函数的周期性与函数的图象总结
- 格式:doc
- 大小:474.70 KB
- 文档页数:6
高一数学必修一函数图像知识点总结高一数学必修一函数图像知识点总结高中数学因为知识点多,好多同学听课能听懂,但是做题却不会。
因此,经常性的复习是巩固数学知识点的很好的途径。
以下是小编为您整理的关于高一数学必修一函数图像知识点的相关资料,供您阅读。
高一数学必修一函数图像知识点总结 1知识点总结:本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。
选择题、填空题和解答题都有,并且题目难度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高一数学必修一函数图像知识点总结 2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
周期函数如果现在是早上9点钟,问你:24小时以后是几点钟?你会毫不犹豫地回答:还是早上9点钟.因为你很清楚,0点、1点、2点、3点……23点,每隔24小时就重复出现一次.如果今天是星期一,问你:7天以后是星期几?你也会回答:还是星期一.因为你很清楚,星期一、星期二……星期天,每隔7天就重复出现一次.相同的间隔而重复出现的现象称为周期现象,如“24小时1天”、“7天1星期”、“365天1年”就是我们所熟悉的周期现象.自然界中有很多周期现象,如日出日落、月圆月缺、四季交替,等等.正弦函数、余弦函数是否有这样的周期性呢?1.周期函数(1)周期函数条件①对于函数f(x),存在一个__非零__常数T②当x取定义域内的每一个值时,都有__f(x+T)=f(x)__结论函数f(x)叫做__周期函数__,__非零常数T__叫做这个函数的__周期__(2)最小正周期条件周期函数f(x)的所有周期中存在一个最小的__正数__结论这个最小__正数__叫做f(x)的最小正周期2.正弦函数、余弦函数的周期性和奇偶性函数y=sin x y=cos x周期2kπ(k∈Z且k≠0)2kπ(k∈Z且k≠0)最小正周期2π__2π__奇偶性__奇函数____偶函数__[知识点拨]1.对周期函数的两点说明(1)并不是每一个函数都是周期函数,若函数具有周期性,则其周期也不一定唯一.(2)在周期函数y=f(x)中,若x∈D,则x+nT∈D(x∈Z).从而要求周期函数的定义域一定为无限集,且无上下界.2.对函数最小正周期的两点说明(1)最小正周期是指能使函数值重复出现的自变量x 要加上的那个最小正数,这个正数是对x 而言的,如y =sin2x 的最小正周期是π,因为y =sin(2x +2π)=sin [2(x +π)],即π是使函数值重复出现的自变量x 加上的最小正数,π是对x 而言的,而非2x .(2)并不是所有的周期函数都有最小正周期,譬如,常数函数f (x )=c ,任意一个正实数都是它的周期,因而不存在最小正周期.3.正弦函数、余弦函数的奇偶性(1)正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.(2)正弦曲线、余弦曲线既是中心对称图形又是轴对称图形. 预习自测1.函数f (x )=-2sin(πx +π3)的最小正周期为( D )A .6B .2πC .πD .22.下列函数中,周期为π2的是( D )A .y =sin x2B .y =sin2xC .y =cos x4D .y =cos(-4x ) 3.设函数f (x )=sin(2x -π2),x ∈R ,则f (x )是( B )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数4.若f (x )(x ∈R )为奇函数,且f (x +2)=f (x ),则f (4)=__0__.命题方向1 ⇨三角函数的周期 典例1 求下列函数的周期. (1)y =sin 12x ;(2)y =2sin(x 3-π6).[思路分析] 可以根据周期函数的定义求解,也可以用公式T =2π|ω|直接求解.[解析] 解法1:(1)令u =12x ,则y =sin u 是周期函数,且周期为2π.∴sin(12x +2π)=sin 12x ,即sin[12(x +4π)]=sin 12x .∴y =sin 12x 的周期是4π.(2)∵2sin(x 3-π6+2π)=2sin(x 3-π6),∴2sin[13(x +6π)-π6]=2sin(x 3-π6),∴y =2sin(x 3-π6)的周期是6π.解法2:(1)∵ω=12,∴T =2π12=4π.(2)∵ω=13,∴T =2π13=6π.『规律总结』 求三角函数周期的方法(1)定义法:紧扣周期函数的定义,寻求对定义域内的任意实数x 都满足f (x +T )=f (x )的非零常数T .该方法主要适用于抽象函数.(2)公式法:对形如y =A sin(ωx +φ)和y =A cos(ωx +φ)(其中A ,ω,φ是常数,且A ≠0,ω≠0),可利用T =2π|ω|来求.(3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般可采用此法.〔跟踪练习1〕求下列函数的最小正周期. (1)y =sin(3x +π3);(2)y =|cos(2x +π6)|;(3)y =sin(2πx -π4).[解析] (1)∵ω=3,T =2π3.(2)∵函数y =cos(2x +π6)的最小正周期为π,而函数y =|cos(2x +π6)|的图象是将函数y =cos(2x +π6)的图象在x 轴下方的部分对折到x 轴上方,并且保留在x 轴上方图象而得到的,由此可知所求函数的最小正周期为T =π2.(3)∵ω=2π,∴T =2π2π=π2.命题方向2 ⇨三角函数奇偶性的判断 典例2 判断下列函数的奇偶性: (1)f (x )=|sin x |+cos x ; (2)f (x )=sin(3x 4+3π2);(3)f (x )=1+sin x -cos 2x1+sin x.[思路分析] 先求函数的定义域,判断函数定义域是否关于原点对称,再判断f (-x )与f (x )的关系,最终确定奇偶性.[解析] (1)函数的定义域为R .∵f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ), ∴函数f (x )是偶函数.(2)f (x )=sin(3x 4+3π2)=-cos 3x4,x ∈R .∵f (-x )=-cos(-3x 4)=-cos 3x4=f (x ),∴函数f (x )=sin(3x 4+3π2)是偶函数.(3)函数应满足1+sin x ≠0,则函数f (x )=1+sin x -cos 2x1+sin x 的定义域为{x ∈R |x ≠2k π+3π2,k ∈Z }.显然定义域不关于原点对称,故函数f (x )=1+sin x -cos 2x1+sin x 为非奇非偶函数.『规律总结』 1.判断函数奇偶性的常用方法:(1)定义法,即从f (-x )的解析式中拼凑出f (x )的解析式,再看f (-x )=-f (x )或f (-x )=f (x )是否成立.(2)图象法,即作出函数的图象,由图象的对称性确定其奇偶性. (3)验证法,即验证f (-x )+f (x )=0或f (-x )-f (x )=0(或f (-x )f (x )=±1)是否成立.此法通常用于函数是非奇非偶的情形.2.判断函数奇偶性时,必须先判断其定义域是否关于原点对称.如果是,再验证f (-x )是否等于-f (x )或f (x ),进而再判断函数的奇偶性;如果不是,则该函数是非奇非偶数.〔跟踪练习2〕判断下列函数的奇偶性. (1)f (x )=x cos(π+x );(2)f (x )=sin(cos x ).[解析] (1)函数f (x )的定义域为R , ∵f (x )=x ·cos(π+x )=-x ·cos x ,∴f (-x )=-(-x )·cos(-x )=x ·cos x =-f (x ). ∴f (x )为奇函数.(2)函数f (x )的定义域为R .∵f (-x )=sin [cos(-x )]=sin(cos x )=f (x ). ∴f (x )为偶函数.三角函数奇偶性与周期性的综合运用典例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,求f (5π3)的值.[思路分析] 利用周期性与奇偶性将5π3化到[0,π2]内再求值.[解析] ∵f (x )的最小正周期为π,∴f (5π3)=f (2π3+π)=f (2π3)=f (π-π3)=f (-π3).又f (x )是偶函数.∴f (-π3)=f (π3)=sin π3=32.『规律总结』 1.解答此类题目的关键是利用化归的思想,借助于周期函数的定义把待求问题转化到已知区间上,代入求解即可.2.如果一个函数是周期函数,若要研究该函数的有关性质,结合周期函数的定义可知,完全可以只研究该函数在一个周期上的特征,加以推广便可以得到该函数在其它义域内的有关性质.〔跟踪练习3〕若f (x )是以π2为周期的奇函数,且f (π3)=1,求f (-5π6)的值.[解析] ∵f (x )为以π2为周期的奇函数∴f (-56π)=-f (56π)=-f (π2+π3)=-f (π3)=-1.不清楚f (x +T )表达的意义典例4 利用定义求f (x )=sin(2x -π6)的最小正周期.[错解] ∵f (x +2π)=sin ⎣⎡⎦⎤2(x +2π)-π6 =sin ⎝⎛⎭⎫2x -π6+4π=sin ⎝⎛⎭⎫2x -π6=f (x ), ∴T =2π是f (x )的最小正周期.[错因分析] 错解中求的不是最小正周期.对于y =A sin(ωx +φ)(A >0,ω>0),其周期为2πω. [正解] 令z =2x -π6,∵x ∈R ,∴z ∈R .又∵y =sin z 的周期是2π, z +2π=⎝⎛⎭⎫2x -π6+2π=2(x +π)-π6, ∴f (x +π)=sin ⎣⎡⎦⎤2(x +π)-π6 =sin ⎝⎛⎭⎫2x -π6+2π=sin ⎝⎛⎭⎫2x -π6=f (x ). ∴T =π.[点评] 最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.〔跟踪练习4〕对于函数y =sin x ,x ∈R 有sin(π6+2π3)=sin π6,能否说2π3是它的周期?[解析] 不能.周期必须对定义域内的每一个值都有f (x +T )=f (x ). 课堂检测1.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( D )2.函数y =sin2x 是( A ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为π2的偶函数D .周期为π2的奇函数3.若函数f (x )=cos(ωx +π3)(ω>0)的最小正周期是2,则ω的值为( B )A .π2B .πC .3π2D .2π4.函数f (x )是以2为周期的函数,且f (2)=2,则f (6)=__2__. [解析] f (6)=f (4+2)=f (4)=f (2+2)=f (2)=2.5.设f (x )是以1为一个周期的奇函数,且当x ∈(-12,0)时,f (x )=4x -1,求f (-318)的值.[解析] ∵f (x )的周期为1,f (-318)=f (-4+18)=f (18).又当x ∈(-1,0)时,f (x )=2x +1, ∴f (-18)=4×(-18)-1=-32,又∵f (x )是奇函数,∴f (-18)=-f (18),∴f (18)=32.故f (-318)=32.A 级 基础巩固一、选择题1.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( B )[解析] 由已知,得f (x )是周期为2的偶函数,故选B . 2.函数y =sin ⎝⎛⎭⎫-x 2+π4的最小正周期为( C ) A .π B .2π C .4πD .π23.函数f (x )=7sin(2x 3+15π2)是( A )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为3π的奇函数D .周期为4π3的偶函数4.函数y =|cos x |的最小正周期是( C ) A .π4B .π2C .πD .2π5.下列说法中正确的是( A )A .当x =π2时,sin(x +π6)≠sin x ,所以π6不是f (x )=sin x 的周期B .当x =5π12时,sin(x +π6)=sin x ,所以π6是f (x )=sin x 的一个周期C .因为sin(π-x )=sin x ,所以π是y =sin x 的一个周期D .因为cos(π2-x )=sin x ,所以π2是y =cos x 的一个周期6.若函数y =2sin ωx (ω>0)的图象与直线y +2=0的两个相邻公共点之间的距离为2π3,则ω的值为( A )A .3B .32C .23D .13[解析] 函数y =2sin ωx 的最小值是-2,该函数的图象与直线y +2=0的两个相邻公共点之间的距离恰好是一个周期,故由2πω=2π3,得ω=3.二、填空题7.若函数f (x )=sin ωx (ω>0)的周期为π,则ω=__2__.8.已知函数f (x )是定义在R 上的周期为6的奇函数,且f (1)=1,则f (5)=__-1__. [解析] 由于函数f (x )是定义在R 上的周期为6的奇函数,则f (5)=f (5-6)=f (-1)=-f (1).又f (1)=1,则f (5)=-1. 三、解答题9.已知定义在R 上的函数f (x )满足f (x +2)f (x )=1,求证:f (x )是周期函数. [证明] ∵f (x +2)=1f (x ),∴f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ).∴函数f (x )是周期函数,4是一个周期.10.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x .(1)求当x ∈[-π,0]时,f (x )的解析式; (2)画出函数f (x )在[-π,π]上的简图; (3)求当f (x )≥12时x 的取值范围.[解析] (1)∵f (x )是偶函数,∴f (-x )=f (x ). ∵当x ∈[0,π2]时,f (x )=sin x ,∴当x ∈[-π2,0]时,f (x )=f (-x )=sin(-x )=-sin x .又∵当x ∈[-π,-π2]时,x +π∈[0,π2],f (x )的周期为π,∴f (x )=f (π+x )=sin(π+x )=-sin x .∴当x ∈[-π,0]时,f (x )=-sin x . (2)如右图.(3)∵在[0,π]内,当f (x )=12时,x =π6或5π6,∴在[0,π]内,f (x )≥12时,x ∈[π6,5π6].又∵f (x )的周期为π,∴当f (x )≥12时,x ∈[k π+π6,k π+5π6],k ∈Z .B 级 素养提升一、选择题1.函数y =cos(k 4x +π3)(k >0)的最小正周期不大于2,则正整数k 的最小值应是( D )A .10B .11C .12D .13[解析] T =2πk 4=8πk ≤2,∴k ≥4π又k ∈N *∴k 最小为13,故选D .2.函数y =⎪⎪⎪⎪7sin ⎝⎛⎭⎫3x -π5的周期是( C ) A .2π B .π C .π3D .π6[解析] T =12·2π3=π3.3.函数y =|sin x |+|cos x |的最小正周期为( A ) A .π2B .πC .2πD .4π[解析] ∵⎪⎪⎪⎪sin (x +π2)+⎪⎪⎪⎪cos (x +π2)=|sin x |+|cos x |.∴原函数的最小正周期为π2. 4.函数f (x )=4sin(23x +15π2)是( A )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为43π的奇函数D .周期为43π的偶函数[解析] f (x )=4sin(23x +15π2)=4sin(23x +32π)=-4cos 23x ,∴T =3π,且满足f (-x )=f (x ),故选A .二、填空题5.若函数f (x )是以π2为周期的偶函数,且f (π3)=1,则f (-17π6)=__1__.[解析] ∵f (x )的周期为π2,且为偶函数,∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6)=f (π6)=f (π2-π2)=f (-π3)=f (π3)=1.6.设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝⎛⎭⎫α4+π12=95,则sin α的值为 ±45. [解析] ∵f (x )的最小正周期为π2,ω>0,∴ω=2ππ2=4.∴f (x )=3sin ⎝⎛⎭⎫4x +π6. 由f ⎝⎛⎭⎫α4+π12=3sin ⎝⎛⎭⎫α+π3+π6=3cos α=95, ∴cos α=35.∴sin α=±1-cos 2α=±45.三、解答题7.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. [解析] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π)(k ∈Z ).11 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π.8.已知f (x )是以π为周期的偶函数,且x ∈[0,π2]时,f (x )=1-sin x ,求当x ∈[52π,3π]时f (x )的解析式.[解析] x ∈[52π,3π]时, 3π-x ∈[0,π2], 因为x ∈[0,π2]时,f (x )=1-sin x , 所以f (3π-x )=1-sin(3π-x )=1-sin x .又f (x )是以π为周期的偶函数,所以f (3π-x )=f (-x )=f (x ),所以f (x )的解析式为f (x )=1-sin x ,x ∈[52π,3π]. C 级 能力拔高定义在R 上的偶函数f (x )满足f (x )=f (x +2),当x ∈[3,4]时,f (x )=x -2,则有下面三个式子:①f (sin 12)<f (cos 12);②f (sin π3)<f (cos π3);③f (sin1)<f (cos1).其中一定成立的是__②③__(填序号).。
函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
函数的周期性一、正弦函数的周期三角函数,以正弦函数 y = sin x 为代表,是典型的周期函数. 幂函数 y = x α 无周期性,指数函数 y = a x 无周期性,对数函数 y =log a x 无周期,一次函数 y = kx +b 、二次函数 y = ax 2+bx +c 、三次函数 y = ax 3+bx 2 + cx +d 也无周期性.周期性是三角函数独有的特性.1、正弦函数 y =sin x 的最小正周期在单位圆中,设任意角α的正弦线为有向线段MP . 正弦函数的周期性动点P 每旋转一周,正弦线MP 的即时位置和变化方向重现一次. 同时还看到,当P 的旋转量不到一周时,正弦线的即时位置包括变化方向不会重现.因此,正弦函数y =sin x 的最小正周期2π.2、y =sin (ωx )的最小正周期设ω>0,y =sin (ωx )的最小正周期设为L .按定义 y = sin ω(x +L ) = sin (ωx + ωL ) = sin ωx . 令ωx = x ' 则有 sin (x ' + ωL ) = sin x ' 因为sin x 最小正周期是2π,所以有ωωπ2π2=⇒=L L例如 sin2x 的最小正周期为π2π2= sin2x 的最小正周期为π421π2=3、正弦函数 y =sin (ωx +φ) 的周期性对正弦函数sin x 的自变量作“一次替代”后,成形式y = sin (ωx +φ). 它的最小正周期与y = sin ωx 的最小正周期相同,都是ωπ2=L .如⎪⎭⎫⎝⎛+=2π3sin x y 的最小周期与 y = sin (3x )相同,都是3π2. 于是,余弦函数⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-==2πsin 2πsin cos x x x y 的最小正周期与sin x 的最小正周期相同,都是2π.二、复合函数的周期性将正弦函数 y = sin x 进行周期变换x →ωx ,sin x →sin ωx后者周期变为)0(π2>ωω而在以下的各种变换中,如(1)初相变换sin ωx → si n ( ωx +φ);(2)振幅变换sin (ωx +φ)→ A sin ( ωx +φ);(3)纵移变换 A si n ( ωx +φ) → A si n ( ωx +φ)+m ;后者周期都不变,亦即 A si n ( ωx +φ) +m 与si n (ωx )的周期相同,都是ωπ2.而对复合函数 f (sin x )的周期性,由具体问题确定.1、复合函数 f (sin x ) 的周期性 【例题】 研究以下函数的周期性: (1)2 sin x ; (2)x sin(2)x sin 的定义域为[2k π,2k π+π],值域为[0,1],作图可知, 它是最小正周期为2π的周期函数.【解答】 (1)2sin x 的定义域为R ,值域为⎥⎦⎤⎢⎣⎡2 ,21,作图可知,它是最小正周期为2π的周期函数. 【说明】 从基本函数的定义域,值域和单调性出发,通过作图,还可确定,log a x ,sin x ,xsin 1, sin (sin x )都是最小正周期2π的周期函数.2、y = sin 3 x 的周期性对于y = sin 3x =(sin x )3,L =2π肯定是它的周期,但它是否还有更小的周期呢? 我们可以通过作图判断,分别列表作图如下.图上看到,y = sin 3x 没有比2π更小的周期,故最小正周期为2π.3、y = sin 2 x 的周期性对于y = sin 2x = (sin x )2,L =2π肯定是它的周期,但它的最小正周期是否为2π? 可以通过作图判定,分别列表作图如下.图上看到,y = sin 2x 的最小正周期为π,不是2π.4、sin 2n x 和sin 2n -1 x 的周期性y = sin2x 的最小正周期为π,还可通过另外一种复合方式得到. 因为 cos2x 的周期是π,故 sin 2x 的周期也是π.sin 2x 的周期,由cos x 的2π变为sin 2x 的π. 就是因为符号法“负负得正”所致.因此,正弦函数sin x 的幂符合函数sin m x ,当m =2n 时,sin m x 的最小正周期为π;m = 2n –1时,sin m x 的最小正周期是2π.5、幂复合函数举例【例1】 求 y =|sin x |的最小正周期.【解答】 x x y 2sin |sin |==最小正周期为π.【例2】 35)(sin x y =求的最小正周期.【解答】 5335)(sin )(sin x x =最小正周期为2π.【例3】 求52)(sin x y =的最小正周期.【解答】5252)(sin )(sin x x =最小正周期为π.【说明】 正弦函数sin x 的幂复合函数pq x )(sin . 当q 为奇数时,周期为2π;q 为偶数时,周期为π.三、周期函数的和函数两个周期函数,如 sin x 和 cos x ,它们最小正周期相同,都是 2π. 那么它们的和函数,即 si nx + cos x 的最小正周期如何?)4πsin(2cos sin +=+x x x和函数的周期与原有函数的周期保持不变. 这个结论符合一般情况.对于另一种情况,当相加的两个函数的最小正周期不相同,情况将会如何?1、函数 sin x + sin2 x 的周期性sin x 的最小正周期为2π,sin2x 的最小正周期是π,它们之间谁依赖谁,或依赖一个第三者? 列表如下.表上看到函数sin x +sin2x 的最小正周期是2π.2、函数 sin x + sin2x 的周期性依据上表,作sin x +sin2x 的图像如右.从图上看到,函数的最小正周期为2π. 由si nx ,sin2x 的最小正周期中的大者决定,因为前者是后者的2倍.从图上看到,sin x +sin2x 仍然是个“振动函数”,但振幅已经不是常数了.3、函数sin x +sin32x 的周期性 sin x 的最小正周期为2π,sin 32x 的最小正周期是3π. 它们之间的和sin x + sin 32x 的最小正周期也由“较大的”决定吗?即“和函数”的周期为3π吗?不妨按周期定义进行检验. 设2π0=x 则x 0 +3π=π32π+ 2312π32sin 2πsin 2π)(0+=⎪⎭⎫⎝⎛•+=⎪⎭⎫ ⎝⎛=f x f )(23127π32sin 27πsin π32ππ)3(00x f f x f ≠+-=⎪⎭⎫⎝⎛•+=⎪⎭⎫ ⎝⎛+=+因此3π不是sin x + sin32x 的最小正周期.通过作图、直观看到,sin x +sin32x 的最小正周期为6π,即sin x 和sin 32x 最小正周期的最小倍数.四、周期函数在高考中三角函数是高考命题的重要板块之一,小题考,大题也考,比分约占高考总分的七分之一,与立体几何相当. 与立几不同的是,它还与函数、方程、不等式、数列、向量等内容综合.正弦函数是三角函数的代表,而周期性又是正弦函数的特性. 关系到正弦函数的试题,有2种形式. (1)直接考,求正弦函数的最小正周期.(2)间接考,考周期在正弦函数性质中的应用. 求单调区间,求最值,简单方程的通解等.1、求正弦函数的周期【例1】 函数 y =|sin 2x|的最小正周期为 (A )2π(B )π (C )2π (D )4π 【解答】 2sin |2sin |2x x y == 最小正周期是2sinx最小正周期的一半,即2π. 答案为(C ) 【说明】 图象法判定最简便,|sin x |的图象是将sin x 的图象在x 轴下方部分折到x 轴上方去. 倍角法定判定最麻烦 x xy cos 212sin2-== 【解答】 (1)y = 2cos2x + 1的最小正周期由cos2x 决定2、求正弦函数的周期【例2】 (1)y =2cos 2x +1的最小正周期为 .(2)y =|sin x + cos x |的最小正周期为 .【解答】 (1)y = 2cos 2x + 1的最小正周期由cos 2x 决定,故答案为π.(2))(sin 2|)sin(|2|cos sin |2ϕϕ+=+=+x x x x 故答案为π.【说明】 )(sin cos 22ϕ+x x 都可看作sin x 的幂函数的复合函数.3、函数周期性应用于求值【例题】 f (x )是R 上的偶函数,且是最小正周期为π的周期函数.【解答】 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛3π 3π 32π 35π f f f f 233πsin == 【说明】 周期性应用于区域转化. 将“无解析式”的区域函数转化到“有解析式”的区间上求值.若 时 f (x ) = si nx 试求 的值.4、函数周期性应用于求单调区间【例题】 x ∈R ,求函数 y =sin 2x +3sin x cos x +2cos 2x 的单调增区间.【解答】 )2cos 1(2sin 2322cos 1x x x y +++-=23)6π2sin(232cos 212sin 23++=++=x x x 函数的最小正周期为π. 令 2π6π22π≤+≤-x 得 6π3π≤≤-x 因为函数周期为π,故函数的单调增区间为⎥⎦⎤⎢⎣⎡+-6ππ ,3ππk k . 【说明】 先求包含零点的增区间,再用最小正周期求单调增区间的集合.周期函数在高考中5、周期性应用于求函数零点【例题】 已知函数412sin 2cos sin cos sin )(2244--++=x x x x x x f .【解答】 41)cos sin 1(2cos sin 1412sin 2cos sin cos sin )(222244---=--++=x x x x x x x x x x fx x 2sin 4141412sin 4121+=-+=令 02sin 4141=+x 得 4π=x故交点横坐标的值的集合为4π=x .【说明】 先求绝对值最小的解,再利用最小正周期求“通解”.五、高考史上的周期大难题高考史上第一次“周期大难题”出现在恢复高考后的第3年,即1980年的理科数学卷上.本题排在该卷的第六大题上. 在有十个大题的试卷上,这是个中间位置,然而,从当年的得分情况来看,本题的难度超过了包括压轴题和附加题在内的所有题目. 这点为命题人事先未能预料. 后来分析,该题的难点有三 .(1)函数抽象,导致周期中含有参数;(2)求参数范围,与解不等式综合;(3)求最小正整数解,连命题人自拟的“标答”都含糊不清. 20多年来数学界质疑不断.【考题】设三角函数)3π5πsin()(+=k x f ,其中k ≠0.(1)写出 f (x )极大值M 、极小值m 与最小正周期;(2)试求最小的正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数 f (x )至少有一个值是M 与一个值是m .【解答】 (1) M =1,m = -1,k k T π10π25=⨯=.(2)f (x )在它的每一个周期中都恰好有一个值是M 与一个值是m .而任意两个整数间的距离都≥1因此要使任意两个整数间函数f (x )至少有一个值是M 与一个值是m ,必须且只须使 f (x )的周期≤1即:k =32就是这样的最小正整数. .4.31 π10 ,1 π10 =≥≤k k六、高考史上的周期大错题中学教材上的周期函数,一般都是简单和具体的函数. 关于最小正周期的求法,也是一些感性的结果;没有系统和完整“最小正周期”的系统研究.然而,随着“抽象函数”的不断升温,对周期函数周期的考点要求越来越高. 2006年福建理数卷出现的“周期大错题”正是这种盲目拔高的必然结果.【例题】 f (x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是A.2B.3C.4D.5【说明】 这是2005年福建卷(理)第12题,命题组提供的答案是D ,即答案为5. 答案D 从何而来?以下,就是“D”的一种解法.【解答】 f (x )周期为3,由 f (2)=0,得 f (5) = f (2)=0,得 f (-1)= f (2-3) = f (2)=0,得 f (-4) = f (2-6) = f (2)=0f (x )为奇函数,得 f (1) = - f (-1) =0 f (4)= - f (-4)=0,得 f (-0)= - f (0),得 f (0)=0 f (3)= f (3+0)= f (0)=0于是,求得 f (x )=0的解为:1、2、3、4、5. 共5个解,答案为D. 【讨论】 除了上述解法得 f (x )=0的5个解外,还有如下的解.根据方程 f (x )=0的定义, x = 1.5 和 x =4.5 也是方程的解,证明如下: 由 f (x )的周期性,知 f (-1.5)= f (1.5) (1) 由 f (x )的奇偶性,知 f (-1.5) = - f (1.5) (2) 从而有 f (1.5)=0,f (4.5) = f (1.5)=0.所以,1.5和4.5也是方程 f (x )=0的解.于是,方程的解共有7个:即是1、1.5、2、3、4、4.5、5. 【思考】 按上面讨论的结果,方程 f (x ) = 0的解至少有7个. 而原题的四个选项支中均没有这个答案. 命题人给定的答案D 是错的. 高考史上的周期大错题【实验检验】 f (x )同时满足4个条件:(1)定义在R 上;(2)奇函数;(3)周期为3;(4)f (2) =0. 据此,我们找到 f (x )的一个具体例子:x x x f 3π4sin 3π2sin)(+= 并在区间(0,6)上找到 f (x )=0的7个解,列表如下:这7个解即是1,1.5,2,3,4,4.5,5.函数x x x f 3π4sin 3π2sin)(+=在一个周期[0,3]上的图像如右. 图像与 x 轴有5个交点,故在[0,6]有9个交点,从而在(0,6)上有7个交点.【反思】 命题人的错误自然出在疏忽二字上. 实在地,本题较难,首先难倒了命题人自己.严格地讲,试题“超纲”. 对两个周期函数的和函数,其最小正周期是它们的“最小公倍数”——这本身就没有进行过证明,对某些具体函数可以具体分析,但对抽象函数来讲,却没有理论依据. 而本题,又恰恰是个抽象函数,而且是个综合问题. 命题出错似乎是必然的.。
函数奇偶性、对称性与周期性奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。
一、几个重要的结论(一)函数)(x f y =图象本身的对称性(自身对称)2、)2()(x a f x f -=⇔)(x f y =的图象关于直线a x =对称。
3、)2()(x a f x f +=-⇔)(x f y =的图象关于直线a x =对称。
4、)()(x b f x a f -=+⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。
5、b x a f x a f 2)()(=-++⇔)(x f y =的图象关于点),(b a 对称。
6、b x a f x f 2)2()(=-+⇔)(x f y =的图象关于点),(b a 对称。
7、b x a f x f 2)2()(=++-⇔)(x f y =的图象关于点),(b a 对称。
8、c x b f x a f 2)()(=-++⇔)(x f y =的图象关于点),2(c b a +对称。
(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。
2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。
6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。
7、函数)(x f y =与)(x f y --=图象关于原点对称(三)函数的周期性1、)()(x f T x f =+⇔)(x f y =的周期为T2、)()(b x b f a x f ++=+)(b a <⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+⇔)(x f y =的周期为a T 3= 7、1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 3= 8、)(1)(1)(x f x f a x f -+=+⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+⇔)(x f y =的周期为a T 6=10、)(x f y =有两条对称轴a x =和b x =()b a <⇔)(x f y =周期)(2a b T -=11、)(x f y =有两个对称中心)0,(a 和)0,(b ⇔)(x f y =周期)(2a b T -=12、)(x f y =有一条对称轴a x =和一个对称中心)0,(b ⇔)(x f y =周期)(4a b T -=13、奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y =周期a T 4=。
函数的周期性⑴ 概念:当自变量增大某一个值时,函数值有规律的重复出现。
1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期.f(x)=f(x+T)(或f(x+a)=f(x-b)其中a+b=T),则说T 是函数的一个周期.T 的整数倍也是函数的一个周期. ⑵抽象函数周期性结论:函数()y f x =满足对定义域内任一实数x (其中a 为常数), ①()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. ⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数. ⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数. ⑧函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;对数函数与指数函数图像_8 _6 _4 _2 _- 2 _- 4 _- 5 _5 _ 10 _b _ = _2 . 01 _a _ = _0 . 50_8_6_4_2_b_= _3.00_-5_5_10_a_= _0.33_-2_-4友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R)1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势:3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k>0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。
补充:反函数定义:例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1(x)函数的图像关于y=x 对称,若g (5)=2016,求)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: xy b Of (x )=bx y Of (x )=kx +b R 2)点关于直线(点)对称,求点的坐标反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较3)、f (x )=dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为②当0>a 时,开口向上,有最低点 当0<a 时。
函数奇偶性和周期性一、必备知识:1.奇、偶函数的概念 (1)偶函数:一般地,如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做偶函数. (2)奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做奇函数. 2.奇、偶函数的图象特征偶函数的图象关于 对称;奇函数的图象关于 对称. 3.具有奇偶性函数的定义域的特点具有奇偶性函数的定义域关于,即“定义域关于”是“一个函数具有奇偶性”的条件. 4.周期函数的概念 (1)周期、周期函数对于函数f (x ),如果存在一个 T ,使得当x 取定义域内的 值时,都有 ,那么函数f (x )就叫做周期函数.T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个 的正数,那么这个最小正数就叫做f (x )的最小正周期.5.函数奇偶性与单调性之间的关系(1)若函数f (x )为奇函数,且在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上为 ; (2)若函数f (x )为偶函数,且在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上为 . 6.奇、偶函数的“运算”(共同定义域上)奇±奇= ,偶±偶= ,奇×奇= ,偶×偶= ,奇×偶= . 7.函数的对称性如果函数f (x ),x ∈D ,满足∀x ∈D ,恒有f (a +x )=f (b -x ),那么函数的图象有对称轴x =a +b2;如果函数f (x ),x ∈D ,满足∀x ∈D ,恒有f (a -x )=-f (b +x ),那么函数的图象有对称中心⎝⎛⎭⎫a +b 2,0.8.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a ,0),B (b ,0)(a <b ),那么函数f (x )是周期函数,且周期T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b ,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |. 自查自纠:1.(1)f (-x )=f (x ) (2)f (-x )=-f (x ) 2.Y 轴 原点3.原点对称 原点对称 必要不充分4.(1)非零常数 每一个 f (x +T )=f (x ) (2)最小 5.(1)增(减)函数 (2)减(增)函数 6.奇 偶 偶 偶 奇二、题型训练题组一 1.函数()2lg 1()22x f x x -=--是_____________函数。
八、函数的周期性㈠ 主要知识:1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得 ()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数:函数()y f x =满足对定义域内任一实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; ②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数.⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.⑧函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以 ()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;3、图象的对称性一个函数的对称性:1、函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ⇔=--⇔b x a f x a f 2)()(=-++特殊的有:① 函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=--。
函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。
高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。
本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。
需要WORD 电子文档的同学,可以入群领取。
1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。
①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。
()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6= 10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。
函数的周期性㈠ 主要知识:1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得 ()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期, 则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期.2.几种特殊的抽象函数:具有周期性的抽象函数:函数()y f x =满足对定义域内任一实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤)()(x a f x a f -=+,则)(x f 是以a T =为周期的周其函数; ⑥1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数; ⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数. ⑧函数()y f x =满足()()f a x f a x +=-(0a >)若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以 ()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;图象的对称性一个函数的对称性:1、函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ⇔=--⇔b x a f x a f 2)()(=-++特殊的有:① 函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=--。
② 函数()y f x =的图象关于原点对称(奇函数))()(x f x f -=-⇔。
③ 函数)(a x f y +=是奇函数)(x f ⇔关于点()0,a 对称。
④ c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称 2、两个函数的对称性:①)(x f y =与)(x f y -=关于X 轴对称。
②)(x f y =与)(x f y -=关于Y 轴对称。
③)(x f y =与)2(x a f y -=关于直线a x =对称。
函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. 函数)(x a f y -=与函数)(b x y -=关于直线2b a x +=对称。
特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称⑤ )(x f y =与)(2x f a y -=关于直线a y =对称。
⑥ )2(2)(x a f b y x f y --==与关于点(a,b)对称。
⑦ )()(1x f y x f y -==与关于直线x y =对称例1 定义在R 上的非常数函数满足:)10(x f +为偶函数,且)5()5(x f x f +=-,则)(x f 一定是( )A. 是偶函数,也是周期函数B. 是偶函数,但不是周期函数C. 是奇函数,也是周期函数D. 是奇函数,但不是周期函数解:因为)10(x f +为偶函数,所以)10()10(x f x f -=+。
所以)(x f 有两条对称轴105==x x 与,因此)(x f 是以10为其一个周期的周期函数,所以x =0即y 轴也是)(x f 的对称轴,因此)(x f 还是一个偶函数。
故选(A )。
例 2 设)(x f 是定义在R 上的偶函数,且)1()1(x f x f -=+,当01≤≤-x 时,x x f 21)(-=,则=)6.8(f ___________ 解:因为f(x)是定义在R 上的偶函数,所以)(0x f y x ==是的对称轴;又因为)(1)1()1(x f y x x f x f ==-=+也是所以的对称轴。
故)(x f y =是以2为周期的周期函数,所以3.0)6.0()6.0()6.08()6.8(=-==+=f f f f例3 函数)252sin(π+=x y 的图像的一条对称轴的方程是( )45.8.4.2.ππππ==-=-=x D x C x B x A 解:函数)252sin(π+=x y 的图像的所有对称轴的方程是2252πππ+=+k x ,所以ππ-=2k x ,显然取1=k 时的对称轴方程是2π-=x ,故选(A )。
例 4 设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线21=x ,则:=++++)5()4()3()2()1(f f f f f _____________解:函数)(x f y =的图像既关于原点对称,又关于直线21=x 对称,所以周期是2,又0)0(=f ,图像关于21=x 对称,所以0)1(=f ,所以 0)5()4()3()2()1(=++++f f f f f例5、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。
例6(08湖北卷6)已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 AA.-2B.2C.-98D.98例7(08四川卷)函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213例8 (2010安徽理数)若f(x)是R 上周期为5的奇函数,且满足f(1)=1,f(2)=2则)4()3(f f -的值为( )A 、1- B 、1 C 、2- D 、2例9 (09江西卷)已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为 ( C )A .2-B .1-C .1D .2例10 2009广东三校一模)定义在R 上的函数()x f 是奇函数又是以2为周期的周期函数,则()()()741f f f ++等于 (B)A.-1B.0C.1D.4例11 (2009全国卷Ⅰ理)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,2)1(=f 则=)2009(f (D)A 、2009B 、-2009C 、-2 D.、2例12 ()f x 的定义域是R ,且(2)[1()]1()f x f x f x +-=+,若(0)2008f =求 f (2008)的值。
解:(4)11(2)11(4)1()(8)(4)1(2)1(4)1(4)1f x f x f x f x f x f x f x f x f x +--+--++====++-++++++ 周期为8,(2008)(0)2008f f ∴==例13 已知函数f (x )的定义域为R ,则下列命题中:①若f (x -2)是偶函数,则函数f (x )的图象关于直线x =2对称;②若f (x +2)=-f (x -2),则函数f (x )的图象关于原点对称;③函数y =f (2+x )与函数y =f (2-x )的图象关于直线x =2对称;④函数y =f (x -2)与函数y =f (2-x )的图象关于直线x =2对称.其中正确的命题序号是 ④ .【解析】 ①是错误的,由于f (x -2)是偶函数得f (-x -2)=f (x -2),所以f (x )的图象关于直线x =-2对称;②是错误的,由f (x +2)=-f (x -2)得f (x +4)=-f (x ),进而得f (x +8)=f (x ),所以f (x )是周期为8的周期函数;③是错误的,在第一个函数中,用-x 代x ,y 不变,即可得第二个函数,所以这两个函数图象关于y 轴对称;④是正确的,令x -2=t ,则2-x =-t ,函数y =f (t ) 与y =f (-t )的图象关于直线t =0对称,即函数y =f (x -2)与y =f (2-x )的图象关于直线x =2对称.例14(x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是 ( D )A .2B .3C .4D .5【解析】 ∵f (x )为奇函数,∴f (0)=0,又函数f (x )以3为周期,且f (2)=0,∴f (-2)=0,f (1)=0,f (4)=0,f (3)=0,f (5)=0,∴在区间(0,6)内的解有1,2,3,4,5.故选D.练习12、对函数f (x ),当x ∈(-∞,∞)时,f (2-x )=f (2+x ),f (7-x )=f (7+x ),在闭区间[0,7]上,只有f (1)=f (3)=0.(1)试判断函数y=f(x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.【分析】由已知f(2+x)=f(2-x),f(7-x)=f(7+x)知f(x)的图象有两条对称轴x=2和x=7,从而知f(x)是周期为10的周期函数,又在区间[0,7]上,只有f(1)=f(3)=0,画图易知,它是非奇非偶函数,且在一个周期[0,10]上只有2个根,故易求得方程f(x)=0在的根的个数.【解】(1)由已知得f(0)≠0,∴f(x)不是奇函数,又由f(2-x)=f(2+x),得函数y=f(x)的对称轴为x=2,∴f(-1)=f(5)≠0,∴f(-1)≠f(1),∴f(x)不是偶函数.故函数y=f(x)是非奇非偶函数;(2)由f(4-x)=f(14-x)f(x)=f(x+10),从而知y=f(x)的周期是10.又f(3)=f(1)=0,f(11)=f(13)=f(-7)=f(-9)=0,故f(x)在[0,10]和[-10,0]上均有两个解,从而可知函数y=f(x)在[0,2005]上有402个解,在上[-2005,0]有400个解,所以函数y=f(x)在[-2005,2005]上有802个解.函数的图象1.描绘函数图象的基本方法有两种:描点法与图象变换法。