概率题
- 格式:rtf
- 大小:1.26 MB
- 文档页数:3
事件的概率试题及答案1. 单选题:如果一个骰子被公平地掷出,那么掷出偶数的概率是多少?A. 1/2B. 1/3C. 3/8D. 1/6答案:A2. 多选题:以下哪些事件是互斥的?A. 掷一枚硬币得到正面或反面B. 掷骰子得到1或得到6C. 掷骰子得到奇数或得到偶数D. 掷骰子得到3或得到5答案:B, D3. 判断题:如果一个事件的概率是0,那么这个事件不可能发生。
答案:正确4. 填空题:如果一个事件的概率是0.5,那么它的补事件的概率是______。
答案:0.55. 计算题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。
答案:5/86. 简答题:解释什么是条件概率,并给出一个例子。
答案:条件概率是指在某个条件或事件已经发生的条件下,另一个事件发生的概率。
例如,如果已知一个班级里有50%的学生是女生,那么在随机挑选一个学生是女生的条件下,这个学生是左撇子的概率,就是条件概率。
7. 应用题:一个工厂生产两种类型的零件,A型和B型。
A型零件的合格率为90%,B型零件的合格率为80%。
如果从生产线上随机抽取一个零件,发现它是合格的,那么这个零件是A型的概率是多少?答案:设事件A为零件是A型,事件B为零件合格。
根据贝叶斯定理,P(A|B) = P(B|A) * P(A) / P(B)。
已知P(A) = 0.5,P(B|A) = 0.9,P(B) = P(B|A) * P(A) + P(B|A') * P(A') = 0.9 * 0.5 + 0.8 * 0.5 = 0.85。
所以P(A|B) = 0.9 * 0.5 / 0.85 ≈ 0.529。
8. 论述题:描述概率论在现实生活中的应用,并举例说明。
答案:概率论在现实生活中有广泛的应用,例如在风险评估、保险计算、医学研究、天气预报等领域。
例如,在医学研究中,研究人员可能会使用概率论来评估某种治疗方法对特定疾病的效果,通过分析治疗组和对照组的治愈率差异,来确定治疗方法的有效性。
一、概率公式的题目1、已知()()()0.3,0.4,0.5,P A P B P AB === 求().P B A B ⋃解:()()()()()()()()0.70.510.70.60.54P A P AB P AB P B A B P A B P A P B P AB --⋃====+-⋃+-2、已知()()()0.7,0.4,0.2,P A P B P AB === 求().P A A B ⋃解:()()()()()()()0.220.70.29P A A B P AB P A A B P A B P A P B P AB ⎡⎤⋃⎣⎦⋃====+⋃+-。
3、已知随机变量(1)XP ,即X 有概率分布律{}1(0,1,2)!e P X k k k -===,并记事件{}{}2,1A X B X =≥=<。
求:(1)()P A B ⋃; (2) ()P A B -; (3) ()P B A 。
解:(1)()(){}{}111()12,1111P A B P A B P AB P X X P X e -⋃=-⋃=-=-<≥=-==-;(2)(){}{}{}{}1()2,1210112;P A B P AB P X X P X P X P X e --==≥≥=≥=-=-==-(3)()()(){}{}{}{}{}111,201.20122P BA P X X P X e P B A P X P X P X e P A --<<======<=+=4、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,它是甲射中的概率是多少?解: 设A=“甲射击一次命中目标”,B=“乙射击一次命中目标”, (())()()()()()()P A A B P A P A A B P A B P A P B P AB 侨==+-=0.660.750.60.50.60.58==+-5、为了防止意外,在矿内同时设两种报警系统,A B ,每种系统单独使用时,其有效的概率系统A 为0.92,系统B 为0.93,在A 失灵的条件下,B 有效的概率为0.85,求: (1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B 失灵的条件下,A 有效的概率。
概率单元测试题及答案大全一、选择题1. 一个袋子里有3个红球和2个蓝球,随机取出一个球,下列哪个事件的概率最大?A. 取出红球B. 取出蓝球C. 取出白球D. 取出黑球答案:A2. 投掷一枚公正的硬币,出现正面的概率是多少?A. 0.2B. 0.5C. 0.8D. 1答案:B3. 如果事件A和事件B是互斥的,且P(A)=0.3,P(B)=0.4,那么P(A∪B)是多少?A. 0.1B. 0.3C. 0.7D. 无法确定答案:C二、填空题4. 一个骰子有6个面,每个面出现的概率是________。
答案:1/65. 如果一个事件的概率为0,那么这个事件是________。
答案:不可能事件6. 一个事件的概率为1,表示这个事件是________。
答案:必然事件三、计算题7. 一个袋子里有5个白球和5个黑球,随机取出2个球,求取出的2个球都是白球的概率。
答案:首先计算取出第一个白球的概率为5/10,然后计算在取出第一个白球后,再取出第二个白球的概率为4/9。
所以,两个都是白球的概率为(5/10) * (4/9) = 2/9。
8. 一个班级有30个学生,其中15个男生和15个女生。
随机选择3个学生,求至少有1个女生的概率。
答案:首先计算没有女生的概率,即选择3个男生的概率为(15/30) * (14/29) * (13/28)。
然后用1减去这个概率,得到至少有1个女生的概率为1 - [(15/30) * (14/29) * (13/28)]。
四、简答题9. 什么是条件概率?请给出一个例子。
答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。
例如,如果我们知道一个班级中有50%的学生是左撇子,那么在随机选择一个学生是左撇子的条件下,这个学生是数学专业的学生的概率。
10. 请解释什么是独立事件,并给出一个例子。
答案:独立事件是指一个事件的发生不影响另一个事件发生的概率。
例如,投掷一枚公正的硬币两次,第一次的结果不会影响第二次的结果。
概率论经典题目
概率论是数学的一个重要分支,它研究随机事件的发生概率及其规律性。
在学习概率论的过程中,经典题目是必不可少的一部分,下面介绍几个常见的概率论经典题目。
1. 排列组合问题:从n个不同元素中取出m个元素,有多少种不同的取法?
2. 独立事件的概率:两个独立事件A和B同时发生的概率是多少?
3. 条件概率问题:已知A发生的条件下,B发生的概率是多少?
4. 期望值和方差:在一次随机试验中,事件发生的可能性不同,每个事件的概率和相应的收益也不同,如何计算这个随机试验的平均收益和方差?
5. 单点和连续型随机变量:在一个区间[a, b]内随机选取一个实数x,x的取值是随机的,如何计算x的期望值和方差?
以上是概率论的几个典型问题,通过这些问题的训练,可以加深对概率论的理解,提高解决问题的能力。
- 1 -。
概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。
答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。
答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。
答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。
四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。
答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。
2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。
求事件A和事件B同时发生的概率。
答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。
五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。
答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。
例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。
高中概率试题及答案一、选择题(每题2分,共10分)1. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 0.5B. 0.25C. 0.75D. 12. 从52张扑克牌中随机抽取一张,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/3D. 1/133. 一个袋子里有3个红球和2个蓝球,随机取出一个球,取到蓝球的概率是多少?A. 1/3B. 1/2C. 2/5D. 3/54. 一个事件的概率为0.3,那么它的对立事件的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.65. 一个班级有30名学生,其中10名男生和20名女生,随机抽取一名学生,抽到女生的概率是多少?A. 1/3B. 2/3C. 1/2D. 3/4二、填空题(每题3分,共15分)6. 一个骰子有6个面,每个面出现的概率是_________。
7. 如果一个事件的概率是0.4,那么它发生的概率是_________。
8. 从10个不同的球中随机抽取3个,不放回,抽到特定3个球的概率是_________。
9. 一个袋子里有5个红球和5个蓝球,随机取出2个球,两个球都是红球的概率是_________。
10. 一个事件的概率为0.2,那么它不发生的概率是_________。
三、解答题(每题5分,共10分)11. 一个袋子里有2个红球和3个蓝球,随机取出2个球,求至少一个红球的概率。
12. 一个班级有50名学生,其中25名男生和25名女生。
随机抽取3名学生,求至少有1名男生的概率。
四、计算题(每题7分,共14分)13. 一个袋子里有5个红球,3个蓝球和2个黄球。
随机取出3个球,求取出的球中至少有一个红球的概率。
14. 一个盒子里有10个球,其中3个是中奖球。
随机抽取2个球,求至少抽到一个中奖球的概率。
五、应用题(每题8分,共16分)15. 一个学校有500名学生,其中300名是高中生,200名是初中生。
随机抽取10名学生,求至少有8名高中生的概率。
初三概率试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机摸出一个球,摸到红球的概率是多少?A. 0.5B. 0.6C. 0.8D. 0.4答案:B2. 抛一枚硬币,正面朝上的概率是多少?A. 0B. 0.5C. 1D. 0.25答案:B3. 如果一个事件的概率是0.2,那么这个事件是:A. 必然事件B. 不可能事件C. 随机事件D. 确定事件答案:C4. 一个袋子里有10个球,其中2个是白球,8个是黑球。
随机抽取一个球,抽到白球的概率是多少?A. 0.2B. 0.25C. 0.8D. 0.1答案:A5. 掷一个六面骰子,掷出偶数的概率是多少?A. 0.5B. 0.25C. 0.75D. 0.33答案:A二、填空题6. 如果一个事件的概率是1,那么这个事件是_________。
答案:必然事件7. 一个袋子里有4个红球和6个蓝球,随机摸出一个球,摸到蓝球的概率是_________。
答案:0.68. 抛两枚硬币,两枚硬币都是正面的概率是_________。
答案:0.259. 一个袋子里有5个红球和5个蓝球,随机摸出一个球,摸到红球的概率是_________。
答案:0.510. 掷一个六面骰子,掷出3的概率是_________。
答案:1/6三、计算题11. 一个袋子里有3个红球,2个蓝球,5个绿球。
随机摸出一个球,求摸到红球的概率。
答案:摸到红球的概率 = 红球数量 / 总球数 = 3 / (3+2+5) = 3/10 = 0.312. 一个袋子里有10个球,其中3个是白球,7个是黑球。
随机抽取两次球,每次抽取后放回,求两次都抽到白球的概率。
答案:两次都抽到白球的概率 = 抽到白球的概率 ×抽到白球的概率 = (3/10) × (3/10) = 9/100 = 0.0913. 一个袋子里有5个红球和5个蓝球,随机摸出两个球,求摸到两个红球的概率。
答案:摸到两个红球的概率 = (红球组合数 / 总组合数) = (C(5,2) / C(10,2)) = (10 / 45) = 2/9 ≈ 0.22214. 抛两枚硬币,求至少一枚硬币正面朝上的概率。
大学概率试题及答案一、选择题(每题5分,共20分)1. 随机变量X的概率密度函数为f(x)=2x,0≤x≤1,0,其他。
则P(0.5≤X≤0.8)等于:A. 0.15B. 0.25C. 0.35D. 0.45答案:A2. 设随机变量X服从标准正态分布,P(X>1)=α,则α的值为:A. 0.1587B. 0.8413C. 0.3446D. 0.5答案:A3. 从5件产品中随机抽取3件,其中2件次品,3件正品,求至少抽到1件正品的概率:A. 0.6B. 0.8C. 0.9D. 1答案:C4. 抛一枚均匀的硬币3次,求出现至少2次正面的概率:A. 0.375B. 0.5C. 0.625D. 0.75答案:C二、填空题(每题5分,共20分)1. 设随机变量X服从二项分布B(n,p),其中n=10,p=0.5,求X的期望EX=______。
答案:52. 从10件产品中随机抽取2件,其中3件是次品,7件是合格品,求至少抽到1件次品的概率为______。
答案:0.73. 设随机变量X服从泊松分布,其参数λ=4,求P(X=2)=______。
答案:0.34. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,求抽到2个红球的概率为______。
答案:5/21三、解答题(每题10分,共60分)1. 某校有200名学生,其中100名男生和100名女生。
从这200名学生中随机抽取10名学生进行调查,求至少有6名女生的概率。
答案:首先确定这是一个超几何分布问题。
设随机变量X表示抽取的10名学生中女生的人数。
X服从超几何分布H(10, 100, 100)。
我们需要计算P(X≥6)。
计算得P(X≥6)=P(X=6)+P(X=7)+P(X=8)+P(X=9)+P(X=10)。
通过超几何分布的公式计算各个概率,最后求和得到结果。
2. 一个工厂生产的产品中,次品率为0.05。
现从一批产品中随机抽取100件进行检验,求恰好有5件次品的概率。
概率计算练习题一、基础练习题1. 某班级共有50名学生,其中35人会弹钢琴,25人会拉小提琴,15人既会弹钢琴也会拉小提琴。
现从该班级中随机选择一名学生,求该学生既不会弹钢琴也不会拉小提琴的概率。
2. 有一批产品,其中20%是次品。
从中随机抽取3个产品,求恰好有一个是次品的概率。
3. 一批产品中有30%的次品。
从中随机抽取5个产品,求至少有一个是次品的概率。
4. 一批产品中40%的产品是甲品质,30%是乙品质,30%是丙品质。
甲品质产品被使用后有4%的概率出现故障,乙品质产品故障的概率为7%,丙品质产品故障的概率为15%。
现从该批产品中随机选择一件,求其出现故障的概率。
5. 一批产品中有20%的次品。
从中抽取10个产品,求抽出的产品中次品数大于等于2的概率。
二、进阶练习题1. 某班级共有80名学生,其中40人学习钢琴,30人学习小提琴,20人学习吉他。
已知学习钢琴和学习小提琴的学生共有15人,学习小提琴和学习吉他的学生共有10人,学习钢琴和学习吉他的学生共有5人,共有3人同时学习钢琴、小提琴和吉他。
现从该班级中随机选择一名学生,求该学生学习吉他的概率。
2. 一批产品中有30%的次品,已知次品中有20%是甲类次品,60%是乙类次品,20%是丙类次品。
从该批产品中随机抽取一件,若抽到的是次品,请依次求此产品为甲类次品、乙类次品、丙类次品的概率。
3. 一家快餐店的产品销售情况统计如下:25%的顾客购买汉堡,30%的顾客购买薯条,40%的顾客购买汽水。
已知购买汉堡和薯条的顾客占总顾客数的20%,购买薯条和汽水的顾客占总顾客数的15%,购买汉堡和汽水的顾客占总顾客数的10%,同时购买汉堡、薯条和汽水的顾客占总顾客数的5%。
现在从该快餐店中随机选择一位顾客,求该顾客购买汽水的概率。
4. 一篮子中有红、蓝、绿三种颜色的球,比例为5:4:1。
从篮子中随机抽取5个球,求抽取的球中至少有两个是红球的概率。
5. 某城市每天发生车辆事故的概率为0.03。
03983 - dggz020********
为了抽查某市摩托车年检情况,在某主干道上采取抽取车牌个位数为6的摩托车检查,这种抽样方式是()
A.简单随机抽样B.抽签法
C.系统抽样D.分层抽样
04228 - dggz0201150200020
为了了解中年知识分子在知识分子中的比例,对某科研单位全体知识分子的年龄进行了登记,结果如下:(单位:岁)
42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29,48,45,53,48,37,28,46,50,37,44,42,39,51,52,62,47,59,46,45,67,53,49,65,47,54,63,57,43,46,58.
列出样本的频率分布表,绘制频率分布直方图.
05364 - dggz0201140270001
盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性相同),记第一次与第二次取到球的标号之和为ξ,
(1)求随机变量ξ的分布列;
(2)求随机变量ξ的期望Eξ.
06114 - dggz0201150570005
某先生居住在城镇的A处,准备开车到单位B处上班.若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图所示.(例如:A→C→D
算作两个路段:路段AC发生堵车事件的概率为
1
10,路段CD发生堵车事件的概率为
1
15).
(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机容量ξ,求ξ的数学期望Eξ.
06144 - dggz0201140370012
多向飞碟是奥运会的竞赛项目,它是由跑靶机把碟靶(射击目标)在一定范围内从不同方向飞出,每抛出一个碟靶,都允许运动员射击两次,一运动员在进行多向飞碟射击训练时,每一次射击命中碟靶的概率P 与运动员离碟靶的距离s (m )成反比,现有一碟靶抛出后离运动员的距离S (m )与飞行时间t (秒)满足S=15(t+1)(40≤≤t ).若运动员在碟靶飞出0.5秒时进行第一次射击,命中的概率为0.8,若他发现没有命中,则通过迅速调整,在第一次射击后再经过0.5秒进行第二次射击,求他命中此碟靶的概率.
09179 - kbtb0201280300030
已知a 为常数,函数
()()ln f x x x ax =-有两个极值点x 1,x 2(x 1<x 2)( ). A .
()10f x >,()212f x >- B .()10f x <,()212f x <-
C .()10f x >,
()212f x <- D .()10f x <,
()212f x >-
08269 - kbtb020********
甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).
①()2
5P B =;
②
()15
|11P B A =
; ③事件B 与事件A 1相互独立;
④A 1,A 2, A 3是两两互斥的事件;
⑤P (B)的值不能确定,因为它与A 1,A 2, A 3中空间哪一个发生有关
08533 - dggz0201100100011
一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别为P1和P2,则
A. p1=p2
B. p1<p2
C. p1>p2D.以上三种情况都有可能
08275 - dgtb020107010200001
品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.
现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令
X=|1-a1|+|2-a2|+|3-a3|+|4-a4|,
则X是对两次排序的偏离程度的一种描述.
(Ⅰ)写出X的可能值集合;
(Ⅱ)假设a1,a2,a3,a4等可能地为1,2,3,4的各种排列,求X的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有X≤2,
(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);
(ii)你认为该品酒师的酒味鉴别功能如何?说明理由.
08521 - kbgk0201011700009
22某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%.生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元.设生产各种产品相互独立
23记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列
24求生产4件甲产品所获得的利润不少于10万元的概率。