ackson(1957)0.1m ol L-1N a OH铁结合态磷[24]0.5m ol L-1HC l钙结合态磷CBD可还原性水溶性磷Na OH惰性磷CBD非磷灰岩磷W illia m s等(1976)0.1m ol L-1N a OH[25]0.5m ol L-1HC l磷灰岩磷1m ol L-1N H4C l水溶性磷0.5m ol L-1NH4F,中性铝结合态磷金相灿等(1990)0.1m ol L-1N a OH铁结合态磷[7]0.5m ol L-1H2SO4钙结合态磷CBD闭蓄态铁/铝磷1m ol L-1M g C l2,p H=8可交换性磷CBD碳酸氟磷灰岩Ru ttenberg(1992)Na AC/N a H CO3,p H=4氟磷灰岩,钙磷[20]1m ol L-1HC l氟磷灰岩磷550 灰化,1m ol L-1HC l有机磷1m ol L-1H C l C a P1m ol L-1Na OH Fe/A l PPardo等(2004) 3.5m ol L-1HC l有机磷[29]无机磷1.2.2 沉积物中磷分级浸取应用以及分布特征研究金相灿等[38 39]采用SMT法对长江中下游7个浅水湖泊、太湖东北部沉积物中磷的赋存形态的研究、M o turi等[40]采用Ruttenber g的SEDEX法对印度德里工业区的排水沟渠中的沉积物磷的研究、章婷曦等[41]采用S MT法对太湖不同营养水平湖区沉积物中磷的研究都表明,沉积物中的磷主要形态是无机磷,而污染沉积物中的Fe/A l P明显升高,相对清洁沉积物中的Fe/A l P含量则相对较低,这说明沉286环 境 化 学30卷积物污染主要使Fe/A l P的含量增加,而Ca P或A cet P含量则变化不大,这可能是因为C a P是本地自生,与人类活动关系不大,而Fe/A l P含量则与人类活动有较强相关性.这说明不同污染程度的湖泊沉积物中磷的分布特征会有较大区别,而Ka iserli等[42]采用轻微修改的Psenner[27]的分级方法,在北希腊两个不同富营养化程度湖泊(Lakes Vo l v i&K or onia)中的研究结果印证了这一点.磷在沉积物垂向上分布规律较为复杂[33,41],这主要与湖泊生态条件、污染物排放程度以及沉积条件有关.Ruttenberg[20]研究结果表明,各形态磷在沉积物柱状上的分布呈现 沉降 降解 堆积 三阶段特征,这反映了早期成岩作用的结果.可交换性磷(Ex P)的垂直变化特征较为明显,随深度增加Ex P含量降低,Fe P在次表层以上(表层至10 15c m深)的垂直变化,主要是沉积物中氧化还原电位随深度加深而降低,导致Fe P释放的缘故;在次表层以下的深层由于有机磷的释放,会导致Fe P含量上升.Cho i 等[43]的研究结果也证明了这一点.沉积物粒度是影响不同形态磷分布的重要因素,这是因为不同沉积物粒度具有不同的比表面积以及有机质等,因此对沉积物吸附和释放磷酸盐的能力有着重要影响[44].梁海清等[44]研究表明,沉积物中的有机磷主要以中等活性有机磷存在,有机磷的分布与沉积物粒度密切相关,而有机磷主要分布在细粒度沉积物中.1.2.3 沉积物中磷分级浸取存在的问题以及发展趋势尽管对于沉积物中磷分级浸取研究众多,但是由于沉积物中磷形态的易变性和复杂性,迄今为止,仍然没有一套通用的沉积物磷分级分离的方法;对于研究者而言,为保证数据的准确性,不得不采取两种或两种以上的方法进行分级浸取,工作量非常繁重.因此十分有必要在今后的研究工作中,寻找更有效的、选择性专一的浸取剂,同时对方法的研究不仅仅考虑化学形态上的分类准确度,还应兼顾操作上的便利程度以及分级形态之间的可比性2 沉积物 水界面氮磷迁移释放研究各种来源的营养盐进入湖泊,经过一系列物理、化学及生物化学作用,其中一部分或大部分逐渐沉积到湖底,当湖泊外部环境条件发生变化,沉积物中的营养盐又释放出来进入水中,并延续湖泊的富营养化[7].沉积物 水界面的氮磷迁移扩散不仅受沉积物对营养盐的吸附解吸的影响,还与各种理化参数有关.因此研究沉积物 水界面的氮磷迁移释放行为,对湖泊富营养化预测以及治理都有着重要意义.2.1 沉积物 水界面氮释放行为及其影响因素沉积物 水界面的氮释放行为研究多集中在对NH+4 N、NO3 N、NO2 N等形态氮的扩散转移通量的研究[12,45 47],氮扩散通量即是指氮的(自湖水)输入通量与输出(至湖水)通量之间的差值.计算沉积物 水界面的氮扩散通量,需要研究其主要界面扩散过程.宋金明等[45]指出,水 沉积物界面上存在固体颗粒的沉积和水相间颗粒孔隙的侵入,这一平流过程与界面上下浓度梯度引起的扩散转移过程,是化学物质通过沉积物 水界面质量转移的两个主要过程.而这与B l a ckburn等认为水体中氮含量的急剧增加是由间隙水与上覆水之间的交换引起的这一结果相似[48].硝化和反硝化作用是沉积物 水界面氮迁移释放的主要机制.沉积物中的有机氮矿化生成NO-3、NH+4等无机态氮扩散进入上覆水体,增加水体中氮含量;同时,上覆水体中的NO-3也可扩散至沉积物厌氧层,在反硝化细菌作用下,被还原为N2和N2O等气体形态,并逸散至大气层中,降低水体中的氮含量[49].因此,目前的有些研究针对沉积物 水界面的反硝化速率进行[49 50].Con ley等[51]对波罗的海F i n land湾沉积物 水界面的NO-3、NO-2、NH+4三种形态氮的扩散通量进行了研究,结果表明NH+4、NO-3为氮界面交换的主要组分,且NH+4变化范围最大,而NO-2扩散通量很小,仅为0.1 2.45 m o l N m-2 h-1;这与Bola lek等[52]利用F ick s第一定律计算的Puck湾沉积物 水界面氨氮扩散通量规律一致,后者的研究计算结果表明,氨氮总是由沉积物向上覆水体释放,且具有较大的空间差异性;刘素美等[53]对渤海莱州湾的模拟实验也表明NH+4主要由沉积物向水体净扩散且变化范围较大.Nedw ell等[54]和Tri m m er等[55]利用培养箱对英国Great Ouse河口沉积物 水界面的NO-3、NO-2、NH+4的扩散通量逐月测定,结果表明沉积物是NO-3的汇、是NH+4的源,而NO-2扩散通量极小.综述可知,沉积物 水界面氮的主要扩散组分是NH+4、NO-3,而NO-2扩散量很小;NH+4变化范围较大,且沉积物。