第3讲 磁场对运动电荷的作用
- 格式:pdf
- 大小:329.81 KB
- 文档页数:8
问题引领,自主导学——《磁场对运动电荷的作用力》教学设计摘要:近年来,为了提高课堂效率,培养学生提出问题、解决问题、自主学习、合作学习能力,以问题为引领的自主导学模式悄然兴起。
教师通过课堂问题引领学生积极思考,让学生在自主学习、合作交流中加深对知识的理解、应用,并主动建构。
关键词:问题引领、自主导学、合作交流一、教学设计思路教材分析:本节课是人教版选修3-1第三章第5节《磁场对运动电荷的作用》的内容。
涉及到的知识点有“洛伦兹力的方向和大小”、“电视显像管的工作原理”。
在前一节学生学习了磁场对通电导线的作用——安培力,会用左手定则判断安培力的方向并计算大小,这为本节课进一步研究磁现象的电本质——洛伦兹力打下了基础。
对洛伦兹力的方向和大小的探究过程能很好的培养学生的合作交流能力,让学生体验科学探究的一般过程,是本节课的重点。
另一方面,由于时代在进步,电视机向薄发展,所以电视机显像管原理可以简单带过或用其他实例替代。
教学思路:为激发学生学习兴趣,本节课以自然现象(极光)为切入口引入新课,结合实验探究,采用问题引领,启发学生对洛伦兹力的方向和大小进行探究。
让学生在科学探究体验过程中,合作学习、深入讨论、总结提升。
二、教学目标1.知识与技能(1)知道磁场对电流作用(安培力)实质是磁场对运动电荷作用(洛仑兹力)的宏观表现。
(2)知道洛仑兹力的方向由左手定则判定,并会熟练地应用。
(3)能根据安培力的表达式F=BIL推导洛仑兹力表达式f=qvB,并能够进行简单计算。
2.过程与方法(1)通过实验探究让学生总结洛伦兹力的方向的判断方法;(2)通过理论探究让学生总结洛伦兹力的大小的计算方法。
3.情感、态度与价值观(1)提高学生透过现象认清本质的认知能力;(2)培养学生主动探索、善于分析的科学态度。
三、教学重难点1.利用左手定则会判断洛伦兹力的方向;2.掌握垂直进入磁场方向的带电粒子受到洛伦兹力大小的计算。
六、板书设计3.5磁场对运动电荷的作用微观宏观七、课后作业1.上网查阅资料:极光的形成2.课第2、3、4题教学反思有幸上了一节《磁场对运动电荷的作用》,在设计教学流程、改进实验装置、思考问题导学的学案、课堂教学、课后观摩及专家点评过程中学习到不少新的理念、新的知识。
一、洛伦兹力1.定义:磁场对运动电荷的作用力叫洛伦兹力.2.大小:(1)在磁场中当运动电荷的速度方向与磁场垂直时,洛伦兹力的大小F=qvB.(2)当运动电荷的速度v的方向与磁感应强度B的方向平行时,洛伦兹力的大小F=0.(3)当电荷运动方向与磁场方向夹角为θ时,洛伦兹力的大小F=qvBsin θ.(4)推导:洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏观表现.由安培力公式可以推导出洛伦兹力公式.3.洛伦兹力的方向(1)运动电荷在磁场中所受的洛伦兹力的方向可用左手定则来判定.伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内,让磁感线垂直穿入手心,四指指向正电荷的运动方向(或负电荷运动的反方向),拇指所指的方向就是运动电荷所受的洛伦兹力的方向.(2)洛伦兹力的方向总是垂直于速度和磁场所在的平面.但v和B不一定垂直二、带电粒子在匀强磁场中的运动(不计重力)1.若带电粒子运动方向与磁场方向平行,则粒子不受洛伦兹力作用,做匀速直线运动.2.若带电粒子运动方向与磁场方向互相垂直,则粒子将做匀速圆周运动,洛伦兹力提供向心力,其运动周期T=2πm/qB (与速度大小无关),轨道半径r=mv/qB.3.由于洛伦兹力始终和速度方向互相垂直,所以洛伦兹力对运动的带电粒子不做功.图831三、质谱仪与回旋加速器1.质谱仪构造和工作原理(1)结构:如图831所示,质谱仪由粒子源、加速电场、匀强磁场和照相底片组成.2.回旋加速器的构造和工作原理(1)构造:如图832所示,回旋加速器由两个半圆的D形盒组成,D形盒处于匀强磁场中,为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个交变电压.图8321.如何处理带电粒子在匀强磁场中的圆周运动?解答:带电粒子在匀强磁场中的圆周运动是高中物理的一个难点,也是高考的热点.解这类问题既要用到物理中的洛伦兹力、圆周运动的知识,又要用到数学平面几何中的圆及解析几何知识.带电粒子在匀强磁场中做圆周运动问题的分析思路归纳如下:(1)确定圆所在的平面.由左手定则和立体几何知识可知,粒子做匀速圆周运动的轨迹在洛伦兹力f与速度v的方向所确定的平面内.(2)确定圆心的位置.根据洛伦兹力f始终与速度v的方向垂直这一特点,画出粒子运动轨迹上任两点(一般是射入与射出有界磁场的两点)的洛伦兹力方向(即垂直于这两点速度的方向),其延长线的交点即为圆心.(5)注意圆周运动中有关对称规律.如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.(6)带电粒子在有界磁场中运动的极值问题.掌握下列结论,再借助数学方法分析.①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长越长,则圆心角越大,带电粒子在有界磁场中运动的时间越长.③当速率v变化时,圆心角越大,运动时间越长.2.什么原因使洛伦兹力问题出现多解?解答:带电粒子在洛伦兹力作用下做匀速圆周运动,由于多种因素的影响,常使问题形成多解.多解形成原因一般包含下述几个方面.(1)带电粒子电性不确定而形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度下,正、负粒子在磁场中运动轨道不同,会形成双解.(2)磁场方向不确定而形成多解有些题目只告诉了磁感应强度大小,而未具体指出磁感应强度的方向,此时必须考虑磁感应强度的方向不确定而形成的多解.(3)临界状态不唯一而形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧,因此,它可能穿过去了,也可能转过一角度后从入射界面飞出.(4)运动的重复性而形成多解带电粒子在部分是电场、部分是磁场的空间中运动时,运动往往具有往复性,因而形成多解.3.为什么带电粒子经回旋加速器加速后的最终能量与加速电压无关?解答:加速电压越高,带电粒子每次加速的动能增量越大,回旋半径也增加越多,导致带电粒子在D形盒中的回旋次数越少。
第三章第四节磁场对运动电荷的作用力教学目标:(一)、知识与技能:1.知道什么是洛伦兹力,知道电荷运动方向与磁感应强度的方向平行时,电荷受到的洛伦兹力最小;电流方向与磁感应强度方向垂直时,电荷受到的洛伦兹力最大,大小等于qvB.2.会用公式F=qvB解答有关问题。
3.会用左手定则解答有关带电粒子在磁场中受力方向的问题。
(二)、过程与方法:1、通过对洛伦兹力大小和方向的推导和判断过程,培养学生一种:推理--假设--实验验证,的重要物理思维方法。
2、通过应用洛伦兹力分析和解决问题培养学生综合分析能力。
(三)、情感与价值观:提高学生热爱科学,严谨的科学态度。
教学重点:1、理解安培力实际就是洛伦兹力在宏观上的表现。
2、洛伦兹力的方向判断,以及公式F=qvB的相关应用。
教学难点:1、洛伦兹力公式F=qvB的推导及适用条件。
2、洛伦兹力在力学上综合应用。
教学方法分析推理、思考讨论、归纳总结相结合教学过程一、课题导入(5分钟左右)展示“极光”的图片,提出问题:极光为什么只在地球的南北两极出现,而不会在赤道上空出现?复习回顾:1、安培力的大小和方向,2、电流的形成原因。
启示(导课):磁场对电流具有磁场力的作用(安培力),电流是由于电荷定向运动形成的,由此可猜想:磁场对电流的作用是磁场对运动电荷作用的体现。
演示实验、验证猜想:①介绍(简介)阴极射线管及工作原理。
②观察阴极射线(电子束)在磁场中发生明显的偏转现象。
让学生观察时思考:1、在没有磁场时,接通电源可观察到什么?2、光束实质上是什么?3、若在电子束的路径上加磁场,可以观察到什么现象?4、改变磁场的方向,通过观查从而判断运动的电子在各个方向磁场中的受力方向师生总结:阴极射线(电子束)在磁场中偏转,说明电子束在磁场中确实受到某种力的作用,这个力就是今天我们要学习的洛仑兹力。
二、新课教学(30分钟左右)㈠:洛伦兹力物理学中把磁场对运动电荷的作用力称为洛伦兹力(物理学家洛伦兹最先提出这一观点)。
磁场对运动电荷的作用1. 引言在物理学中,磁场是指存在于物体周围的力场,可以对运动中的电荷施加作用力。
电荷在磁场中受到的力和运动状态之间存在着密切的关系。
本文将探讨磁场对运动电荷的作用以及其物理原理。
2. 洛伦兹力磁场对运动电荷产生的作用力称为洛伦兹力。
根据洛伦兹力定律,洛伦兹力的大小与电荷的电量、电荷的速度以及磁场的强度和方向有关。
洛伦兹力的方向垂直于电荷的速度方向和磁场方向,遵循右手定则。
3. 右手定则右手定则是用于确定洛伦兹力方向的常用方法。
当右手拇指指向电荷的速度方向,四指指向磁场的方向时,手心所指的方向即为洛伦兹力的方向。
右手定则为我们理解磁场对电荷作用力提供了便利。
4. 磁场对直线运动电荷的作用当电荷沿直线运动时,如果与磁场垂直,则洛伦兹力将偏离电荷的直线运动方向,并且始终垂直于电荷的速度方向和磁场方向。
这是由于洛伦兹力的方向始终与速度和磁场互相垂直,导致电荷运动轨迹弯曲,形成圆弧轨迹。
5. 磁场对曲线运动电荷的作用当电荷沿曲线运动时,磁场对其的作用将影响电荷在曲线上的运动轨迹。
在曲线上的每一点上,电荷的速度方向和磁场方向不再垂直。
由于洛伦兹力始终垂直于速度和磁场方向,电荷将受到一个向轨迹中心的向心力。
这使得电荷在曲线上的运动具有向心加速度的特征。
6. 磁场对静止电荷的作用磁场对静止电荷的作用力为零。
这是因为洛伦兹力的大小与电荷的速度有关,而静止的电荷速度为零,因此洛伦兹力也为零。
磁场只对运动中的电荷产生作用。
7. 磁场对带电粒子的运动轨迹的影响磁场对带电粒子的运动轨迹产生明显的影响。
在强磁场的作用下,带电粒子将受到明显的偏转,形成类似于螺旋线状的轨迹。
这种现象在粒子加速器以及磁共振成像技术中得到了广泛应用。
8. 磁场对电流的作用电流也是由运动电荷产生的,因此磁场也对电流产生作用。
根据安培定律,电流在磁场中受到的力的大小与电流强度、导线长度以及磁场的强度和方向有关。
磁场对电流的作用可用于磁力计、电动机、发电机等各种电磁设备中。
一、洛伦兹力的大小和方向 1.定义:磁场对运动电荷的作用力. 2.大小(1)v ∥B 时,F =0; (2)v ⊥B 时,F =q v B ; (3)v 与B 的夹角为θ时,F =q v Bsin θ. 3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向; (2)方向特点:F ⊥B ,F ⊥v .即F 垂直于B 、v 决定的平面.(注意B 和v 可以有任意夹角) 4.做功:洛伦兹力不做功. 二、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以入射速度v 做匀速直线运动.2.若v ⊥B 时,带电粒子在垂直于磁感线的平面内,以入射速度v 做匀速圆周运动.3.基本公式(1)向心力公式:q v B =m v 2r ; (2)轨道半径公式:r =m v Bq ; (3)周期公式:T =2πmqB . 注意:带电粒子在匀强磁场中运动的周期与速率无关.命题点一 对洛伦兹力的理解 1.洛伦兹力的特点(1)利用左手定则判断洛伦兹力的方向,注意区分正、负电荷. (2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化. (3)运动电荷在磁场中不一定受洛伦兹力作用. (4)洛伦兹力一定不做功.2.洛伦兹力与安培力的联系及区别(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力,都是磁场力. (2)安培力可以做功,而洛伦兹力对运动电荷不做功.3.洛伦兹力与电场力的比较磁场对运动电荷的作用命题点二带电粒子在有界匀强磁场中的圆周运动模型1 直线边界磁场:直线边界,粒子进出磁场具有对称性(如图所示)图a 中t =T 2=πmBq图b中t=(1-θπ)T=(1-θπ)2πmBq=2m(π-θ)Bq图c中t=θπT=2θm Bq模型2平行边界磁场平行边界存在临界条件(如图所示)模型3圆形边界磁场:沿径向射入圆形磁场必沿径向射出,运动具有对称性(如图所示)r=R tan θt=θπT=2θmBqθ+α=90°命题点三带电粒子在磁场运动的多解问题。