高填土层桩基负摩擦力计算
- 格式:pdf
- 大小:355.88 KB
- 文档页数:5
基桩负摩阻力的计算岩土工程方楹1122090001摘要:分析了摩阻力与轴力的关系、负摩阻力产生的原因以及负摩阻力时桩的影响,论述了不同情况下负摩阻力的计算方法。
关键词:桩负摩擦阻力计算方法Negative Frictional Resistance For Calculation of Foundation Pile Abstract:This paper analyzes the relationship between frictional resistence force and axial force,exerting cause of negative frictional force and its influence pile. The calculation method of negative frictional force under different condition is described.Keywords:pile;negative frietional resistanee force:ealeulation;method1负摩阻力的产生桩在竖直的轴向荷载作用下,桩身横截面产生了轴向内力和位移,由此桩土之间就有了相对位移,于是土对桩侧产生了摩阻力,相应于桩尖的位移,则产生了对桩端的阻力。
通过桩侧摩阻力和桩端阻力,桩将荷载传给土体。
即桩侧总摩阻力和桩端阻力之和等于桩顶轴向荷载。
桩的荷载传递以及桩的位移,体现了桩在轴向荷载作用下的工作性能。
图1(b)为一根进行静载试验的桩,若在桩身中每隔一段距离埋设应力测量元件,当桩顶作用有轴向压力P时,根据量测结果,可画出桩身轴力的分布曲线,如图1(c)所示。
然后找出轴力分布曲线的函数式P(z),这个曲线和函数P(z)表达了沿桩身深度:处的荷载传递关系,而摩阻力f(z)就是桩侧单位面积上的荷载传递量。
在桩身某一深度z 处取出长度为dz 的一小段桩体,其上下截面和侧面的受力情况如图1(a)所示,设桩的横截面周长为U ,根据该桩体单元体的平衡条件得:0)()()()(=--+z p z dP z P dz z Uf (1) 则dz z dP U z f )(1)(-= (2) 上式表示摩阻力与轴力的基本关系。
【主题】填土场地桩基负侧摩阻力设计计算方法试验研究【内容】1. 前言填土场地桩基负侧摩阻力设计计算方法试验研究,是土木工程领域一个重要且复杂的课题。
在实际工程中,桩基承载力的设计计算对工程的安全和稳定性至关重要。
对于填土场地桩基负侧摩阻力的设计计算方法进行深入研究,对于提高工程施工质量和保障工程安全具有重要意义。
2. 背景知识填土场地桩基负侧摩阻力是指桩身在负荷作用下与土体发生的摩擦阻力。
在桩基工程中,负侧摩阻力是桩基的重要承载力组成部分,其设计计算方法的准确与否直接影响着工程的安全性和经济性。
如何准确地计算填土场地桩基负侧摩阻力,一直是工程领域亟待解决的难题。
3. 试验研究为了解决填土场地桩基负侧摩阻力设计计算的难题,进行了一系列试验研究。
通过对不同填土场地条件下的桩基负侧摩阻力进行试验测定,并结合现代计算方法,对桩基负侧摩阻力的设计计算方法进行深入探讨与研究。
4. 结果分析试验研究结果表明,填土场地桩基负侧摩阻力的计算不仅受到填土场地条件的影响,还受到桩基形式、桩身尺寸等因素的影响。
在进行设计计算时,需要综合考虑各种因素,采用合理的计算方法进行计算,以得到更为准确的结果。
5. 个人观点我认为,填土场地桩基负侧摩阻力设计计算方法的试验研究对于工程领域具有重要意义。
通过深入研究和实验,不仅可以完善现有的设计计算方法,还可以为实际工程提供更可靠的技术支持,提高工程施工的安全性和稳定性。
【总结】填土场地桩基负侧摩阻力设计计算方法试验研究是一个复杂而重要的课题。
通过实验与分析,我们能够更深入地理解桩基负侧摩阻力的形成机理和计算方法,为工程施工提供更为可靠的技木支持。
让我们共同关注这一领域的研究,并为工程领域的发展做出更多的贡献。
【回顾性内容】- 填土场地桩基负侧摩阻力设计计算方法试验研究的重要性- 试验研究结果对现有设计计算方法的启示- 个人观点和期望至此,我们对填土场地桩基负侧摩阻力设计计算方法试验研究进行了全面的评估,并撰写了一篇深度和广度兼具的有价值文章,希望能为您提供满意的帮助。
桥梁桩基负摩擦力在公路桥梁工程建设中,桥台钻孔灌注桩处于深层软土地基与台背路堤高填土荷载的作用,结果桩侧软弱土层受到桥台台背填土荷载的作用,使软弱土层压缩和桩底下沉及位移,桩产生向下的摩擦力。
也就是说,如果不存在桩基负摩擦阻力,桩基承载力就满足要求,桩基就不会发生持续不均匀沉降。
因此,研究桥台桩基负摩擦阻力是否存在,采取什么措施达到消减桥台桩基负摩力就成为很有必要。
1 桩基负摩擦力发生的条件:桩基负摩擦力能否产生,关键取决于桩和桩侧土的相对位移发展情况。
因此桩基负摩擦力发生的条件有下述几个方面:1)桩基穿过欠固结的软土或新填土,而支承于较坚实的上层土时,由于土的自重作用,使土产生固结。
2)在桩周的地表面有大面积堆载时,引起地面沉降,使桩侧土压密固结,对桩产生负摩擦力。
3)由于地下水位降低,例如在土层中抽取地下水,或采用排水固结法处治软土,此时土层孔隙水压力减小,有效应力增加,引发地基土新的固结下沉。
4)自重湿陷性黄土下沉和冻土融化下沉。
5)在饱和粘土地基中,群桩施工完成后,孔隙水压力消散,隆起的土体逐渐固结下沉,若桩端持力层较硬,则会引起负摩擦力。
6)地基中液化土层发生变化时,引起地基土层大面积下沉,产生桩基负摩擦力。
由此可见,对于桥台桩基工程,当桩穿过可压缩性土层而支承在坚硬的持力层上时,一般都有可能发生负摩擦力。
2 桥台软土地基桩基负摩擦力的大小和深度2. 1 桩基负摩擦力的发生深度一般说来,负摩擦力并不发生于整个软弱土层中。
当水泥混凝土桩基成桩后,随着桥台地面以上路堤填筑荷载的不断增大,桩侧软弱土层逐渐压缩,桩身表面从上而下的正摩擦力慢慢减少,随即产生负摩擦力,变成桩基上部为负摩擦力,桩基下部为正摩擦力。
摩擦力为零的位置为中性点,此点为桩基在该处的位移量与其周围土的下沉量相等之点,它是土与桩之间不产生相对位移之点,如图1 的O1 点所示。
图1 (b) A 是土层轴向位移曲线,B 为桩的截面位移曲线,图1 (c)为桩周摩擦力分布曲线,图1(d)为桩身轴向分布曲线。
桩侧负摩阻力的计算一、 规范对桩侧负摩阻力计算规定符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承 载力时应计入桩侧负摩阻力:1、 桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时;2、 桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括 填土)时;3、 由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。
4、 桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力 和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。
① 对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力:N k 乞 R a( 7-9-1)② 对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并 可按下式验算基桩承载力:N k Q g <Ra( 7-9-2)③ 当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入 附加荷载验算桩基沉降。
注:本条中基桩的竖向承载力特征值只计中性点以下部分侧阻值及端阻值。
二、 计算方法桩侧负摩阻力及其引起的下拉荷载,当无实测资料时可按下列规定计算: 1、中性点以上单桩桩周第 i 层土负摩阻力标准值,可按下列公式计算:q ?i = ni ;「i( 7-9-3)当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:i 71ri -mm i 厶i m =2(7-9-3 )〜(7-9-5)式中:q ?i ――第i 层土桩侧负摩阻力标准值;当按式(7-9-3)计算值大于正摩阻力标准值时,取正摩阻力标准值进行设计;-ri ――由土自重引起的桩周第i 层土平均竖向有效应力;桩群外围桩自地面算起,桩群内部桩自承台底算起;当地面分布大面积荷载时:;★二p • c ri(7-9-4) 其中, (7-9-5)Ci ■――桩周第i层土平均竖向有效应力;i, m――分别为第i计算土层和其上第 m土层的重度,地下水位以下取浮重度;.'■■Zi ---- 第 i 层土、第 m层土的厚度;p――地面均布荷载;桩周第i层土负摩阻力系数,可按表 7-9-1取值;表7-9-1 负摩阻力系数匕土类5土类5饱和软土0.15 〜0.25 砂土0.35 〜0.50粘性土、粉土0.25 〜0.40 自重湿陷性黄土0.20 〜0.35②填土按其组成取表中同类土的较大值;2、考虑群桩效应的基桩下拉荷载可按下式计算:nQ f 二n 八側(7-9-6)(7-9-7)式中,n ――中性点以上土层数;l i――中性点以上第i土层的厚度;n ――负摩阻力群桩效应系数;S ax, S ay ――分别为纵横向桩的中心距;q S?――中性点以上桩周土层厚度加权平均负摩阻力标准值;m――中性点以上桩周土层厚度加权平均重度(地下水位以下取浮重度)。
大面积荷载下考虑时间效应的单桩负摩阻力计算方法
在大面积荷载作用下考虑时间效应的单桩负摩阻力计算方法,通常需要考虑以下几个方面:
1. 土体的时间效应:土体是一个非线性、非弹性的材料,其在荷载作用下会发生变形,同时还存在时间效应。
时间效应是指当荷载作用时间较长时,由于土体的渐进应变会导致负摩阻力随时间逐渐增大。
因此,在进行单桩负摩阻力计算时,需要考虑土体的时间效应。
2. 摩擦角的确定:单桩负摩阻力的计算需要确定摩擦角值。
在考虑时间效应时,需要根据土体的渐进曲线来确定摩擦角的取值。
渐进曲线是指在荷载作用时间较长时,土体应力和应变之间的关系逐渐趋于稳定,并达到一个时间稳定的状态。
根据渐进曲线,可以确定摩擦角的取值。
3. 动力参数的考虑:在考虑时间效应的单桩负摩阻力计算中,需要考虑土体的动力参数,如动力剪切模量和动力黏聚力。
这些参数一般通过现场实测或室内试验获得,用于单桩负摩阻力计算时考虑土体的动力特性。
4. 荷载作用时间的选择:荷载作用时间是指荷载在一定时间内对土体施加的作用。
在考虑时间效应的单桩负摩阻力计算中,需要选择合适的荷载作用时间。
一般来说,时间越长,负摩阻力的时间效应越明显。
因此,选择荷载作用时间需要根据实际工程情况和要求来确定。
综上所述,大面积荷载下考虑时间效应的单桩负摩阻力计算方法,需要通过确定土体的时间效应、摩擦角、动力参数和荷载作用时间等参数,进行综合计算。
在实际工程中,可以通过试验或模拟计算来确定这些参数的值,从而得到准确的负摩阻力计算结果。
桩侧负摩阻力的计算一、规范对桩侧负摩阻力计算规定符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承载力时应计入桩侧负摩阻力:1、桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时;2、桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括填土)时;3、由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。
4、桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。
①对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: a k R N ≤ (7-9-1)②对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并可按下式验算基桩承载力:a ng k R Q N ≤+ (7-9-2)③当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入附加荷载验算桩基沉降。
注:本条中基桩的竖向承载力特征值只计中性点以下部分侧阻值及端阻值。
二、计算方法桩侧负摩阻力及其引起的下拉荷载,当无实测资料时可按下列规定计算: 1、中性点以上单桩桩周第 i 层土负摩阻力标准值,可按下列公式计算:i ni nsiq σξ'= (7-9-3) 当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:ri i σσ'=' 当地面分布大面积荷载时:rii p σσ'+=' (7-9-4) 其中, i i i m m m riz z ∆∑+∆='-=γγσ1121(7-9-5) (7-9-3)~(7-9-5)式中:nsi q ——第i 层土桩侧负摩阻力标准值;当按式(7-9-3)计算值大于正摩阻力标准值时,取正摩阻力标准值进行设计;ri σ'——由土自重引起的桩周第i 层土平均竖向有效应力;桩群外围桩自地面算起,桩群内部桩自承台底算起;i σ'——桩周第i 层土平均竖向有效应力;m i γγ,——分别为第i 计算土层和其上第m 土层的重度,地下水位以下取浮重度;m i z z ∆∆,——第i 层土、第m 层土的厚度;p ——地面均布荷载;ni ξ——桩周第i 层土负摩阻力系数,可按表7-9-1取值;表7-9-1 负摩阻力系数ξ注:①在同一类土中,对于挤土桩,取表中较大值,对于非挤土桩,取表中较小值;②填土按其组成取表中同类土的较大值;2、考虑群桩效应的基桩下拉荷载可按下式计算:∑⋅==ni i nsi n n gl q u Q 1η (7-9-6)⎪⎪⎭⎫ ⎝⎛+⋅=4d q d s s m n s ya x a n γπη (7-9-7)式中,n ——中性点以上土层数; l i ——中性点以上第i 土层的厚度;n η——负摩阻力群桩效应系数;ay ax s s ,——分别为纵横向桩的中心距;ns q ——中性点以上桩周土层厚度加权平均负摩阻力标准值;m γ——中性点以上桩周土层厚度加权平均重度(地下水位以下取浮重度)。
桩侧负摩阻力的计算一、规范对桩侧负摩阻力计算规定符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承载力时应计入桩侧负摩阻力:1、桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时;2、桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括填土)时;3、由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。
4、桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。
①对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: a k R N ≤ (7-9-1)②对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并可按下式验算基桩承载力:a ng k R Q N ≤+ (7-9-2)③当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入附加荷载验算桩基沉降。
注:本条中基桩的竖向承载力特征值只计中性点以下部分侧阻值及端阻值。
二、计算方法桩侧负摩阻力及其引起的下拉荷载,当无实测资料时可按下列规定计算: 1、中性点以上单桩桩周第 i 层土负摩阻力标准值,可按下列公式计算:i ni nsiq σξ'= (7-9-3) 当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:ri i σσ'=' 当地面分布大面积荷载时:rii p σσ'+=' (7-9-4) 其中, i i i m m m riz z ∆∑+∆='-=γγσ1121(7-9-5) (7-9-3)~(7-9-5)式中:nsi q ——第i 层土桩侧负摩阻力标准值;当按式(7-9-3)计算值大于正摩阻力标准值时,取正摩阻力标准值进行设计;ri σ'——由土自重引起的桩周第i 层土平均竖向有效应力;桩群外围桩自地面算起,桩群内部桩自承台底算起;i σ'——桩周第i 层土平均竖向有效应力;m i γγ,——分别为第i 计算土层和其上第m 土层的重度,地下水位以下取浮重度;m i z z ∆∆,——第i 层土、第m 层土的厚度;p ——地面均布荷载;ni ξ——桩周第i 层土负摩阻力系数,可按表7-9-1取值;表7-9-1 负摩阻力系数ξ注:①在同一类土中,对于挤土桩,取表中较大值,对于非挤土桩,取表中较小值;②填土按其组成取表中同类土的较大值;2、考虑群桩效应的基桩下拉荷载可按下式计算:∑⋅==ni i nsi n n gl q u Q 1η (7-9-6)⎪⎪⎭⎫ ⎝⎛+⋅=4d q d s s m n s ya x a n γπη (7-9-7)式中,n ——中性点以上土层数; l i ——中性点以上第i 土层的厚度;n η——负摩阻力群桩效应系数;ay ax s s ,——分别为纵横向桩的中心距;ns q ——中性点以上桩周土层厚度加权平均负摩阻力标准值;m γ——中性点以上桩周土层厚度加权平均重度(地下水位以下取浮重度)。
第33卷第4期2007年12月湖南交通科技HUNAN COMMUN I CATI O N SC I ENCE AND TECHNOLOGYVol .33No .4Dec .2007 收稿日期:2007Ο08Ο10作者简介:郭泽华(1982Ο),男,主要从事桥梁设计。
文章编号:1008Ο844X (2007)04Ο0064Ο02公路高填土桥台桩基负摩阻力计算初探郭泽华,李国芬,华 炜,张高勤(南京林业大学土木工程学院,江苏南京 210037) 摘 要:阐述了高填土桥台桩基负摩阻力产生的原因,介绍了桩基中性点位置确定,并结合工程实例,举例说明负摩阻力计算的详细方法与步骤。
关键词:高填土桥台;桩基;负摩阻力 中图分类号:U 443.1文献标识码:A 桩基础具有承载力高、地质适应性强、施工便捷、沉降小、工期短等特点,因此在桥梁设计中普遍采用。
桩的承载力是由桩底支承力与桩周土体的侧摩阻力两部分组成的。
在正常情况下,桩受竖向压力后,桩基相对桩侧土做向下运动,桩侧土对桩产生向上的正摩阻力,而在桩周上为回填土、软弱土层、湿陷性黄土、砂土液化等不良水文地质情况下,桩侧土对桩产生向下的负摩阻力。
这部分负摩阻力不但不是桩承载力的一部分,反而变成施加在桩上的外加荷载,它常会增加桩的沉降,如果在设计桥梁桩基时不考虑或未充分考虑负摩阻力,可能会造成桩端地基的屈服破坏、桩身失稳、桥墩不均匀沉降,从而引发上部结构开裂等不良后果,这样的例子在国内外有很多报道。
1989年,国道206线改造工程某一桥台直径1.2m 的钻孔灌注桩,桩长19.5m ,因对桥台台后高达5.3m 的填土产生的桩基负摩擦力考虑欠周,且在桩基成桩之前未对地表以下1.5~2.0m 的软土层进行处理,结果桥台桩基施工完成后,桩基沉降量达34c m [1]。
因而,正确计算负摩阻力对桩基础设计是至关重要的。
1 关于高填土桥台负摩阻力对于桥梁工程特别要注意桥头路堤高填土的桥台桩基础的负摩阻力问题,因路堤高填土是一个很大的地面荷载且位于桥台的一侧,路堤下地基土的压缩变形对桩产生的负摩阻力很可能使桥台桩基产生不均匀沉降。
负摩阻力计算实例本建筑场地为自重湿陷性黄土场地,湿陷等级为Ⅱ级(中等),依椐JGJ94-2008规范第5.4.2条规定,在计算基桩承载力时应计入桩侧负摩阻力。
首先,根据场地地质情况(以3#井处的地层为例)确定压缩4.2 桩基4.2.1 桩基类型及桩端持力层的选择依据勘察结果分析, 本建筑场地为自重湿陷性黄土场地,(自重湿陷量的计算值为120.5-151.6mm)湿陷等级为Ⅱ级(中等),湿陷性土层为②、③、④、⑤层,湿陷土层厚度为10-15m,湿陷最大深度17m(3#井)。
可采用钻孔灌注桩基础,第⑦层黄土状粉土属中密-密实状态,具低-中压缩性,不具湿陷性,平均层厚4.0m,可做为桩端持力层。
4.2.2 桩基参数的确定根据《建筑地基基础设计规范》(GB50007-2002)、《建筑桩基技术规范》(JGJ94-2008)、《湿陷性黄土地区建筑规范》(GB50025-2004)中的有关规定,结合地区经验,饱和状态下的桩侧阻力特征值qsia(或极限侧阻力标准值qsik)、桩端阻力特征值qpa(或极限端阻力标准值qpk¬)建议采用下列估算值:土层编号土层名称土的状态桩侧阻力特征值qsia(kPa) 极限侧阻力标准值qsik(kPa) 桩端阻力特征值qpa(kPa) 极限端阻力标准值qpk(kPa)②黄土状粉土稍密 11 23③黄土状粉土稍密 12 24④黄土状粉土稍密 12 24⑤黄土状粉土稍密 13 26⑥黄土状粉土中密 18 36⑦黄土状粉土中密 18 36 500 1000⑧黄土状粉土中密 20 40 600 12004.2.3 单桩承载力的估算依据JGJ94-2008规范,参照《建筑地基基础设计规范》GB50007-2002第8.5.5条,单桩竖向承载力特征值可按下式估算:Ra=qpaAp+up∑qsiaLi式中:Ra——单桩竖向承载力特征值;qpa 、qsia——桩端端阻力、桩侧阻力特征值;Ap——桩底端横截面面积= πd2(圆桩);up——桩身周边长度=πd;Li——第i层岩土的厚度;以3#孔处的地层为例,桩身直径取600mm,以第⑦层黄土状粉土做为桩端持力层,桩入土深度24.0m(桩端进入持力层的深度对于粘性土、粉土应不小于1.5d)。
负摩阻力计算实例本建筑场地为自重湿陷性黄土场地,湿陷等级为Ⅱ级(中等),依椐JGJ94-2008规范第5.4.2条规定,在计算基桩承载力时应计入桩侧负摩阻力。
首先,根据场地地质情况(以3#井处的地层为例)确定压缩4.2 桩基4.2.1 桩基类型及桩端持力层的选择依据勘察结果分析, 本建筑场地为自重湿陷性黄土场地,(自重湿陷量的计算值为120.5-151.6mm)湿陷等级为Ⅱ级(中等),湿陷性土层为②、③、④、⑤层,湿陷土层厚度为10-15m,湿陷最大深度17m(3#井)。
可采用钻孔灌注桩基础,第⑦层黄土状粉土属中密-密实状态,具低-中压缩性,不具湿陷性,平均层厚4.0m,可做为桩端持力层。
4.2.2 桩基参数的确定根据《建筑地基基础设计规范》(GB50007-2002)、《建筑桩基技术规范》(JGJ94-2008)、《湿陷性黄土地区建筑规范》(GB50025-2004)中的有关规定,结合地区经验,饱和状态下的桩侧阻力特征值qsia(或极限侧阻力标准值qsik)、桩端阻力特征值qpa(或极限端阻力标准值qpk¬)建议采用下列估算值:土层编号土层名称土的状态桩侧阻力特征值qsia(kPa) 极限侧阻力标准值qsik(kPa) 桩端阻力特征值qpa(kPa) 极限端阻力标准值qpk(kPa)②黄土状粉土稍密 11 23③黄土状粉土稍密 12 24④黄土状粉土稍密 12 24⑤黄土状粉土稍密 13 26⑥黄土状粉土中密 18 36⑦黄土状粉土中密183****1000⑧黄土状粉土中密 20 40 600 12004.2.3 单桩承载力的估算依据JGJ94-2008规范,参照《建筑地基基础设计规范》GB50007-2002第8.5.5条,单桩竖向承载力特征值可按下式估算:Ra=qpaAp+up∑qsiaLi式中:Ra——单桩竖向承载力特征值;qpa 、qsia——桩端端阻力、桩侧阻力特征值;Ap——桩底端横截面面积= πd2(圆桩);up——桩身周边长度=πd;Li——第i层岩土的厚度;以3#孔处的地层为例,桩身直径取600mm,以第⑦层黄土状粉土做为桩端持力层,桩入土深度24.0m(桩端进入持力层的深度对于粘性土、粉土应不小于1.5d)。