这种射线可以穿透黑纸使照相底片感光
- 格式:ppt
- 大小:1.83 MB
- 文档页数:30
α射线、β射线、γ射线的穿透能力与电离能力一。
α射线,β射线与γ射线的穿透能力在1895年12月的一个夜晚,德国的一位世界著名的物理学家伦琴(ROentgen1845~1923年)在物理实验室进行阴极射线特点的研究的试验中发现:放电的玻璃管不仅发射看得见的光,还发射某种看不见的射线,这种射线穿透力很强,能穿透玻璃、木板和肌肉等,也能穿透黑纸使里面包着的底片感光,还能使涂有氰酸钡的纸板闪烁浅绿色的荧光,但对骨头难以穿透。
伦琴还用这种射线拍下他夫人手骨的照片。
他认为新发现的射线本质很神秘,还只能算一个未知物,于是就把数学中表示本知数的"X"借用过来,称之为"X射线"。
后来又经过科学家们多年的研究,才认清了"X射线"的本质,实质上它就是一种光子流,一种电磁波,具有光线的特性,是光谱家族中的成员,只是其振荡频率高,波长短罢了,其波长在1~0.01埃(1埃=10-10米)。
X射线在光谱中能量最高、范围最宽,可从紫外线直到几十甚至几百兆电子伏特(MeV)。
因为其能量高,所以能穿透一定厚度的物质。
能量越高,穿透得越厚,所以在医学上能用来透视、照片和进行放射治疗。
科学家们在放射线研究的过程中,还发现放射性同位素在衰变时能放射三种射线:α、β、γ射线。
α射线实质上就是氦原子核流,它的电离能力强,但穿透力弱,一张薄纸就可挡住;β射线实质上就是电子流,电离能力较α射线弱,而穿透力较强,故常用于放射治疗;γ射线本质上同X射线一样,是一种波长极短,能量甚高的电磁波,是一种光子流,不带电,以光速运动,具有很强的穿透力。
因此常常用于放射治疗。
屏蔽伽马射线一般采用重物质如铅等,一般源库的屏蔽水泥墙都是加了大量铅块和铁块等的,探伤的安全距离规定50米左右。
二。
α射线,β射线与γ射线的电离能力指的是什么?它们的电离能力与穿透能力有关系吗?为什么三者电离能力越大穿透能力越小?电离能力是指将空气中的分子电离为带正电荷的微粒和带负电荷的微粒我们可以这样想若三者的能量一致而某种射线的电离能力大那么他在电离空气中的分子的时候消耗大能量降低大那么穿透力就小了。
第2节放射性__衰变(对应学生用书页码P34)一、天然放射现象的发现1.1896年,法国物理学家贝可勒尔发现,铀和含铀矿物能够发出看不见的射线,这种射线可以穿透黑纸使照相底片感光。
物质放出射线的性质称为放射性,具有放射性的元素称为放射性元素.2.玛丽·居里和她的丈夫皮埃尔·居里发现了两种放射性更强的新元素,命名为钋(Po)、镭(Ra)。
二、三种射线的本质1.α射线实际上就是氦原子核,速度可达到光速的错误!,其电离能力强,穿透能力较差.在空气中只能前进几厘米,用一张纸就能把它挡住。
2.β射线是高速电子流,它的速度更大,可达光速的99%,它的穿透能力较强,电离能力较弱,很容易穿透黑纸,也能穿透几毫米厚的铝板。
3.γ射线呈电中性,是能量很高的电磁波,波长很短,在10-10m以下,它的电离作用更小,但穿透能力更强,甚至能穿透几厘米厚的铅板和几十厘米厚的混凝土.三、原子核的衰变1.放射性元素的原子核放出某种粒子后变成新原子核的变化叫衰变。
2.能放出α粒子的衰变叫α衰变,产生的新核,质量数减少4,电荷数减少2,新核在元素周期表中的位置向前移动两位,其衰变规律是错误!X―→错误!Y+错误!He。
3.能放出β粒子的衰变叫β衰变,产生的新核,质量数不变,电荷数加1,新核在元素周期表中的位置向后移动一位,其衰变规律A Z+1Y+__0-1e。
错误!X―→4.γ射线是伴随α衰变、β衰变同时产生的.β衰变是原子核中的中子转化成一个电子,同时还生成一个质子留在核内,使核电荷数增加1.四、半衰期1.放射性元素的原子核有半数发生衰变所需要的时间,叫做这种元素的半衰期.2.放射性元素衰变的快慢是由核内部自身的因素决定的.3.跟原子所处的化学状态和外部条件没有关系.4.半衰期是大量原子核衰变的统计规律.衰变公式:N=N0(错误!)错误!,τ为半衰期,反映放射性元素衰变的快慢。
1.判断:(1)放射性元素发生α衰变时,新核的化学性质不变。
【语文知识点】居里夫人发现镭的故事概括居里夫人本名叫玛丽·居里,是法国著名波兰裔科学家、物理学家、化学家。
下面为大家概括了居里夫人发现镭的故事,希望对你有所帮助,供大家参考。
1896年,法兰西共和国物理学家贝克勒尔发表了一篇工作报告,详细地介绍了他通过多次实验发现的铀元素,铀及其化合物具有一种特殊的本领,它能自动地、连续地放出一种人的肉眼看不见的射线,这种射线和一般光线不同,能透过黑纸使照相底片感光,它同伦琴发现的伦琴射线也不同,在没有高真空气体放电和外加高电压的条件下,却能从铀和铀盐中自动发生。
铀及其化合物不断地放出射线,向外辐射能量。
这使居里夫人发生了极大的兴趣。
这些能量来自于什么地方,这种与众不同的射线的性质又是什么,居里夫人决心揭开它的秘密。
1897年,居里夫人选定了自己的研究课题——对放射性物质的研究。
这个研究课题,把她带进了科学世界的新天地。
她辛勤地开垦了一片处女地,最终完成了近代科学史上最重要的发现之一发现了放射性元素镭,并奠定了现代放射化学的基础,为人类做出了伟大的贡献。
镭是一种具有很强的放射性的元素,在化学元素周期表中位于第7周期,第IIA族,原子序数88,元素符号Ra。
纯的金属镭是几乎无色的,但是暴露在空气中会与氮气反应产生黑色的氮化镭(Ra3N2)。
镭的所有同位素都具有强烈的放射性,其中最稳定的同位素为镭-226,半衰期约为1600年,会衰变成氡-222。
当镭衰变时,会产生电离辐射,使得荧光物质发光。
是居里夫人发现的新元素,镭的发现对科学贡献伟大。
玛丽·居里(Marie Curie,1867年11月7日—1934年7月4日),出生于华沙,世称“居里夫人”,全名玛丽亚·斯克沃多夫斯卡·居里(Maria Skłodowska Curie),法国著名波兰裔科学家、物理学家、化学家。
1903年,居里夫妇和贝克勒尔由于对放射性的研究而共同获得诺贝尔物理学奖,1911年,因发现元素钋和镭再次获得诺贝尔化学奖,因而成为世界上第一个两获诺贝尔奖的人。