初中数学《方程的近似解》的教案.
- 格式:docx
- 大小:15.84 KB
- 文档页数:2
用二分法求方程的近似解一、教学内容分析本节选自《普通高中课程标准实验教科书·数学1》人教A版第三单元第一节第二课,主要是分析函数与方程的关系。
教材分三步来进行:第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应函数的零点的联系。
然后推广为一般方程与相应函数的情形;第二步,在用二分法求方程近似解的过程中,通过函数图像和性质来研究方程的解,体现方程和函数的关系;第三步,在函数模型的应用过程中,通过函数模型以及模型的求解,更全面的体现函数与方程的关系,逐步建立起函数与方程的联系。
本节课是这一小节的第二节课,即用二分法求方程的近似解。
它以上节课的“连续函数的零点存在定理”为确定方程解所在区间为依据,从求方程近似解这个侧面来体现“方程与函数的关系”;而且在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法的内容埋下伏笔;充分体现新课程“渗透算学方法,关注数学文化以及重视信息技术应用”的理念。
求方程近似解其中隐含“逼进”的数学思想,并且运用“二分法”来逼近目标是一种普通而有效的方法,其关键是逼近的依据。
二、学生学习情况分析同学们有了第一节课的基础,对函数的零点具备基本的认识;而二分法来自生活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗透数学思想关注数学文化的目的,学生也能够很容易理解这种方法。
其中运用“二分法”进行区间缩小的依据、总结出“运用二分法求方程的近似解”的步骤、将“二分法”运用到生活实际,是需要学生“跳跳”才能摘到的“桃子”。
三、设计理念本节课倡导积极主动、勇于探索的学习方式,应用从生活实际——理论——实际应用的过程,应用数形结合、图表、信息技术,采用教师引导——学生探索相结合的教学方法,注重提高学生数学的提出问题、分析问题和解决问题的能力,让学生经历直观感知、观察发现、抽象与概括、符号表示、运算求解、数据处理、反思与建构等思维过程。
冀教版初三上册数学方程的近似解说课稿范文
成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。
编辑了初三上册数学方程的近似解说课稿,欢迎参考!
一、本节课内容分析与学情分析
1、本节课内容分析
本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。
通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会近似是普遍的、精确则是特殊的辩证唯物主义观点。
引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。
所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。
2、本节课地位、作用
二分法的理论依据是函数零点的存在性(定理),本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3 算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。
3、学生情况分析。
第2课时一元二次方程的根及近似解【知识与技能】会进行简单的一元二次方程的试解.【过程与方法】根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.【情感态度】理解方程的解的概念,培养有条理的思考与表达的能力.【教学重点】判定一个数是否是方程的根.【教学难点】会在简单的实际问题中估算方程的解,理解方程解的实际意义.一、情境导入,初步认识学生活动:请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?设梯子底端距墙为xm,那么,根据题意,可得方程为x2+82=102.整理,得x2-36=0.列表:问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为xm,则长为(x+2)m.根据题意,得x(x+2)=120.整理,得x2+2x-120=0.列表:【教学说明】通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围.二、思考探究,获取新知提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?老师点评:(1)问题1中x=6是x2-36=0的解;问题2中,x=10是x2+2x-120=0的解.(2)如果抛开实际问题,问题1中还有x=-6的解;问题2中还有x=-12的解.为了与以前所学的一元一次方程等只有一个解的情况区别,我们也称一元二次方程的解叫做一元二次方程的根.回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也不满足题意.【教学说明】由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.三、运用新知,深化理解1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把它代入等式,看它是否能使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.2.若x=1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,求代数式2014(a+b+c)的值.分析:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这一点同学们要深刻理解.3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0(2)3x2-6=0(3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义来求解.4.x(x-1)=2的两根为(D)A.x1=0,x2=1B.x1=0,x2=-1C.x1=1,x2=2D.x1=-1,x2=25.方程ax(x-b)+(b-x)=0的根是(B)A.x1=b,x2=aB.x1=b,x2=1/aC.x1=a,x2=1/aD.x1=a2,x2=b26.如果x2-81=0,那么x2-81=0的两个根分别是x1= 9 ,x2= -9 .7.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.解:由已知,得a+b=-3,原式=(a+b)2=(-3)2=98.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.解:由题意可知:a+c=b,a-b+c=0,把x=-1代入原方程,得ax2+bx+c=a×(-1)2+b×(-1)+c=a-b+c=0∴-1必是该方程的一个根.9.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在(21xx-)2-2×21xx-+1=0,令21xx-=y,则有y2-2y+1=0,根据上述变形数学思想(换元法)解决小明给出的问题:求(x2-1)2+(x2-1)=0的根.解:设y=x2-1,则y2+y=0,y1=0,y2=-1,当x2-1=0时,x1=1,x2=-1;当x2-1=-1时,x3=x4=0.∴x1=1,x2=-1,x3=x4=0是原方程的根.【教学说明】让学生先独立完成,而后将不会的问题同各小组交流讨论得出结果.四、师生互动,课堂小结本节课应掌握:1.一元二次方程根的概念;2.一个数是否是一元二次方程的根的判断方法;3.求一元二次方程的根的方法.1.布置作业:教材“习题2.2”第1、2题.2.完成创优作业中本课时“课时作业”部分.本节课通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围,从而会进行简单的一元二次方程的解的计算.。
用二分法求方程的近似解”教学案例分析与反思佛冈一中蒋英贤一、教学目标(一)知识与技能1.了解“二分法”是求方程近似解的常用方法;2.能够根据函数的图像,借助计算器用二分法求方程的近似解;3.理解并掌握用二分法求方近似解的步骤和思想方法.(二)过程与方法1.在掌握了函数的零点与方程的根之间的关系的基础上,通过“二分法”的学习,归纳总结“用二分法求函数零点的步骤”中渗透算法思想,为后续学习算法内容埋下伏笔;2.学会用二分法求方程的近似解的方法,从中体会函数与方程之间的联系,初步形成用函数观点处理问题的意识.(三)情感态度与价值观1.体会区间逼近的过程,感受精确与近似的相对统一;2.在教学的过程中,通过现代信息技术的合理利用,让学生体会到现代信息技术是认识世界的有效手段.二、教学重点通过用“二分法” 求方程的近似解,使学生体会函数的零点与方程的根之间的联系,初步形成用函数的观点处理问题的意识.三、教学难点1.用二分法求方程的近似解的步骤及思想方法;2.“精确度”的理解与把握.四、教学流程温故知新,引入新课-创设情境,试验体验-启发质疑,探究规律-运用新知,解决问题-总结归纳,提升思想五、教学手段多媒体教学六、教学过程(一)创设情境,引入新课1.温故知新,引入新课方程 lnx+2x-6=0 的求解2.数学实验:猜测随机数字,体会“二分”的思想过程3. 提炼数学关系:抽象数学模型-(0, 100)+,x1=50-(0, 50)+,x2=25-(0, 25)+,x3=12-(12, 25)+,x4=18-(12, 18)+,x5=15-(15, 18)+,x6=16 (17)(二)、新课学习二分法(bisection ):对于在区间[a,b ]上连续不断且 f(a) • f(b)<0的函数y=f(x), 通过不断的把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近 零点,进而得到零点近似值的方法。
用二分法求方程的近似解教案教案:用二分法求方程的近似解一、教学目标:1.理解二分法的基本原理。
2.掌握二分法在求解方程中的应用方法。
3.能够运用二分法求解方程的近似解。
二、教学准备:1.教师准备:(1)多个方程,例如x^2 - 2 = 0,x^3 - 5x + 3 = 0等,以便学生进行求解练习。
(2)计算器或电脑,帮助学生验证最终的近似解是否正确。
2.学生准备:(1)理解二分法的基本概念。
(2)掌握求解一元方程的基本方法。
三、教学过程:步骤一:导入1.引入二分法的概念:二分法是一种在有序数列中寻找特定元素的搜索算法,它通过将问题分为两个子问题,并逐渐缩小搜索范围,最终找到目标元素或近似解。
2.提问:你对二分法有什么了解?步骤二:讲解二分法的基本原理1.展示二分法示意图,并解释其基本原理。
例如:对于一个有序数列,假设我们想找到该数列中值为x的元素,我们可以先求出数列的中间值mid,然后根据mid与x的比较结果,将搜索范围减半,再在剩余部分中执行同样的步骤,直到找到x或搜索范围足够小。
2.举例说明:假设要在数列1, 2, 3, 4, 5中查找值为3的元素,首先计算中间值mid = 3,因为mid与目标值相等,所以找到了3这个元素。
若要在数列1, 2, 3, 4, 5中查找值为6的元素,计算中间值mid = 3,因为mid小于6,所以在数列4, 5中继续查找,计算中间值mid = 4,最终找到值为6的元素。
步骤三:应用二分法求解方程1.提问:我们可以将二分法用于求解方程吗?2.解释:是的,我们可以将要求解的方程转化为一个函数的零点问题。
例如:对于方程f(x) = x^3 - 5x + 3 = 0,我们可以尝试寻找函数的零点,即找到f(x) = 0的解。
3.讲解求解步骤:(1)根据给定方程确定搜索区间[a, b],确保f(a)和f(b)异号,否则不能保证方程在[a, b]范围内有解。
(2)计算中间值mid = (a + b) / 2,并计算f(mid)。
课题:§3.1.2用二分法求方程的近似解
教学目标:
知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似
解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.
过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算
法做准备.
情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统一.
教学重点:
重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.
教学程序与环节设计:
由二分查找及高次多项式方程的求问题引入.
初步应用二分法解决
. 二分法为什么可以逼近零点的再分析;
. 追寻阿贝尔和伽罗瓦.
教学过程与操作设计:。
课题:28.4方程的近似解教学目标:(一)知识目标:观察估计方程解的大致范围,用试值的方法,得到方程的近似解.(二)能力目标:1•让学生能够初步了解逼近思想,极限思想,培养学生探究问题的能力、严谨的科学态度和创新能力。
2•通过观察、画图,适当借助现代化的计算工具等手段,估计方程解得大致范围,发展估算能力。
(三)情感与价值观目标培养学生对数学的好奇心和求知欲,综合运用所学到的知识和技能解决问题,发展应用意识教学重点:能够借用计算器,用试值的方法得到方程的近似解教学难点:1•方程近似解所在初始区间的确定2•在求方程的近似解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难。
节前预习:本节内容释义我们都知道无理数是个无限不循环小数,用到它时只能取近似值,比如' 2 1.414…13介于整数_______ 与 ________ 之间,更接近于_______ 。
-一47呢?猜猜看教学过程:一、 创设情景,引入新课大家看过李咏主持的 《幸运52》节目吗?我们做个类似的游 戏。
做游戏,猜数字:教师事先准备几张写有数字的纸板(数字 为1-200之间的任意一个整数)。
由每组选出一名代表, 随机 猜教师手中纸板上的数字,教师每次根据学生猜的数字,给 出“高了”或“低了”的指示,知道学生猜出为止。
看那组 学生用时最少。
在现实生活中我们也常常利用这种方法。
譬如,翻字典查英 语单词;再譬如,一条电缆上有 15个接点,现某一接点发生故障,如何可以尽快找到故障接点?二、 新课讲解小明的爸爸投资购买某种债券, 第一年初购买了 1万元,第二年初有购买了 2万元,到第二年底本利和为 3.35万元.设 这种债券的年利润率不变,你能估计出年利润率的近似值 吗?设年利润率为r 独立思考,列出方程;集体交流,统一认识小组讨论,相互交流:根据题目的实际意义,总投入 3万元,而本利和为 3.35万元,所以r0.为了计算方便,方程左边可化为 。
方程的近似解教案教案标题:方程的近似解教案目标:1. 了解方程的概念及其在数学中的重要性。
2. 理解近似解的概念,并能够使用适当的方法求解方程的近似解。
3. 学会评估近似解的准确性,并能够解释近似解的实际意义。
教学准备:1. 教师准备:教师需要掌握方程的基本概念和求解方法,并熟悉近似解的计算方法。
2. 学生准备:学生需要掌握基本的代数运算和方程的基本知识。
教学过程:引入活动:1. 教师可以通过一个实际问题引入方程的概念,例如:小明和小红一起去购物,他们一共花费了120元,小明花费的钱数是小红的2倍,那么小明和小红各自花费了多少钱?请学生思考并列出方程。
知识讲解:2. 教师讲解方程的定义,并解释方程与实际问题之间的联系。
强调方程在数学中的应用和重要性。
3. 教师介绍近似解的概念,解释近似解在实际问题中的实际意义。
示范演示:4. 教师通过一个简单的方程求解示例,引导学生了解如何使用适当的方法求解方程的近似解。
示例:解方程2x + 3 = 7,求其近似解。
练习活动:5. 学生分组进行练习活动,解决一系列方程求近似解的问题。
教师可以提供一些实际问题,让学生应用所学知识进行求解。
讨论与总结:6. 教师组织学生进行讨论,比较不同方法求解方程的近似解的优缺点,并让学生总结求解方程近似解的方法和步骤。
评估:7. 教师布置一些练习题,让学生独立完成,并进行评估。
评估内容可以包括求解方程的近似解和评估近似解的准确性。
拓展活动:8. 对于掌握较好的学生,教师可以引导他们进行更复杂的方程近似解求解问题,拓展学生的思维能力和应用能力。
教学反思:9. 教师对本节课的教学进行总结和反思,针对学生的学习情况做出调整,并准备下一步的教学内容。
教案扩展:1. 可以引入更多实际问题,让学生应用方程的近似解求解方法。
2. 可以引入更多求解方程的近似解的方法,如牛顿法等。
3. 可以通过实际案例,让学生了解方程近似解在科学研究和工程领域的应用。
《用二分法求方程的近似解》教案教学目标1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学过程一、课前准备(预习教材P89~ P91,找出疑惑之处)复习1:什么叫零点?零点的等价性?零点存在性定理?复习2:一元二次方程求根公式? 三次方程? 四次方程?二、新课导学※ 学习探究探究任务:二分法的思想及步骤问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.解法:第一次,两端各放 个球,低的那一端一定有重球;第二次,两端各放 个球,低的那一端一定有重球;第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球. 思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求ln 26y x x =+-的零点所在区间?如何找出这个零点?新知:对于在区间[,]a b 上连续不断且 ,进而得到零点近似值的方法叫二分法(bisection).※ 典型例题例1 借助计算器或计算机,利用二分法求方程237x x +=的近似解.变式:求方程237x x +=的根大致所在区间.※ 动手试试练1. 求方程3log 3x x +=的解的个数及其大致所在区间.练2.求函数32()22f x x x x =+--的一个正数零点(精确到0.1)练3. .三、总结提升※ 学习小结① 二分法的概念;②二分法步骤;③二分法思想.学习评价※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若函数()f x 在区间[],a b 上为减函数,则()f x 在[],a b 上( ).A. 至少有一个零点B. 只有一个零点C. 没有零点D. 至多有一个零点2. 下列函数图象与x 轴均有交点,其中不能用二分法求函数零点近似值的是( ).3. 函数()2ln(2)3f x x x =--的零点所在区间为( ).A. (2,3)B. (3,4)C. (4,5)D. (5,6)4. 用二分法求方程3250x x --=在区间[2,3]内的实根,由计算器可算得(2)1f =-,(3)16f =,(2.5) 5.625f =,那么下一个有根区间为 .5. 函数()lg 27f x x x =+-的零点个数为 ,大致所在区间为 .。
《用二分法求方程的近似解》教课方案长汀县第一中学罗志强一、教课方案理念以问题为中心,以问题为路引,指引学生踊跃主动的思虑问题,调换学生的学习能动性,让学生在讲堂上勇于研究。
在教课中以学生为主体,鼓舞学生自主研究,增强学生间的合作沟通的学习方式。
培育学生的研究意识,增强学生的问题意识,提升发现和解决问题的能力。
设计上着重信息技术与数学课程的整合,利用《几何画板》让本节课的内容更为直观,生动的显现,提升学生的学习兴趣。
介绍数学家的奋斗历史,浸透数学文化,增强数学修养。
二、教课内容为《一般高中课程标准实验教科书》 (人教版)数学必修三、讲堂教课三维目标(一)知识与技术:、经过详细实例理解二分法的看法及其合用条件、借助科学计算器,掌握运用二分法求知足必定精准度要求的简单方程近似解的方法。
(二)过程与方法:、认识数学上的逼近思想,极限思想。
、体验二分法的算法思想,培育自主研究的能力,为学习算法做准备。
(三)感情、态度与价值观、经过认识数学家的史料来培育数学修养,并增强学习数学的兴趣。
、领会数学逼近过程,感觉精准与近似的相对一致。
、经过详细实例的研究,归纳归纳所发现的结论或规律,领会从详细到一般的认知过程。
四、教课要点与难点教课要点二分法的基本思想的理解,运用二分法求函数零点的近似值的步骤和过程。
教课难点精准度看法的理解及合适地使用信息技术工具,利用二分法求给定精准度的方程的近似解。
五、学情与教材剖析本节课在学生应用数形联合的数学思想指导放学习了方程的根与对应函数零点之间的关系的基础,再介绍求函数零点的近似值的“二分法”,并在总结“用二分法求方程近似解步骤”中浸透算法的思想,为学生后续学习算法内容做准备.教科书不单希望学生在数学思想与运用信息技术的能力上有所收获,并且希望学生经过认识古今中外数学家求方程的解的史料来浸透数学文化,培育数学修养。
学生基础较好,学生学习的主动性教强,所以经过一节课掌握用二分法求方程的近似解的方法,体验二分法中的逼近思想、算法思想。
初中数学《方程的近似解》的教案
2018-11-30
教学目的知识技能观察估计方程解的大致范围,用试值的方法,得到方程的近似解.
数学思考建立初步的数感和符号感,发展抽象思维
解决问题综合运用所学到的知识和技能解决问题,发展应用意识
情感态度培养学生对数学的好奇心和求知欲
教学难点通过观察估计方程解的大致范围
知识重点用试值的方法得到方程的近似解
教学过程
问题一:
小明的爸爸投资购买某种债券,第一年初购买了1万元,第二年初有购买了2万元,到第二年底本利和为3.35万元.设这种债券的年利润率不变,你能估计出年利润率的近似值吗?
师生活动:共同审题,设未知数,建立方程
设年利润率为r,
一起探究
根据题目的实际意义,总投入3万元,而本利和为3.35万元,所以r>0.
年利润r可能超过0.1吗?可能比0.06小吗?
方程的左边可化为
当r=0.1时,方程的左边=1.13.1 =3.41>3.35
0< r <0.1
当r=0.06时,方程的左边=1.063. 06=3.3.2436 <3.35
0.06< r <0.1
课堂练习
一架长为10m的梯子斜靠在墙上,梯子的顶端A除到地面的距离为8m.如果梯子的顶端沿墙面下滑1m,那么梯子的底端在地面上滑动的.距离也是1m 吗?请列出方程,并估计方程解的大致范围(误差不超过0.1m).
问题二:估计方程 x3-9=0 的解.
解:将方程化成 x3=9
由于23=8<9,33=27>9
通过试值,得到方程的解在2和3之间,并且接近2.
取x=2.1进行试值,2.13=9.261>9
2< x <2.1
再取x=2.08, x=2.09继续试值,
2.08< x <2.09
在实践探索交流中解决问题,逐步领悟解决问题的正确方法,克服畏难情绪。
同时调动学生的思维积极性,提高动手能力和活用数学的意识.
通过观察,估计方程解的范围.
用试值的方法得到方程的近似解
通过估计方程的近似解,解决实际问题.
对高次方程进行估算,求其近似解.
小结与作业
课堂小结学生讨论总结,本节课的所得和估算要点
本课作业课本第48页习题1、2、3
课后随笔(课堂设计理念,实际教学效果及改进设想)。