概率与统计(07-15年山东高考题文)
- 格式:doc
- 大小:412.00 KB
- 文档页数:6
山东省历年高考题(2007—2015)2007年 山东省 高考数学试题8、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,4512、位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位`于点(23),的概率是( )A .212⎛⎫ ⎪⎝⎭B .3231C 2⎛⎫ ⎪⎝⎭C .2231C 2⎛⎫ ⎪⎝⎭D .312231C C 2⎛⎫⎪⎝⎭18、设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计).(Ⅰ)求方程20x bx c ++=有实根的概率; (Ⅱ)求ξ的分布列和数学期望;(Ⅲ)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率.0 13 14 15 16 17 18 19秒频率/组距0.36 0.340.180.06 0.04 0.027、在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手。
若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为 (A )511(B )681 (C )3061(D )40818、右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A )304.6 (B )303.6 (C)302.6 (D)301.618、甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。
2015年高考数学真题分类汇编专题11 概率和统计文1.【2015高考新课标1,文4】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A)310(B)15(C)110(D)120【答案】C【解析】从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C.【考点定位】古典概型【名师点睛】求解古典概型问题的关键是找出样本空间中的基本事件数及所求事件包含的基本事件数,常用方法有列举法、树状图法、列表法法等,所求事件包含的基本事件数与样本空间包含的基本事件数的比值就是所求事件的概率.2.【2015高考重庆,文4】重庆市2013年各月的平均气温(°C)数据的茎叶图如下0 8 91 2 5 82 0 03 3 83 1 2则这组数据中的中位数是()(A) 19 (B) 20 (C ) 21.5 (D )23【答案】B【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20,故选B.【考点定位】茎叶图与中位数.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.3.【2015高考四川,文3】某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )(A )抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法 【答案】C【解析】按照各种抽样方法的适用范围可知,应使用分层抽样.选C【考点定位】本题考查几种抽样方法的概念、适用范围的判断,考查应用数学方法解决实际问题的能力.【名师点睛】样本抽样是现实生活中常见的事件,一般地,抽签法和随机数表法适用于样本总体较少的抽样,系统抽样法适用于要将样本总体均衡地分为n 个部分,从每一部分中按规则抽取一个个体;分层抽样法则是当总体明显的分为几个层次时,在每一个层次中按照相同的比例抽取抽取样本.本题条件适合于分层抽样的条件,故应选用分层抽样法.属于简单题. 4.【2015高考陕西,文2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167(高中部)(初中部)男男女女60%70%【答案】C【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=,故答案选C .【考点定位】概率与统计.【名师点睛】1.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表各部分数量占总数的百分数.2.通过扇形图可以很清晰地表示各部分数量同总数之间的关系.5.【2015高考湖南,文2】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A 、3B 、4C 、5D 、6 【答案】B【解析】根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取207435⨯= (人),故选B.【考点定位】茎叶图【名师点睛】系统抽样是指当总体中个数较多时,将总体分成均衡的几部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本的抽样方法,其实质为等距抽样. 茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.缺点为不能直接反映总体的分布情况. 由数据集中情况可以估计平均数大小,再根据其分散程度可以估测方差大小.6.【2015高考山东,文6】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的标号为( ) (A )①③ (B) ①④ (C) ②③ (D) ②④ 【答案】B【解析】甲地数据为:26,28,29,31,31;乙地数据为:28,29,30,31,32; 所以,2628293131295x ++++==甲,2829303132305x ++++==乙,2222221s [(2629)(2829)(2929)(3129)(3129)] 3.65=-+-+-+-+-=甲,2222221s [(2830)(2930)(3030)(3130)(3230)]25=-+-+-+-+-=乙,即正确的有①④,故选B .【考点定位】1.茎叶图;2.平均数、方差、标准差.【名师点睛】本题考查茎叶图的概念以及平均数、方差、标准差的概念及其计算,解答本题的关键,是记清公式,细心计算.本题属于基础题,较全面地考查了统计的基础知识.7.【2015高考湖北,文2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1365石 【答案】B .【解析】设这批米内夹谷的个数为x ,则由题意并结合简单随机抽样可知,282541534x=,即281534169254x =⨯≈,故应选B . 【考点定位】本题考查简单的随机抽样,涉及近似计算.【名师点睛】本题以数学史为背景,重点考查简单的随机抽样及其特点,通过样本频率估算总体频率,虽然简单,但仍能体现方程的数学思想在解题中的应用,能较好考查学生基础知识的识记能力和估算能力、实际应用能力.8.【2015高考山东,文7】在区间[]0,2上随机地取一个数x ,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34 (B )23 (C )13 (D )14【答案】A【解析】由121-1log 2x ≤+≤()1得,11122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤(),所以,由几何概型概率的计算公式得,332204P -==-,故选A . 【考点定位】1.几何概型;2.对数函数的性质.【名师点睛】本题考查几何概型及对数函数的性质,在理解几何概型概率计算方法的前提下,解答本题的关键,是利用对数函数的单调性,求得事件发生的x 范围. 本题属于小综合题,较好地考查了几何概型、对数函数等基础知识.9.【2015高考陕西,文12】 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( )A .3142π+ B . 112π+ C .1142π- D . 112π- 【答案】C【解析】2222(1)||(1)1(1)1z x yi z x y x y =-+⇒=-+≤⇒-+≤如图可求得(1,1)A ,(1,0)B ,阴影面积等于21111114242ππ⨯-⨯⨯=-, 若||1z ≤,则y x ≥的概率211142142πππ-=-⨯,故答案选C 【考点定位】1.复数的模长;2.几何概型.【名师点睛】1.本题考查复数的模长和几何概型,利用z a bi =+22||z a b ⇒=+把此题转化成几何概型,采用分母实数化和利用共轭复数的概念进行化解求解.2.求几何概型,一般先要求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成区域长度(面积或体积),最后再代入几何概型的概率公式求解;求几何概型概率时,一定要分清“试验”和“事件”,这样才能找准基本事件构成的区域长度(面积或体积).3.本题属于题,注意运算的准确性.10.【2015高考湖北,文8】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( ) A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 【答案】B .【解析】由题意知,事件“12x y +≤”的概率为11111222118p ⨯⨯==⨯,事件“12xy ≤”的概率02S p S =,其中11021111(1ln 2)222S dx x=⨯+=+⎰,111S =⨯=,所以0 21(1ln2)11 2(1ln2)1122S pS +===+>⨯,故应选B.【考点定位】本题考查几何概型和微积分基本定理,涉及二元一次不等式所表示的区域和反比例函数所表示的区域.【名师点睛】以几何概型为依托,融合定积分的几何意义、二元一次不等式所表示的区域和反比例函数所表示的区域等内容,充分体现了转化的数学思想在实际问题中的应用,能较好的考查学生灵活运用基础知识解决实际问题的能力.11.【2015高考广东,文7】已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.1【答案】B【考点定位】古典概型.【名师点晴】本题主要考查的是古典概型,属于容易题.解题时要抓住重要字眼“恰有”,否则很容易出现错误.列举基本事件一定要注意按顺序列举,做到不重不漏,防止出现错误.解本题需要掌握的知识点是古典概型概率公式,即()AP A=包含的基本事件的个数基本事件的总数.12.【2015高考湖北,文4】已知变量x和y满足关系0.11y x=-+,变量y与z正相关. 下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关【答案】A .【解析】因为变量x 和y 满足关系0.11y x =-+,其中0.10-<,所以x 与y 成负相关;又因为变量y 与z 正相关,不妨设z ky b =+(0)k >,则将0.11y x =-+代入即可得到:(0.11)0.1()z k x b kx k b =-++=-++,所以0.10k -<,所以x 与z 负相关,综上可知,应选A .【考点定位】本题考查正相关、负相关,涉及线性回归方程的内容.【名师点睛】将正相关、负相关、线性回归方程等联系起来,充分体现了方程思想在线性回归方程中的应用,能较好的考查学生运用基础知识的能力.其易错点有二:其一,未能准确理解正相关与负相关的定义;其二,不能准确的将正相关与负相关问题进行转化为直线斜率大于和小于0的问题.13.【2015高考福建,文8】如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机 取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .12【答案】B【解析】由已知得(1,0)B ,(1,2)C ,(2,2)D -,(0,1)F .则矩形面积为326⨯=,阴影部分面积为133122⨯⨯=,故该点取自阴影部分的概率等于31264=.【考点定位】几何概型.【名师点睛】本题考查几何概型,当实验结果由等可能的无限多个结果组成时,利用古典概型求概率显然是不可能的,可以将所求概率转化为长度的比值(一个变量)、面积的比值(两个变量)、体积的比值(三个变量或根据实际意义)来求,属于中档题.14.【2015高考北京,文4】某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100 C .180 D .300 类别 人数老年教师900xyOBCDAF中年教师 1800 青年教师 1600 合计 4300【答案】C【解析】由题意,总体中青年教师与老年教师比例为1600169009=;设样本中老年教师的人数为x ,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x =,解得180x =,故选C. 【考点定位】分层抽样.【名师点晴】本题主要考查的是分层抽样,属于容易题.解题时一定要清楚“320”是指抽取前的人数还是指抽取后的人数,否则容易出现错误.解本题需要掌握的知识点是分层抽样,即抽取比例=样本容量总体容量.15.【2015高考重庆,文15】在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 【答案】32【解析】方程22320xpx p 有两个负根的充要条件是2121244(32)020320p p x x p x x p ⎧∆=--≥⎪+=-<⎨⎪=->⎩即21,3p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p 有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503-+-=-,故填:32. 【考点定位】几何概率.【名师点睛】本题考查几何概率及一元二次方程实根的分布,首先将方程22320x px p 有两个负根的充要条件找出来,求出p 的取值范围,再利用几何概率公式求解,本题属于中档题,注意运算的准确性.16.【2015高考湖北,文14】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【解析】由频率分布直方图及频率和等于1可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000. 【考点定位】本题考查频率分布直方图,属基础题.【名师点睛】以实际问题为背景,重点考查频率分布直方图,灵活运用频率直方图的规律解决实际问题,能较好的考查学生基本知识的识记能力和灵活运用能力.17.【2015高考广东,文12】已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .【答案】11【解析】因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,所以样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=,所以答案应填:11.【考点定位】均值的性质.【名师点晴】本题主要考查的是均值的性质,属于容易题.解本题需要掌握的知识点是均值和方差的性质,即数据1x ,2x ,,n x 的均值为x ,方差为2s ,则(1)数据1x a ±,2x a ±,,n x a ±的均值为x a ±,方差为2s ;(2)数据1kx ,2kx ,,n kx 的均值为kx ,方差为22k s ;(3)数据1kx a ±,2kx a ±,,n kx a ±的均值为kx a ±,方差为22k s .18.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.【考点定位】散点图.【名师点晴】本题主要考查的是散点图,属于容易题.解题时一定要抓住重要字眼“语文”和“更”,否则很容易出现错误.解此类图象题一定要观察仔细,分析透彻,提取必要的信息.19.【2015高考福建,文13】某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.【答案】25【解析】由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=.【考点】分层抽样.【名师点睛】本题考查抽样方法,要搞清楚三种抽样方法的区别和联系,其中分层抽样是按比例抽样;系统抽样是等距离抽样,属于基础题.20.【2015高考安徽,文17】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],,[80,90],[90,100](Ⅰ)求频率分布图中a的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【答案】(Ⅰ)0.006;(Ⅱ)0.4;(Ⅲ)110【解析】(Ⅰ)因为110)028.02022.00018.0004.0(=⨯+⨯+++a ,所以006.0=a(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为4.010)018.0022.0(=⨯+,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为321,,A A A ; 受访职工评分在[40,50)的有: 50×0.004×40=2(人),即为21,B B .从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{}{}{}{},,,,,,,,21113121B A B A A A A A{}{}{}{}{}{},,,,,,,,,,,,2123132212312B B B A B A B A B A A A 又因为所抽取2人的评分都在[40,50)的结果有1种,即{}21,B B ,故所求的概率为101=p . 【考点定位】本题主要考查了频率分布直方图、概率和频率的关系、古典概型等基础知识. 【名师点睛】利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.21.【2015高考北京,文17】(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √ × √ √ 217× √ × √ 200 √ √ √ × 300√ × √ × 85 √ × × × 98×√××(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? 【答案】(I )0.2;(II )0.3;(III )同时购买丙的可能性最大. 【解析】试题分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I )由统计表读出顾客同时购买乙和丙的人数200,计算出概率;(II )先由统计表读出顾客在甲、乙、丙、丁中同时购买3中商品的人数100200+,再计算概率;(III )由统计表读出顾客同时购买甲和乙的人数为200,顾客同时购买甲和丙的人数为100200300++,顾客同时购买甲和丁的人数为100,分别计算出概率,再通过比较大小得出结论.试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,商品顾 客人 数顾客同时购买甲和丁的概率可以估计为1000.11000=, 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点:统计表、概率.【名师点晴】本题主要考查的是统计表和古典概型,属于中档题.解题时一定要抓住重要字眼“估计”和“最大”,否则很容易失分.解此类统计表的试题一定要理解透彻题意,提取必要的信息.解本题需要掌握的知识点是古典概型概率公式,即()A P A =包含的基本事件的个数基本事件的总数.22.【2015高考福建,文18】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组 频数 1 [4,5) 2 2 [5,6) 8 3 [6,7) 7 4[7,8]3(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05. 【解析】解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=. (II )同解法一.【考点定位】1、古典概型;2、平均值.【名师点睛】本题考差古典概型和平均数,利用古典概型的“等可能”“有限”性的特点,能方便的求出概率.由实际意义构造古典概型,首先确定试验的样本空间结构并计算它所含样本点总数,然后再求出事件A 所含基本事件个数,代入古典概型的概率计算公式;根据频率分布表求平均数,对于每组的若干个数可以采取区间中点值作为该组数据的数值,再求平均数.23.【2015高考广东,文17】(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5. 【解析】试题分析:(1)由频率之和等于1可得x 的值;(2)由最高矩形的横坐标中点可得众数,由频率之和等于0.5可得中位数;(3)先计算出月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的用户的户数,再计算抽取比例,进而可得月平均用电量在[)220,240的用户中应抽取的户数.试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户 考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.【名师点晴】本题主要考查的是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,属于中档题.解题时一定要注意频率分布直方图的纵轴是频率组距,否则很容易出现错误.解本题需要掌握的知识点是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,即在频率分布直方图中,各小长方形的面积的总和等于1,众数是最高矩形的横坐标中点,中位数左边和右边的直方图的面积相等,=⨯频率频率组距组距,=样本容量抽取比例总体容量. 24.【2015高考湖南,文16】(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球12,A A 和1个白球B 的甲箱与装有2个红球12,a a 和2个白球12,b b 的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。
2015年高考理数专题复习---概率统计预测2013年高考中,本节的内容还是一个重点考查的内容,因为这部分内容与实际生活联系比较大,随着新课改的深入,高考将越来越重视这部分的内容,排列、组合、概率、统计都将是重点考查内容,至少会考查其中的两种类型。
(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。
(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。
这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。
复习建议在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.母题一:5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求:(1)甲中奖的概率;(2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.母题二:某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三人该课程考核都合格的概率(结果保留三位小数).母题三:某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01): (1)恰好有两家煤矿必须整改的概率;(2)至少关闭一家煤矿的概率.母题四:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数 的分布列.母题五:.A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白2,服鼠的只数比服用B有效的多,就称该试验组为甲类组.设每一只小白鼠服用A有效的概率为31. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,用ξ表示这3用B有效的概率为2个试验组中甲类组的个数,求ξ的分布列和数学期望.7 8 99 4 4 6 4 7 3高考模拟1.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )(A )8,8 (B )10,6 (C )9,7 (D )12,4【答案】C2.右图是 2011年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84B. 84,1.6C. 85,1.6D. 85,4【答案】C 【解析】2580855x =+=,244 1.6.5s +== 3.如图,矩形O A B C 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( ) A .712π B.23π C .34π D.56π 【答案】B【答案】A6.右图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约( ) A .523 B .521 C .519 D .516 【答案】A 7.设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于34的概率为( ) A .964 B .964π C .916π D .916【答案】B8.已知椭圆2214x y +=的焦点为12,F F ,在长轴A 1A 2上任取一点M ,过M 作垂直于A 1A 2的直线交椭圆于点P ,则使得120PF PF ⋅< 的点M 的概率为( )A B C D .12【答案】B9.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为()A.12B.24C.36D.48【答案】C10.盒子中放有编号为1,2,3,4,5的形状和大小完全相同的5个白球和5个黑球,则取出球的编号互不相同的概率为()A.115B.112C.12D.23【答案】D【解析】32352180.33243 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭12.对某种花卉的开放花期追踪调查,调查情况如下:则这种卉的平均花期为__ _天.【答案】16天(15.9天给满分)16.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)4050,,[)5060,,…,[]90100,后得到如下图的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)4050,与[]90100,两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。
2015年普通高等学校招生全国统一考试山东文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2015山东,文1)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A ∩B=( ) A.(1,3) B.(1,4) C.(2,3) D.(2,4) 答案:C 解析:B={x|(x-1)(x-3)<0}={x|1<x<3},A={x|2<x<4},结合数轴可得,A ∩B={x|2<x<3}. 2.(2015山东,文2)若复数z 满足z1−i=i,其中i 为虚数单位,则z=( )A.1-iB.1+iC.-1-iD.-1+i 答案:A 解析:∵z1−i=i,∴z =i(1-i)=i-i 2=1+i .∴z=1-i . 3.(2015山东,文3)设a=0.60.6,b=0.61.5,c=1.50.6,则a ,b ,c 的大小关系是( ) A.a<b<c B.a<c<b C.b<a<c D.b<c<a 答案:C解析:函数y=0.6x 在定义域R 上为单调递减函数,∴1=0.60>0.60.6>0.61.5.而函数y=1.5x 为单调递增函数, ∴1.50.6>1.50>1,∴b<a<c.4.(2015山东,文4)要得到函数y=sin 4x −π3的图象,只需将函数y=sin 4x 的图象( )A.向左平移π12个单位B.向右平移π12个单位C.向左平移π个单位D.向右平移π个单位答案:B解析:∵y=sin 4x −π =sin 4 x −π,∴只需将函数y=sin 4x 的图象向右平移π个单位即可.5.(2015山东,文5)设m ∈R ,命题“若m>0,则方程x 2+x-m=0有实根”的逆否命题是( ) A.若方程x 2+x-m=0有实根,则m>0 B.若方程x 2+x-m=0有实根,则m ≤0 C.若方程x 2+x-m=0没有实根,则m>0 D.若方程x 2+x-m=0没有实根,则m ≤0 答案:D解析:原命题的逆否命题是将条件和结论分别否定,作为新命题的结论和条件,所以其逆否命题为“若方程x 2+x-m=0没有实根,则m ≤0”.6.(2015山东,文6)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A.①③ B.①④ C.②③ D.②④ 答案:B解析:由茎叶图可知,x 甲=26+28+29+31+31=29,x 乙=28+29+30+31+32=30,所以x 甲<x 乙;s 甲2=1[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6,s 乙2=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2,所以s 甲2>s 乙2.7.(2015山东,文7)在区间[0,2]上随机地取一个数x ,则事件“-1≤lo g 12x +1 ≤1”发生的概率为( )A.34B.23C.13D.14 答案:A解析:由-1≤lo g 12x +1 ≤1,得lo g 122≤lo g 12x +1 ≤lo g 121,所以1≤x+1≤2,所以0≤x ≤3.由几何概型可知,事件发生的概率为32−0=3.8.(2015山东,文8)若函数f (x )=2x +12x −a是奇函数,则使f (x )>3成立的x 的取值范围为( )A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞) 答案:C解析:∵f (x )为奇函数,∴f (-x )=-f (x ).即2−x +12−x −a =-2x +12x −a ,也就是2x +11−a ·2x =-2x +12x −a,∴1-a ·2x =a-2x ,即(1-a )2x =a-1,∴1-a=0,解得a=1.∴f (x )=2x +12x −1.则2x +12x −1>3,即2x +1−3(2x −1)2x −1>0,即−2(2x −2)2x −1>0,即(2x -2)(2x -1)<0,∴1<2x <2,即0<x<1.9.(2015山东,文9)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2 2π3B.4 2π3C.2 2πD.4 2π答案:B 解析:由题意可知所得几何体为两个底面重合的圆锥,如图所示.圆锥的底面半径r= 2,高h= 2. 所以体积为V=2×1×π×( 2)2× 2=4 2π.10.(2015山东,文10)设函数f (x )= 3x −b ,x <1,2x , x ≥1.若f f 5=4,则b=( )A.1B.7C.3D.1答案:D解析:∵f 5=3×5-b=5-b ,∴f f 5=f 5−b .当52-b<1时,即b>32时,f 52−b =3× 52−b -b=4,∴b=78(舍去).当52-b ≥1时,即b ≤32时,f 52−b =252−b =4,即52-b=2,∴b=12.综上,b=12.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2015山东,文11)执行下边的程序框图,若输入的x 的值为1,则输出的y 的值是 .答案:13解析:输入x=1,∵1<2,∴x=1+1=2.∵x=2不满足“x<2”,执行“否”,∴y=3×22+1=13.12.(2015山东,文12)若x ,y 满足约束条件 y −x ≤1,x +y ≤3,y ≥1,则z=x+3y 的最大值为 .答案:7 解析:如图,作出不等式组所表示的可行域.由z=x+3y ,得y=-1x+z.取l 0:x+3y=0,在可行域内平移直线l 0,由图可知直线过A 点时z 最大,由 y −x =1,x +y =3,得A (1,2).所以z max =1+3×2=7.13.(2015山东,文13)过点P (1, 3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA ·PB = . 答案:32解析:由题意可作右图,∵OA=1,AP= 3,又∵PA=PB ,∴PB= 3. ∴∠APO=30°.∴∠APB=60°.∴PA ·PB =|PA |·|PB |cos 60°= × ×1=3. 14.(2015山东,文14)定义运算“”:x y=x 2−y 2xy(x ,y ∈R ,xy ≠0).当x>0,y>0时,x y+(2y )x 的最小值为 .答案: 2解析:∵x y=x 2−y 2,∴x y+(2y )x=x 2−y 2+(2y )2−x 2=x 2+2y 2≥2 x 2·2y 2=2 2xy= 2.其中x>0,y>0,当且仅当x 2=2y 2,即x= 2y 时等号成立. 15.(2015山东,文15)过双曲线C :x 2a 2−y 2b2=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C 于点P.若点P的横坐标为2a ,则C 的离心率为 . 答案:2+ 3解析:不妨设过右焦点与渐近线平行的直线为y=b (x-c ),与C 交于P (x 0,y 0).∵x 0=2a ,∴y 0=b (2a-c ).又P (x 0,y 0)在双曲线C 上,∴(2a )22−b 2a 2(2a−c )2b2=1,∴整理得a 2-4ac+c 2=0,设双曲线C 的离心率为e ,故1-4e+e 2=0.∴e 1=2- 3(舍去),e 2=2+ 3. 即双曲线C 的离心率为2+ 3. 三、解答题:本大题共6小题,共75分.16.(本小题满分12分)(2015山东,文16)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15人.所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P=15=1.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有: {A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2}, {A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1}, {A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3}, 共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个. 因此A 1被选中且B 1未被选中的概率为P=215.17.(本小题满分12分)(2015山东,文17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知cos B= 33,sin(A+B )= 69,ac=2 3,求sin A 和c 的值.解:在△ABC 中,由cos B= 3,得sin B= 6,因为A+B+C=π,所以sin C=sin(A+B )= 6.因为sin C<sin B ,所以C<B ,可知C 为锐角, 所以cos C=5 39. 因此sin A=sin(B+C )=sin B cos C+cos B sin C= 6×5 3+ 3× 6=2 2. 由a =c,可得a=c sin A =2 23c 69=2 c , 又ac=2 3,所以c=1.18.(本小题满分12分)(2015山东,文18)如图,三棱台DEF-ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH. (1)证法一:连接DG,CD,设CD∩GF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点.又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)证明:连接HE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形.所以CF∥HE,又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.19.(本小题满分12分)(2015山东,文19)已知数列{a n}是首项为正数的等差数列,数列1a n·a n+1的前n项和为n2n+1.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)·2a n,求数列{b n}的前n项和T n.解:(1)设数列{a n}的公差为d.令n=1,得1a1a2=13,所以a1a2=3.令n=2,得1a1a2+1a2a3=25,所以a2a3=15.解得a 1=1,d=2,所以a n =2n-1. (2)由(1)知b n =(a n +1)·2a n =2n ·22n-1=n ·4n , 所以T n =1·41+2·42+…+n ·4n , 所以4T n =1·42+2·43+…+n ·4n+1, 两式相减,得-3T n =41+42+ (4)-n ·4n+1=4(1−4n )1−4-n ·4n+1=1−3n 3×4n+1-43. 所以T n =3n−19×4n+1+49=4+(3n−1)4n +19. 20.(本小题满分13分)(2015山东,文20)设函数f (x )=(x+a )ln x ,g (x )=x 2x .已知曲线y=f (x )在点(1,f (1))处的切线与直线2x-y=0平行. (1)求a 的值.(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k+1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由. (3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 解:(1)由题意知,曲线y=f (x )在点(1,f (1))处的切线斜率为2,所以f'(1)=2.又f'(x )=ln x+ax+1,所以a=1.(2)k=1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x+1)ln x-x 2ex , 当x ∈(0,1]时,h (x )<0.又h (2)=3ln 2-4e2=ln 8-4e2>1-1=0, 所以存在x 0∈(1,2),使得h (x 0)=0. 因为h'(x )=ln x+1x +1+x (x−2)e x, 所以当x ∈(1,2)时,h'(x )>1-1>0,当x ∈(2,+∞)时,h'(x )>0,所以当x ∈(1,+∞)时,h (x )单调递增.所以k=1时,方程f (x )=g (x )在(k ,k+1)内存在唯一的根.(3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0,且x ∈(0,x 0)时,f (x )<g (x ), x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )= (x +1)ln x ,x ∈(0,x 0],x 2e x,x ∈(x 0,+∞).当x ∈(0,x 0)时,若x ∈(0,1],m (x )≤0; 若x ∈(1,x 0),由m'(x )=ln x+1x+1>0, 可知0<m (x )≤m (x 0); 故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m'(x )=x (2−x )x, 可得x ∈(x 0,2)时,m'(x )>0,m (x )单调递增; x ∈(2,+∞)时,m'(x )<0,m (x )单调递减; 可知m (x )≤m (2)=4e2,且m (x 0)<m (2). 综上可得,函数m (x )的最大值为4e2.21.(本小题满分14分)(2015山东,文21)平面直角坐标系xOy 中,已知椭圆C :x 22+y 2b2=1(a>b>0)的离心率为3,且点 3,1 在椭圆C 上. (1)求椭圆C 的方程; (2)设椭圆E :x 24a 2+y 24b2=1,P为椭圆C 上任意一点,过点P 的直线y=kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E于点Q.①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解:(1)由题意知3a 2+14b2=1,又a 2−b 2a=32,解得a 2=4,b 2=1,所以椭圆C 的方程为x 2+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1. ①设P (x 0,y 0),|OQ ||OP |=λ, 由题意知Q (-λx 0,-λy 0). 因为x 024+y 02=1, 又(−λx 0)2+(−λy 0)2=1,即λ2x 02+y 02=1,所以λ=2,即|OQ ||OP |=2.②设A (x 1,y 1),B (x 2,y 2),将y=kx+m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx+4m 2-16=0, 由Δ>0,可得m 2<4+16k 2. 不等式①则有x 1+x 2=-8km 1+4k2,x 1x 2=4m 2−161+4k2.所以|x 1-x 2|=4 16k 2+4−m 21+4k2.因为直线y=kx+m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S=12|m||x 1-x 2| =2 16k 2+4−m 2|m |1+4k2=2 (16k 2+4−m 2)m 21+4k2=2 4−m 1+4k2m 1+4k2.设m 21+4k2=t.将y=kx+m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.不等式②由不等式①不等式②,可知0<t ≤1, 因此S=2 2 −t 2+4t . 故S ≤2 ,当且仅当t=1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 面积为3S ,所以△ABQ 面积的最大值为6 3.。
2007-2015山东高考数学排列、组合、二项式定理及概率汇编试题1.07N 位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动5次后位于点(2,3)的概率为( )(A )51()2(B ) 2551()2C (C )3351()2C (D ) 235551()2C C2.08N 在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手。
若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( ) (A )511(B )681(C )3061(D )40813.08N (X -31x)12展开式中的常数项为( )(A )-1320 (B )1320 (C )-220 (D)2204.09N 在区间[-1,1]上随机取一个数x ,cos2x π的值介于0到21之间的概率为( ). (A )31 (B )π2(C )21 (D )325.10N 某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目 乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案有( )(A )36种 (B )42种 (C )48种 (D )54种6.10N 已知随机变量ξ服从正态分布),1(2σN ,若023.0)2(=>ξP ,则=≤≤-)22(ξP ( )(A )0.477(B )0.628(C )0.954(D )0.9777.11N 若62()a x x-展开式的常数项为60,则常数a 的值为 .8.12N 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ) (A )232 (B)252 (C)472 (D)4849.13N 在区间[-3,3]上随机取一个数x ,使得121++-≥x x 成立的概率为______.10.13N 用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) (A) 243 (B) 252 (C) 261 (D) 27911.14N 若46b ax x ⎛⎫+ ⎪⎝⎭的展开式中3x 项的系数为20,则22a b +的最小值为 。
2007-2015山东高考数学程序框图、抽样及概率统计汇编试题1.07N 某班50名学生在一次百米测试中,成绩全部介 于13秒与19秒之间,将测试结果按如下方式分成六 组:每一组,成绩大于等于13秒且小于14秒;第二 组,成绩大于等于14秒且小于15秒;……第六组, 成绩大于等于18秒且小于等于19秒.右图是按上述 分组方法得到的频率分布直方图. 设成绩小于17秒 的学生人数占全班人数的百分比为x ,成绩大于等于 15秒且小于17秒的学生人数为y ,则从频率分布直方 图中可以分析出x 和y 分别为( )A .0.935,B .0.945,C .0.135,D .0.145,2.07N 阅读右边的程序框图,若输入的n 是100,则输出的变量S 和T 的值依次是( )A .2550,2500B .2550,2550C .2500,2500D .2500,2550 3.07N.W 设集合{12}{123}A B ==,,,,,分别从集合A 和B 中 随机取一个数a 和b ,确定平面上的一个点()P a b ,, 记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( ) A .3 B .4 C .2和5 D .3和44.08N.W 从某项综合能力测试中抽取100人的成绩,统计如表, 则这100人成绩的标准差为( )分数 5 4 3 2 1 人数20 1030 3010A .3B .2105 C .3D .850 13 14 15 16 17 18 19 秒 频率/组距0.020.04 0.060.180.340.36 开始 输入n 00S T ==, 2?x <1n n =-T T n=+1n n =-结束输出S ,TS S n=+否 是5.08N 执行右边的程序框图,若0.8p =,则输出的n = .6.08N.L 右图是根据《山东统计年鉴2007》中的资料作成的 1997年至2006年我省城镇居民百户家庭人口数的茎 叶图,图中左边的数字从左到右分别表示城镇居民百 户家庭人口数的百位数字和十位数字,右边的数字表 示城镇居民百户家庭人口数的个位数字,从图中可以 得到1997年至2006年我省城镇居民百户家庭人口数 的平均数为( )(A )304.6 (B )303.6 (C)302.6 (D)301.67.09N.W 在区间[,]22ππ-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ). A.31 B.π2 C.21 D.32 8.09N 执行右边的程序框图,输出的T= .9.09N.L 某工厂对一批产品进行了抽样检测.有图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ) (A )90 (B )75 (C ) 60 (D )45开始 10n S ==, S p <? 是 输入p结束 输出n 12n S S =+ 否1n n =+29 1158 30 26 31 0247 开始S=0,T=0,n=0 T>S S=S+5 n=n+2 T=T+n输出T结束是 否 96 98 100 102 104 106 0.150 0.1250.1000.075 0.050克 频率/组距第9题图10.10N.W 在某项体育比赛中,七位裁判为一选手打出 的分数如下: 90 89 90 95 93 94 93 去掉一个最高分和一个最低分后,所剩数据的平均 值和方差分别为( )(A )92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2.811.10N 执行右图所示的程序框图,若输入4x =, 则输出y 的值为 .12.10N.L 样本中共有五个个体,其值分别为3,2,1,0,a , 若该样本的平均值为1,则样本方差为( ) (A )56(B )56 (C)2 (D) 213.11N 某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程 y bxa =+ 中的b 为9.4,据此模型预 报广告费用为6万元时销售额为( )(A) 63.6万元 (B) 65.5万元 (C) 67.7万元 (D) 72.0万元14.11N.W 某高校甲、乙、丙、丁四个专业分别有 150、150、400、300名学生.为了解学生的就业倾 向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为___________15.11N 执行右图所示的程序框图,输入2,3,5l m n ===, 则输出的y 的值是_______.16.12N.W 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )(A)众数 (B)平均数 (C)中位数 (D)标准差17.12N.L 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为( ) (A )7 (B ) 9 (C ) 10 (D )15广告费用x (万元) 4 2 3 5 销售额y (万元)4926395418.12N执行右面的程序框图,如果输入a=4,那么输出的n的值为( )(A)2(B)3(C)4(D)519.12N.W右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为_______.20.13N.W执行右边的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为( )(A)0.2,0.2 (B) 0.2,0.8 (C) 0.8,0.2 (D) 0.8,0.821.13N.W将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为( )(A)1169(B)367(C)36 (D)6778 7 79 4 0 1 0 9 1x22.13N.L 执行右图所示的程序框图,若输入ε的值为0.25, 则输出的n 的值为 _______.23.14N 为了研究某药品的疗效,选取若干名志愿者进行 临床试验,所有志愿者的舒张压数据(单位:kPa )的分 组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其 按从左到右的顺序分别编号为第一组,第二组,……,第 五组,右图是根据试验数据制成的频率分布直方图。
2015年普通高等学校招生全国统一考试(山东卷)数学(文科)第I卷(共50分)本试卷分第I卷和第II卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合,,则(A)(B)(C)(D)2、若复数满足,其中为虚数单位,则(A)(B)(C)(D)3、设,则的大小关系是(A)(B)(C)(D)4、要得到函数的图象,只需将函数的图象(A)向左平移个单位(B)向右平移个单位(C)向左平移个单位(D)向右平移个单位5、设,命题“若,则方程有实根”的逆否命题是(A)若方程有实根,则(B)若方程有实根,则(C)若方程没有实根,则(D)若方程没有实根,则6、为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图。
考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为(A) ①③ (B) ①④ (C) ②③ (D) ②④7、在区间上随机地取一个数,则事件“ ”发生的概率为(A)(B)(C)(D)8、若函数是奇函数,则使成立的的取值范围为(A)(B)(C)(D)9. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A)(B)(C)(D)10.设函数若,则(A)1 (B)(C)(D)第II卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
(11)执行右边的程序框图,若输入的的值为1,则输出的的值是.(12)若满足约束条件则的最大值为 .(13)过点作圆的两条切线,切点分别为A,B,则 .(14)定义运算“ ”:.当时,的最小值为 .(15)过双曲线的右焦点作一条与其渐近线平行的直线,交C于点P,若点P的横坐标为则的离心率为 .16.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的请况,数据如下表:参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(I)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(II)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学,3名女同学,现从这5名男同学和3名女同学中各随机选1人,求被选中且未被选中的概率。
1.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.2.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除, 分;若能被10整除,得1分.得1(I)写出所有个位数字是5的“三位递增数” ;(II)若甲参加活动,求甲得分X的分布列和数学期望EX.3.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).4.【2015·天津】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A发生的概率;(II)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.5.【2015·重庆】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。
概率与统计
2007.8.某班50名学生在一次百米测试中,成绩全部介 于13秒与19秒之间,将测试结果按如下方式分成六 组:每一组,成绩大于等于13秒且小于14秒;第二 组,成绩大于等于14秒且小于15秒;……第六组, 成绩大于等于18秒且小于等于19秒.右图是按上述 分组方法得到的频率分布直方图,设成绩小于17秒
的学生人数占全班人数的百分比为x ,成绩大于等于 15秒且小于17秒的学生人数为y ,则从频率分布直方 图中可以分析出x 和y 分别为( )
A .0.935,
B .0.945,
C .0.135,
D .0.145,
12.设集合{1
2}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件
(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( ) A .3 B .4 C .2和5 D .3和4
2008.9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为(
A B C .3
D .85
18.(本小题满分12
分)
现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,
12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求1A 被选中的概率;
(Ⅱ)求1B 和1C 不全被选中的概率.
秒
2009.11.在区间[,]22ππ
-
上随机取一个数x ,cos x 的值介于0到2
1
之间的概率为( ).
A.31
B.π2
C.21
D.32
19. (本小题满分12分)
一汽车厂生产A,B,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A 轿车B 轿车C 舒适型 100 150 z 标准型
300
450
600
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (1) 求z 的值.
(2) 用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成
一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3) 用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如
下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
2010.6.在某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 (A )92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2.8 19.(本小题满分12分)
一个袋中装有四个现状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率.
2011.8.某产品的广告费用x 与销售额y 的统计数据如下表:
根据上表可
得回归方程
的b
为9.4, y bx
a =+ 中据此模型预报广告费用为6万元时销售额为
(A) 63.6万元 (B) 65.5万元 (C) 67.7万元 (D) 72.0万元
13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为___________. 18.(本小题满分12分)
甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
2012.4.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是
(A)众数 (B)平均数 (C)中位数 (D)标准差 14.右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),
[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中
平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____. 18.(本小题满分12分)
袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4
的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求
这两张卡片颜色不同且标号之和小于4的概率.
2013.10、将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:
877
9401091x
则7个剩余分数的方差为
(A)
1169 (B)367 17.(本小题满分12分)
某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)
(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率
(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率
2014.8 .为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。
已知第一组与第二组共有20人,第三组中没
( )
(A) 6 (B) 8 (C) 12 (D) 18
16.(本小题满分12分)
海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
(I)求这6件样品中来自A ,B ,C 各地区商品的数量;
(II )若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
kPa
2015.6.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图。
考虑以下结论: ①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为
(A ) ①③ (B ) ①④ (C ) ②③ (D ) ②④
7.在区间[]0,2上随机地取一个数x ,则事件“1211log 12x ⎛
⎫-≤+≤ ⎪⎝⎭ ”发生的概
率为
(A )
34 (B )23 (C )13 (D )1
4 16.(本小题满分12分)
某中学调查了某班全部45名同学参加书法社团和演讲社团的请况,数据如下表:
(I (II )在既参加书法社团又参加演讲社团的8名同学中,有5名男同学
54321,,,,A A A A A , 3名女同学321,,B B B ,现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率。