全功率驱动的异步风电机组的控制策略研究
- 格式:pdf
- 大小:447.57 KB
- 文档页数:7
风力发电技术与功率控制策略初探刘明摘要:随着社会经济的快速发展,人们对能源的需求越来越大,传统的能源供给面临巨大的压力。
风力发电技术的出现,极大地缓解了社会生产中的能源需求问题。
在使用风力发电技术的同时通过功率控制,有效提高了风力发电机组风能的利用率。
论文主要对风力发电技术做了分析,探讨了风力发电技术功率控制策略。
关键词:风力发电技术;功率控制;策略1引言相对于传统能源来说,风能的开发利用不仅成本低,而且环保安全,最重要的是风能是可再生能源。
目前风能的开发利用主要是风力发电。
在实际工作中,风力发电机组对风力的利用率是比较低的,因此专家对风力利用率的提高技术研究一直没有间断。
2风力发电技术概述2.1风力发电技术原理风力发电技术指的是将风能通过风力发电机转化为电能的技术。
风力发电的过程就是把风能经由机械能转换为电能的过程,风能转化为机械能的过程由风轮实现,机械能转化为电能的过程由风力发电机及其控制系统实现。
风力发电技术的基本原理是风的动能通过风轮转换为机械能,再带动发电机发电转换为电能。
在这个过程中,风力发电机组大多为水平轴式风力发电机,它由多个部件组成,包括叶片、轮毂、增速齿轮箱、发电机、主轴、偏航装置、控制系统、塔架等。
2.2风力发电的特点风能发电在近 10 年来已取得飞速发展,目前,全球风电装机容量已近 4 270亿MW。
风力发电技术能够得到大量的推广与它的特点是分不开的。
风能属于可再生能源,风力发电有充足的能源支持;风力发电技术建设周期短以及装机规模灵活,在风能充足的地方可以用最短的时间建立风力发电基础设施,可以用最快的速度将风能转化为需要的电能;可靠性高和成本低使得风力发电的推广使用迅速提高;风力发电在操作运行方面也是比较简单的,而且风力发电建设占地面积小。
风力发电的特点总结下来就是能源充足,操作简单,成本低无污染。
3风力发电技术的发展趋势随着风力发电技术的推广和使用,在不断的实践操作中,得到了越来越多的改善。
基于SVPWM的异步风力发电机直接转矩控制方法的研究异步风力发电机直接转矩控制是风力发电系统中的核心技术之一,其能够确保发电系统的安全运行和高效输出。
在传统控制方法中,由于异步发电机特性的不确定性以及外部环境干扰的影响,控制精度和效率较低。
而基于SVPWM的异步风力发电机直接转矩控制方法能够解决这些问题,并具有出色的控制性能和稳定性。
本文将对此方法进行深度研究和详细阐述。
1. 基于SVPWM的风力发电机直接转矩控制原理SVPWM即空间矢量脉宽调制技术,它是一种高效的PWM控制方法,能够将三相交流电压转换为两个合成对称的方波信号,从而实现对电机速度和转矩的精密控制。
同时,SVPWM也能够有效减小齿槽谐波以及换相过程中的电压尖峰,保证电机运行的平稳性和稳定性。
异步风力发电机的直接转矩控制主要应用了磁场定向控制和电流内环闭环控制原理。
在该控制方法中,电机的速度和位置信息由编码器或者传感器获取,并通过转速控制器反馈至控制器。
根据此信息,控制器能够实现对电机输出磁场定向电流以及转矩电流的控制。
具体来说,SVPWM控制方法主要分为三个步骤:1)采样输入电压和电流信号,并进行四象限运算,确定电机转矩和位置信息。
2)将电机电流信号转化为abc坐标系下的矢量信号,计算出合成矢量以及其所在扇区。
3)根据合成矢量和扇区,进行开关管的开关控制,实现磁场定向和转矩控制。
在SVPWM控制过程中,关键是要确定合成矢量和扇区。
首先,通过坐标变换将三相电流转换为abc坐标系下的矢量;其次,根据矢量的和差性和相邻矢量的夹角,计算出合成矢量以及其所在扇区。
最后,根据合成矢量与各相基波的相对关系,确定开关管的开关方式和时序,实现对电机转矩和速度的控制。
2. 基于SVPWM的异步风力发电机直接转矩控制方法的实现基于SVPWM的异步风力发电机直接转矩控制方法的实现主要包括以下步骤:1)采集电机的速度和位置数据,通过速度控制器实现转速反馈,控制电机的速度。
探究风力发电并网技术的应用及电能质量控制策略摘要:在电力事业快速发展中,重视风力发电并网技术的应用,可实现对风力资源的有效开发与运用,践行环境保护理念的同时提升电能质量。
另外,明确不同风力发电并网技术的优劣势,并通过电压波动以及闪变抑制、增强电能消纳水平、实现电网智能化发展、机组设计改进等策略实现电能质量的控制,推进风力电网并网发展。
关键词:风力发电并网技术;应用;电能质量;控制策略引言当前,我国的风力发电技术已经有较为成熟的应用,并且已经为社会用电发挥了重要作用。
但是,风电并网会在一定程度上对电网产生影响,而且随着风电容量的不断增加,这种影响也越来越明显和严重,所以,要采取有效的方法控制这种不利影响,从而为社会提供更高质量的电能。
1风力发电技术的特点及发展状态风电主要就是将风的动能转变为电力,风能作为一种可再生的清洁能源,受到了全世界的关注。
风能本身就富有丰富的能量,比地球上可开发的水能总量高出十倍左右。
我国的风能资源十分丰富,可开发并利用的风能高达10亿千瓦。
风本身就是一种无公害的能源,且在使用过程中是取之不尽用之不竭的一种能源。
在全球范围内还存在缺水、缺燃料以及交通不便的城市,选择风力发电能规避出现的诸多能源消耗问题。
海上风电也是可再生能源发展的关键领域,同时也是推动风电技术进步及产业升级与发展的必备力量,在当前能源结构调整等诸多前提下,采用风电能够更好地促进调整的体系推进。
当前风力发电技术发展状态可以以下四点进行分析。
单机容量稳步提升。
从20世纪80年代开始,我国单机功率55kW为主要发电功率,从90年代初期开始提升为100~300kW为主要发电功率,从90年代中期开始提升为450~600kW为主要发电功率。
在持续不断地单机容量发展中能够看出,我国风力发电技术也在不断扩大;变桨调节方式替代传统失速功率调节模式。
失速功率调节模式主要存在的问题是由于风力发电组性能受到叶片失速性的影响,整体额定风速持续变高,在风速超过额定数值后发电的功率就会不断下降。
风力发电系统控制策略研究随着全球能源需求不断增长,石油等化石燃料资源的枯竭也逐渐显现。
对于可再生能源的需求越来越高,其中风力发电逐渐受到了人们的关注和青睐。
然而,由于其天气条件的变化和风轮转动速度的不稳定,风力发电也存在一些问题,如何进行控制和优化风力发电已经成为目前亟需解决的问题。
风力发电可以提供清洁、可再生的电能,使其成为我们生活中的重要组成部分。
随着技术的不断进步,风力发电的效率和性能也在不断提高。
然而,风力发电系统控制策略问题是目前需要优先解决的。
风力发电系统包含风能转换系统、变压器和输电系统等组成,其控制策略主要有以下几种:1.最大功率点跟踪控制策略(MPPT)最大功率点跟踪控制策略是指在风力发电机组输出功率最大的工作状态,即最大功率点附近调整风力机转速和桨角,保持风轮叶片始终处于最佳状态,实现发电系统效率最大化。
MPPT控制策略的目标是稳定风机输出功率,提高风机的发电效率,减少功率损耗。
最大功率点跟踪控制策略已经被广泛应用到风力发电系统中,对于提高整个系统的效率起到了积极的作用。
2.暂态功率控制策略(TPC)暂态功率控制策略是指在风能转换系统出现变化时,如风速发生变化、传动机构出现故障等情况,通过调整风机转矩或桨角,使得风机输出功率保持在稳定值附近,控制能够更好地适应不同的外部环境变化。
3.场励控制策略(FEC)场励控制策略是指通过调节风机的发电机转速,间接改变风机输出功率的控制策略,对于控制系统的稳定性和抗干扰性有很好的保障作用,在风速较低的情况下能够提高风机输出功率。
除了上述的控制策略之外,还有其他一些控制策略,如基于模型预测控制的策略、建立时域模型等。
这些策略都有其独特的优势和适用场景,在实际应用中需要根据具体的市场和技术需求进行选择和调整。
然而,风力发电系统也存在着一些问题,如怎样利用多个风力发电机组的协同发电,以及如何提高系统效率,让风力发电在成本和经济效益上更具竞争力。
对于这些问题的解决,需要在控制策略的基础上进行进一步研究和优化。
全功率变流器风电机组的工作原理及控制策略CATALOGUE 目录•全功率变流器风电机组概述•全功率变流器风电机组的工作原理•全功率变流器风电机组的控制策略•全功率变流器风电机组的性能评估与优化•全功率变流器风电机组的发展趋势与挑战CHAPTER全功率变流器风电机组概述风能发电简介风能是一种清洁、可再生的能源,具有广泛的应用前景。
风力发电技术经过多年的发展,已经逐渐成熟并被广泛应用于电力领域。
风能发电的基本原理是利用风能驱动风力发电机转动,进而驱动发电机产生电能。
全功率变流器是风电机组中重要的组成部分,主要作用是将风力发电机产生的电能进行变换和调节,以满足电网的需求。
全功率变流器具有高效率、高可靠性、高灵活性等特点,能够有效提升风电机组的整体性能。
全功率变流器的作用风电机组与电网的交互风电机组需要与电网进行良好的配合,以保证电能的质量和稳定性。
风电机组需要适应电网的运行要求,如电压、频率、相位等参数,以保证风电场的稳定运行。
风电机组与电网的交互是实现风能发电的重要环节之一。
CHAPTER全功率变流器风电机组的工作原理风轮齿轮箱将风轮的转速提升,并将其传递给发电机。
齿轮箱通常位于风轮和发电机之间。
齿轮箱发电机01020303开关全功率变流器的电力电子器件01整流器02逆变器最大风能追踪电力控制全功率变流器的控制原理CHAPTER全功率变流器风电机组的控制策略最大风能追踪控制变速恒频控制1直交轴电流控制23直交轴电流控制是一种用于抑制风电机组运行过程中产生的谐波电流的控制策略。
该控制策略通过实时监测发电机电流,将其中谐波电流分量消除或减弱,以减小谐波对电网的污染。
直交轴电流控制通常采用PWM整流器来实现,通过控制PWM的占空比和相位,实现谐波电流的抑制和功率因数的优化。
矢量控制策略CHAPTER全功率变流器风电机组的性能评估与优化性能评估方法发电效率评估01电网稳定性评估02抗干扰能力评估03控制策略优化最大风能追踪控制滑模变结构控制电力电子器件的优化与保护电力电子器件的选型与配置全功率变流器风电机组需要选择适当的电力电子器件,如IGBT、IGCT等,并配置相应的保护电路,以确保其在高电压、大电流等极端环境下能够安全、可靠地运行。
风力发电机组控制策略研究随着可再生能源产业的迅猛发展,风力发电作为其中的重要组成部分,正逐渐成为解决能源供需平衡和减少环境污染的有效途径。
风力发电机组控制策略的研究,对于提高风力发电的效率、降低运行成本以及保证系统可靠性具有重要意义。
本文将对风力发电机组控制策略的研究进行讨论,并针对当前面临的挑战提出相应的解决方案。
风力发电机组的控制策略可分为整机控制策略和发电机控制策略。
整机控制策略旨在优化风力机组的性能以及风能的利用率,包括速度控制策略、功率调整策略和最大功率点跟踪策略等。
而发电机控制策略主要涉及到发电机的转矩控制以及电网连接控制。
在整机控制策略方面,速度控制策略是一种常用的方法。
该策略通过调整风力发电机组的转子转速,使其在不同风速条件下都能工作在最佳转速范围,从而提高发电效率。
此外,功率调整策略也是一种常见的整机控制策略,其重点在于维持机组输出的电功率稳定,并进行功率平衡调节。
最大功率点跟踪策略则是通过实时测量风速和机组输出功率,并通过控制转矩和转速来跟踪最大功率点,从而最大限度地提高利用率。
发电机控制策略则是确保风力发电机组与电网稳定连接的关键。
发电机的转矩控制是其中的重要一环。
通过调整转矩实现风力机组对风速的快速响应,可以提高发电机的输出功率和控制性能。
此外,电网连接控制策略也是确保风力发电机组安全、稳定地与电网交互的关键。
该策略需要确保风力发电机组与电网的频率和电压保持一致,并在电网异常情况下能够快速切换到并网或脱网状态。
然而,当前风力发电机组控制策略研究面临着一些挑战。
首先,由于风力发电机组具有非线性、时变和互联特性,控制策略的设计需要克服这些复杂性。
其次,随着风力发电规模的不断扩大,风力发电机组的运行安全和可靠性也变得更加重要。
因此,如何设计出适应不同工况的控制策略,以提高风力发电的可靠性和安全性,成为了当前的研究热点。
针对以上挑战,研究人员提出了一些解决方案。
首先,采用先进的控制算法和人工智能技术,可以增强风力发电机组的控制性能和适应性。
风电发电系统建模与控制策略研究随着全球对可再生能源发电的需求日益增长,风能成为了最受关注的一种可再生能源之一。
风电发电系统已经成为了全球主流的电力生产方式。
控制策略和系统建模是风电系统设计中最关键的方面之一,也是未来风能行业发展和实现高效利用的关键。
一、风电系统建模风电系统模型是对系统的数学描述,用于分析系统性能和特性的工具。
风电系统模型一般包括机械子系统、电气子系统和电网子系统三个方面。
机械子系统包括风轮、转子、齿轮箱、发电机和塔架等部分。
电气子系统包括变流器、变压器、电容器等部分。
电网子系统包括机组出力或网络气象条件的变化、电网负荷和运行工况等因素。
对于风电系统的建模,需要考虑到系统各种子系统及其之间的耦合关系,并确定合适的模型参数和模型形式。
各子系统之间不同类型成分之间的耦合关系是非常关键的,例如机械子系统中风轮和发电机间的转矩耦合、电子系统中变流器与发电机的电气耦合以及电气系统中负荷改变和电容器的影响等。
为了更好地模拟风电系统的行为,建模还需要考虑稳态与瞬态两种特性。
通常在建模时,使用等效电路模型或者传递函数模型的方法,这两种方法也是目前风电系统建模的主要方法。
二、风电控制策略风电系统控制是保证风电系统稳定运行和高效工作的关键。
风电控制策略是提高风电系统全局性能的关键规则和指导方针。
常用的风电控制策略包括:(1)桨叶安装角度控制策略该策略根据风速和机组状态来调节桨叶安装角度,控制风轮的收集力,从而保证系统的电能贡献和安全性。
(2)切除/ 自动故障检测策略该策略用于检测异常事件,如大风或系统故障,以及监测机组内层子系统和外层子系统之间的互动行为,有效降低系统失效风险并保证电网稳定性。
(3)功率跟踪为了维持电网系统的电能贡献,风电系统需要基于当前风速和电网反馈信息来跟踪机组出力。
三、风电系统发展趋势未来,随着风电系统的技术改进和不断的经验积累,风电系统将在可靠性和控制策略等方面得到进一步的改进。
基于SVPWM的鼠笼异步风力发电机直接转矩控制研究与实验张文元;张力【摘要】相比于永磁同步风力发电机,鼠笼异步发电机具有结构简单牢固、体积小、维护及运行成本低、无永磁体退磁的隐患等特点,在数千千瓦功率等级的风力发电运用中,使用鼠笼异步发电机是一个值得考虑的方案.本文针对全变速鼠笼异步风力发电系统,提出一种基于SVPWM的鼠笼异步风力发电机直接转矩控制策略,相比于传统转子磁场定向控制不需要电流内环控制,直接对发电机的电磁转矩和定子磁链直接控制,加快了转矩和磁链控制的响应速度.最后,通过实验验证了所提控制策略的正确性与有效性.【期刊名称】《电气开关》【年(卷),期】2018(056)003【总页数】5页(P68-72)【关键词】风力发电;鼠笼异步发电机;直接转矩控制;SVPWM【作者】张文元;张力【作者单位】广西大学,电气工程学院,广西南宁 530004;广西大学,电气工程学院,广西南宁 530004【正文语种】中文【中图分类】TM341 引言随着传统化石燃料的耗尽和环境污染问题日益突出,人们将目光投向可再生的新能源发电机技术。
在众多的可再生能源发电技术中,风力发电因其技术成熟、成本较低和大规模开发利用的优势成为新能源发展最快、最具有竞争力的发电技术[1]。
风力发电系统的结构也经历了三个时期的改变,在早期使用最多的是定速型鼠笼异步发电机系统,其定子绕组直接和电网连接对电网干扰较大且发电效率较低;目前,市场安装最多风力发电机为变速的双馈异步发电机,其调速范围有限且定子绕组和电网直接相连不利于低电压穿越控制;为了改进以上两种风力发电系统的不足,新一代全变速风力发电系统产生,有效提高了风力发电系统的效率和低电压穿越性能[2]。
在全变速风力发电系统中,主要使用永磁同步发电机和鼠笼异步发电机,相比于永磁同步风力发电机,鼠笼异步发电机具有结构简单牢固、体积小、维护及运行成本低、无永磁体退磁的隐患等特点,在数千千瓦功率等级的风力发电运用中,使用鼠笼异步发电机是一个值得考虑的方案[2-4]。
全功率变流器风电机组的工作原理及控制策略全功率变流器是一种将风力发电机产生的交流电能转换为电网所需的直流电能的电子装置。
它的主要功能是实现风电机组的功率调节、保护以及与电网的连接。
全功率变流器由三个主要的模块组成:整流器、逆变器和控制单元。
整流器模块将风电机组产生的交流电能转换为直流电能,通过控制交流电能的整流部件(如晶闸管或IGBT)的导通角度,可以实现对输出直流电压的控制。
整流器的输出直流电压通过一个滤波电容进行平滑,以减小输出的脉动。
逆变器模块将整流器输出的直流电能转换回交流电能,通过控制逆变部件(如IGBT)的开关状态和频率,可以实现对输出交流电压和频率的控制。
逆变器的输出交流电能经过一个输出滤波器进行滤波,以去除输出的高次谐波。
控制单元对整个全功率变流器进行监测和控制。
它通过读取风电机组和电网的各种参数,如转速、电压、电流等,来实现对整流器和逆变器的控制。
控制单元采用先进的控制算法,如PID控制算法,来实现对全功率变流器的稳定运行和动态响应。
调频控制方式是通过控制风电机组的转速来实现对输出功率的控制。
该控制方式根据电网的需要,调节风电机组的转速,以使输出功率与电网的需求匹配。
调频控制可以使风电机组在不同的风速下运行在最佳转速范围内,提高风电机组的发电效率。
功率控制方式是通过控制全功率变流器的输出功率来实现对风电机组的控制。
该控制方式通过调节变流器的导通角度或输出电压,以控制风电机组的输出功率。
功率控制可以使风电机组根据电网的需求进行平稳的功率输出,提高电网的稳定性。
此外,全功率变流器还具有多种保护功能,如过电流保护、过电压保护、过温保护等,以确保风电机组和电网的安全运行。
控制单元还可以实现对功率输出的统计和调度,以优化风电机组的运行效果。
总之,全功率变流器通过整流器和逆变器的转换作用,将风力发电机产生的交流电能转换为电网需要的直流电能,并通过控制单元的监测和控制实现对全功率变流器的稳定运行和动态响应。