2010届一轮复习高三数学第十一编统计、统计案例随机抽样
- 格式:doc
- 大小:549.50 KB
- 文档页数:7
第九章统计、统计案例第1节随机抽样> 1.理解随机抽样的必要性和重要性.> 2.会用简单随机抽样方法从总体中抽取样本I , 了解分层抽样和系统抽样方法.I ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________祷自建1回i 扣d O 基础冋扣・学情自测编号•[要点梳理]1.简单随机抽样⑴定义:从元素个数为/V 的总体中 ________ 加卑脊鼻为门的样本,如果每一 次抽取时总体中的各个个体有 ____ 的可能性被抽到,购咖方法叫做简单随机抽 样.• (2)最常用的简单随机抽样的方法: 2.系统抽样的步骤假设要从容量为/V 的总体中抽取容量为门的样本.相同⑴先将总体的N 个个体 _____ 抽签法 随机数表法(2)确定分段间隔k ,对编号进行分段,当鮎是样本容N量)是整数时,取£=匚;N当寸不是整数时,可随机地从总体中剔除余数,再确定分段间隔;•(3)在第1段用' ______________ 确定第一个个彳本编号s(sWk);•(4)按照一睫饰规则抽取样本,通常鳶陳後加上间隔催到第2个个体编号___________ ,再加k•3.分层抽样•(1)分层抽样的定义:•在抽样时,将总体中各个个体按某种特征分威蒿斋令国不重叠的几部分,每一部分叫做层,在各层中按_______________________________ 进行简单随机抽样或系统抽样,这种抽样方法叫做分层分械. •(2)当总体由有明显差异的几部分组成时,往往选用[基础自测]1・利用简单随机抽样,从〃个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为g 则在整个抽样过程中,每个个体被抽到的概率为()5B-14A.110D27[解析]9 I由题思知[一加n—\3•[答案]B••・“ = 28,・・P=||=看.故选B.•2・(2015 -中山模拟)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是()•A. 5,10,15,20,25 B・ 2,4,8,16,32•C[解掰,爲緒祕品爾駆每诒7抽样间隔罟=io,故选D.[答案]D•3・(2013 -新课标卷I )为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()•A.简单随机抽样B.按性别分层抽样•C.按学段分层抽样 D.系统抽样•[解析]由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A ;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B和D•故选C.•[答案]C• 4.大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为_______________________ ・•[解析]因为三个盒子中装的是同一种产品,且按比例抽取每盒中抽取的不是整数,所以将三盒中产品放在一起搅匀按简单随机抽样法(抽签法)较为适合.•[答案]简单随机抽样• 5.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生/ [解析]抽样比札。
2010届步步高一轮复习高三数学第十一编统计、统计案例随机抽样基础自测1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案 C2.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:①简单随机抽样,②系统抽样,③分层抽样中的()A.②③B.①③C.③D.①②③答案 D3.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为()A.5,10,15B.3,9,18C.3,10,17D.5,9,16答案 B4.(2008·广东理,3)某校共有学生2 000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24B.48C.16D.12答案 C5.某工厂生产A 、B 、C 三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 型号产品有16件,那么此样本的容量n = . 答案 80例1 某大学为了支援我国西部教育事业,决定从2007应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用抽签法和产生随机数法设计抽样方案. 解 抽签法:第一步:将18名志愿者编号,编号为1,2,3, (18)第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签; 第三步:将18个号签放入一个不透明的盒子里,充分搅匀; 第四步:从盒子中逐个抽取6个号签,并记录上面的编号; 第五步:所得号码对应的志愿者,就是志愿小组的成员. 产生随机数法:第一步:将18名志愿者进行编号,编号为01,02,03, (18)第二步:由于总体是一个两位数的编号,每次要从随机数表中选取两列组成两位数.从随机数表中任意一个位置,比如比第6列和第7列这两列的第三行开始选数,由上到下读,凡不在01—18中的数或已读过的数都不作记录,依次可得到11,07,18,08,09,12. 第三步:找出以上号码对应的志愿者,就是志愿小组的成员.例2 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施. 解 (1)将每个人随机编一个号由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新随机编号由0001至1000. (4)分段,取间隔k =100001=100将总体均分为10段,每段含100个工人.(5)从第一段即为0001号到0100号中随机抽取一个号l .(6)按编号将l ,100+l ,200+l ,…,900+l 共10个号码选出,这10个号码所对应的工人组成样本. 例3 (12分)某一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.解 应采取分层抽样的方法.过程如下:(1)将3万人分为五层,其中一个乡镇为一层.2分(2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×153=60(人);300×152=40(人);300×155=100(人);300×152=40(人);300×153=60(人), 8分 因此各乡镇抽取人数分别为60人,40人,100人,40人,60人. 10分 (3)将300人组到一起即得到一个样本.12分例4 为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩.为了全面反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):①从高三年级20个班中任意抽取一个班,再从该班中任意抽取20名学生,考察他们的学习成绩;②每个班抽取1人,共计20人,考察这20名学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1 000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人). 根据上面的叙述,试回答下列问题:(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?(2)上面三种抽取方式各自采用的是何种抽取样本的方法? (3)试分别写出上面三种抽取方式各自抽取样本的步骤.解 (1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100. (2)三种抽取方式中,第一种采用的是简单随机抽样法; 第二种采用的是系统抽样法和简单随机抽样法; 第三种采用的是分层抽样法和简单随机抽样法. (3)第一种方式抽样的步骤如下:第一步,首先用抽签法在这20个班中任意抽取一个班.第二步,然后从这个班中按学号用随机数法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样的步骤如下:第一步,首先用简单随机抽样法从第一个班中任意抽取一名学生,记其学号为a .第二步,在其余的19个班中,选取学号为a 的学生,加上第一个班中的一名学生,共计20人. 第三种方式抽样的步骤如下:第一步,分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数之比为:100∶1 000=1∶10,所以在每个层次中抽取的个体数依次为10150,10600,10250,即15,60,25.第三步,按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.1.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台入样,问此样本若采用简单随机抽样方法将如何获得?解 首先,把机器都编上号码001,002,003,…,112,如用抽签法,则把112个形状、大小相同的号签放在同一个箱子里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取10次,就得到一个容量为10的样本.2.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样? 解 (1)将624名职工用随机方式编号由000至623. (2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619. (4)分段,取间隔k =62620=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l .(6)按编号将l ,10+l ,20+l ,…,610+l ,共62个号码选出,这62个号码所对应的职工组成样本. 3.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样?解 可用分层抽样方法,其总体容量为12 000.“很喜爱”占000124352,应取60×000124352≈12(人);“喜爱”占000125674,应取60×000125674≈23(人);“一般”占000129263,应取60×000129263≈20(人);“不喜爱”占000120721,应取60×000120721≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270. 关于上述样本的下列结论中,正确的是( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样 C.①、④都可能为系统抽样 D .①、③都可能为分层抽样答案D一、选择题1.(2008·安庆模拟)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为()A.15,10,20B.10,5,30C.15,15,15D.15,5,25答案 A2.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么()A.①是系统抽样,②是简单随机抽样B.①是分层抽样,②是简单随机抽样C.①是系统抽样,②是分层抽样D.①是分层抽样,②是系统抽样答案 A3.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样答案C4.(2008·重庆文,5)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是()A.简单随机抽样法B.抽签法C.产生随机数法D.分层抽样法答案 D5.某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则下列判断正确的是()A.高一学生被抽到的概率最大B.高三学生被抽到的概率最大C.高三学生被抽到的概率最小D.每名学生被抽到的概率相等答案 D6.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7答案 C二、填空题7.(2008·天津文,11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.答案108.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…,0020,从第一部分随机抽取一个号码为0015,则第40个号码为 .答案0795三、解答题9.为了检验某种作业本的印刷质量,决定从一捆(40本)中抽取10本进行检查,利用随机数表抽取这个样本时,应按怎样的步骤进行?分析可先对这40本作业本进行统一编号,然后在随机数表中任选一数作为起始号码,按任意方向读下去,便会得到10个号码.解可按以下步骤进行:第一步,先将40本作业本编号,可编为00,01,02, (39)第二步,由于总体是一个两位数的编号,每次要从随机数表中选取两列组成两位数.从随机数表中任意一个位置,比如第9列和第10列这两列的第3行开始选数.由上至下读数超过39的和重复出现的不能选取.这样选取的10个样本的编号分别为:28,33,16,20,31,37,21,05,01,09. 第三步找出编号所对应的作业本.10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取? 解 用分层抽样抽取. (1)∵20∶100=1∶5, ∴510=2,570=14,520=4∴从副处级以上干部中抽取2人,一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人人数较少,可用抽签法从中分别抽取2人和4人;对一般干部可用随机数法抽取14人.(3)将2人、4人、14人编号汇合在一起就得到了容量为20的样本.11.从某厂生产的10 002辆电动自行车中随机抽取100辆测试某项性能,请合理选择抽样方法进行抽样,并写出抽样过程.解 因为总体容量和样本容量都较大,可用系统抽样. 抽样步骤如下:第一步,将10 002辆电动自行车用随机方式编号;第二步,从总体中剔除2辆(剔除法可用产生随机数法),将剩下的10 000辆电动自行车重新编号(分别为00001,00002,…,10000)并分成100段;第三步,在第一段00001,00002,…,00100这一百个编号中用简单随机抽样抽出一个作为起始号码(如00006);第四步,把起始号码依次加间隔100,可获得样本.12.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n .解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为n36,分层抽样的比例是36n ,抽取工程师36n ×6=6n (人),抽取技术人员36n ×12=3n (人),抽取技工36n ×18=2n (人).所以n 应是6的倍数,36的约数即n =6,12,18,36.当样本容量为(n +1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为135+n ,因为135+n 必须是整数,所以n 只能取6,即样本容量为6.。