《概率论与统计原理》20春期末 参考资料
- 格式:docx
- 大小:102.59 KB
- 文档页数:9
XXX《概率论与统计原理》20春期末考核-00001参考答案概率论与统计原理》20春期末考核-试卷总分:100一、单选题(共20道试题,共40分)1.{图}A.AB.BC.CD.D答案:A2.设一次试验成功的概率为p,进行100次独立重复试验,当p = ( )时,成功次数的标准差的值为最大A.0B.0.25C.0.5D.0.75答案:C3.设随机变量X在区间[1,3]上服从均匀分布,则P{-0.5<X<1.5}为()A.1B.0.5C.0.25D.0答案:C4.设X1,X2,…,X100为来自总体N(0.1,1)的一个简单随机样本,S2为样本方差,则统计量99S2服从()分布A.N(0,1)B.t(99)C.χ2(99)D.χ2(100)答案:C5.题面见图片:图}A.AB.BC.CD.D答案:B6.设A,B为两个事件,且A与B相互独立。
已知P(A)=0.9,P(B)=0.8,则P(AB)= ( )A.0.02B.0.72C.0.8D.0.98谜底:B7.题面见图片:图}A.AB.BC.CD.D答案:C8.在假设检验中,显著性水平α的意义是()A.原假设H0成立,经检验被回绝的概率B.原假设H0成立,经检验不能拒绝的概率C.原假设H0不成立,经检验被拒绝的概率D.原假设H0不成立,经检验不克不及回绝的概率答案:A9.两台车床加工同样的零件,第一台的废品率为0.04,第二台的废品率为0.07,加工出来的零件混放,并设第一台加工的零件是第二台加工零件的2倍。
现任取一零件,则它是的合格品的概率为()A.0.93B.0.945C.0.95D.0.97答案:C10.{图}A.AB.BC.CD.D答案:C11.设随机变量X~N(。
A.0.6826B.0.9545C.0.9773则方程t2+2Xt+4=0没有实根的概率为1D.0.9718谜底:B12.下列数字中有可能是随机事件概率的是()A.0B.-0.3C.- 0.2D.1.5答案:A13.如果F(x)=A+Barctanx为随机变量X的分布函数,则A和B应该为()A.0,1/πB.0.25,1/πC.0.5,1/πD.0.75,1/π谜底:C14.{图}A.AB.BC.CD.D答案:C15.某食品厂划定其袋装食品每包的平均重量不低于500克,不然不克不及出厂。
2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.已知某味精厂袋装味精的重量X ~2(,)N μσ,其中μ=15,20.09σ=,技术革新后,改用新机器包装。
抽查9个样品,测定重量为(单位:克)2.设随机变量X 的密度函数为f (x),则Y = 7 — 5X 的密度函数为( B )1717A. ()B. ()55551717C. ()D. ()5555y y f f y y f f -----++---3.设)(x Φ为标准正态分布函数,100,,2, 1, 0A ,1 =⎩⎨⎧=i X i 否则,发生事件且()0.7P A =,10021X X X ,,, 相互独立。
令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y ΦB.Φ C.(70)y Φ- D.70()21y -Φ4.设随机变量X ~N(μ,9),Y ~N(μ,25),记}5{},3{21+≥=-≤=μμY p X P p ,则( B )。
A. p1<p2B. p1=p2C. p1>p2D. p1与p2的关系无法确定5.设21,A A 两个随机事件相互独立,当21,A A 同时发生时,必有A 发生,则( A )。
A. )()(21A P A A P ≤ B. )()(21A P A A P ≥C. )()(21A P A A P =D.)()()(21A P A P A P =6.一个机床有1/3的时间加工零件A ,其余时间加工零件B 。
加工零件A 时停机的概率是0.3,加工零件A 时停机的概率是0.4。
求(1)该机床停机的概率;(2)若该机床已停机,求它是在加工零件A 时发 生停机的概率。
解:设1C ,2C ,表示机床在加工零件A 或B ,D 表示机床停机。
(1)机床停机夫的概率为1122()().(|)().(|)P B P C P D C P C P D A =+12110.30.43330=⨯+⨯=(2)机床停机时正加工零件A 的概率为11110.3().(|)33(|) =11()1130P C P D C P C D P D ⨯==7.已知连续型随机变量X 的分布函数为x B A x F arctan )(+=求(1)A ,B ; (2)密度函数f (x);(3)P (1<X<2 )。
2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.已知某味精厂袋装味精的重量X ~2(,)N μσ,其中μ=15,20.09σ=,技术革新后,改用新机器包装。
抽查9个样品,测定重量为(单位:克)2.连续型随机变量X 的密度函数f (x)必满足条件( C )。
A. 0() 1B.C. () 1D. lim ()1x f x f x dx f x +∞-∞→+∞≤≤==⎰在定义域内单调不减3.设随机变量X 的密度函数为f (x),则Y = 7 — 5X 的密度函数为( B )1717A. ()B. ()55551717C. ()D. ()5555y y f f y y f f -----++---4.设)(x Φ为标准正态分布函数,100,,2, 1, 0A ,1 =⎩⎨⎧=i X i 否则,发生事件且()0.7P A =,10021X X X ,,, 相互独立。
令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y ΦB.Φ C.(70)y Φ- D.70()21y -Φ5.设21,A A 两个随机事件相互独立,当21,A A 同时发生时,必有A 发生,则( A )。
A. )()(21A P A A P ≤ B. )()(21A P A A P ≥C. )()(21A P A A P =D.)()()(21A P A P A P =6.设)(x Φ为标准正态分布函数,,,2, 1, 0A,1n i X i =⎩⎨⎧=否则,发生事件且()P A p =,12n X X X ,,,相互独立。
令1nii Y X ==∑,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y ΦB.ΦC.()y np Φ-D.()(1)y np np p -Φ-7.甲.乙.丙三台机床加工一批同一种零件,各机床加工的零件数量之比为5:3:2,各机床所加工的零件合格率依次为94%,90%,95%。
2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则=)(XY E ( A )。
A. 3B. 6C. 10D. 122.某厂生产某种零件,在正常生产的条件下,这种零件的周长服从正态分布,均值为0.13厘米。
如果从某日生产的这种零件中任取9件测量后得x =0.146厘米,S =0.016厘米。
问该日生产的零件的平均轴长是否与往日一样? (0.050.050.0250.05, (9) 2.262, (8) 2.306, 1.96t t u α====已知: )解: 待检验的假设为0:H 0.13μ=选择统计量x T =当0H 成立时, T ~t(8)0.05{||(8)}0.05P T t >= 取拒绝域w={|| 2.306T >}由已知0.1460.1330.01632.306T T -===> 拒绝H ,即认为该生产的零件的平均轴长与往日有显著差异。
3.若A 与B 对立事件,则下列错误的为( A )。
A. )()()(B P A P AB P =B. 1)(=+B A PC. )()()(B P A P B A P +=+D.0)(=AB P4.已知随机变量X ~N (0,1),求随机变量Y =X 2的密度函数。
解:当y ≤0时,F Y (y)=P (Y ≤y)=P (X 2≤y)=0; 当y>0时,F Y (y)=P (Y ≤y)=P (X 2≤y)=)(y X y P ≤≤-=dxe dx e xyxyy2/02/2221221---⎰⎰=ππ因此,f Y (y)=⎪⎩⎪⎨⎧≤>=-0. 0,0, , 2)(2/y y y e y F dy d y Y π5.若)()()(Y E X E XY E =,则(D )。
A. X 和Y 相互独立B. X 与Y 不相关C. )()()(Y D X D XY D =D.)()()(Y D X D Y X D +=+6.设随机事件A.B 互不相容,q B P p A P ==)( ,)(,则)(B A P =( C )。
2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.正常人的脉搏平均为72次/分,今对某种疾病患者9人,测得其脉搏为(次/分):2.设)(x Φ为标准正态分布函数,100,,2, 1, 0A,1 =⎩⎨⎧=i X i 否则,发生事件且()0.9P A =,10021X X X ,,, 相互独立。
令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y Φ B.90()3y -Φ C.(90)y Φ- D.90()9y -Φ3.对任意两个事件A 和B , 若0)(=AB P , 则( D )。
A. φ=ABB. φ=B AC. 0)()(=B P A PD. )()(A P B A P =-4.设)(x Φ为标准正态分布函数,100,,2, 1, 0A,1 =⎩⎨⎧=i X i 否则,发生事件且()0.7P A =,10021X X X ,,, 相互独立。
令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。
A. )(y ΦB.Φ C.(70)y Φ- D.70()21y -Φ5.设随机变量X ~N(μ,9),Y ~N(μ,25),记}5{},3{21+≥=-≤=μμY p X P p ,则( B )。
A. p1<p2B. p1=p2C. p1>p2D. p1与p2的关系无法确定6.设21,A A 两个随机事件相互独立,当21,A A 同时发生时,必有A 发生,则( A )。
A. )()(21A P A A P ≤ B. )()(21A P A A P ≥C. )()(21A P A A P =D.)()()(21A P A P A P =7.已知随机向量(X,Y )的协差矩阵V 为⎪⎪⎭⎫ ⎝⎛=9664V 计算随机向量(X +Y , X -Y )的协差矩阵(课本116页26题) 解:DX=4, DY=9, COV(X,Y)=6 D(X +Y)= DX + DY +2 COV(X,Y)=25 D(X-Y) = DX + DY -2 COV(X,Y)=1 COV (X +Y, X -Y )=DX-DY=-5故(X +Y, X -Y )的协差矩阵⎪⎪⎭⎫⎝⎛--155258.甲.乙.丙三台机床加工一批同一种零件,各机床加工的零件数量之比为5:3:2,各机床所加工的零件合格率依次为94%,90%,95%。
2020年大学基础课概率论与数理统计期末考试题及答案(精华版),02未知,X ,X ,X ,X 为其样本,下列各项不是统计量的是 1234(A) X =11 X4ii =1(B) X + X — 2R14(A) X = - 1 X4ii =1(B) X + X — 2R14(C) K = — 1(X — X )202ii =1【答案】C 4、若X 〜t (n )那么%2〜【答案】A5、设X ,X ,…,X 为总体X 的一个随机样本,E (X ) = R ,D (X )=02 12 n C=(C) K = — 102i =1(X — X )2i(D) S 2 = 1 1(X — X )3ii =1【答案】C 2、设 X 〜P(1, p ) ,X ,X ,…,X ,是来自X 的样本,那么下列选项中不正确的是 12n-A) 当n 充分大时 近似有X 〜N B) P {X = k } = C k p k (1 — p )n —k , k =0,1,2,…,n n C) k 、 一 〜、 ・—一P { X =—} = C k p k (1— p )n -k , k =0,1,2,…,n n n D) P {X= k } = C k p k (1 — p )n -k ,1 < i <n 【答案】B 3、设 X ~ N (R ,O 2),其中R 已知,o 2未知,X , X , X , X 为其样本,下列各项不是统计量的是 1234(A)F (1,n )(B )F (n ,1)(C)殍(n )(D) t (n)一、单选题1、设X 〜N (R ,o 2),其中R 已知(D) S 2 =1 X ( X —X )3i0 2= C 乏1(X — X )2为02的无偏估计, i +1 i【答案】C6、对于事件人,B,下列命题正确的是(A)若A, B互不相容,则才与B也互不相容。
(B)若A, B相容,那么%与B也相容。
2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.设随机变量X ~N(μ,81),Y ~N(μ,16),记}4{},9{21+≥=-≤=μμY p X P p ,则( B )。
A. p1<p2B. p1=p2C. p1>p2D. p1与p2的关系无法确定2.正常人的脉搏平均为72次/分,今对某种疾病患者9人,测得其脉搏为(次/分):3.某切割机在正常工作时,切割得每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
今从一批产品中随机抽取16段进行测量,计算平均长度为x =10.48cm 。
假设方差不变,问在0.05α=显著性水平下,该切割机工作是否正常? 0.050.050.025((16)=2.12, (15)=2.131, 1.960 )t t U =已知:解: 待检验的假设为0:H 10.5μ=选择统计量x U =当0H 成立时, U ~()0,1N0.025{||}0.05P U u >= 取拒绝域w={|| 1.960U >}由已知10.4810.580.5330.151541.960U U -====< 接受H ,即认为切割机工作正常。
4.甲.乙.丙三台机床加工一批同一种零件,各机床加工的零件数量之比为5:3:2,各机床所加工的零件合格率依次为94%,90%,95%。
现从加工好的整批零件中随机抽查一个,发现是废品,判断它是由甲机床加工的概率。
解 设1A ,2A ,3A 表示由甲乙丙三机床加工,B 表示此产品为废品。
(2分)则所求事件的概率为111131(|)()(|)(|)()()(|)i i i P A B P A P B A P A B P B P A P B A ===∑=10.06320.50.060.30.100.20.057⨯=⨯+⨯+⨯答:此废品是甲机床加工概率为3/7。
5.某厂生产铜丝,生产一向稳定,现从其产品中随机抽取10段检查其折断力,测得1021287.5, ()160.5i i x x x ==-=∑。
2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.从某同类零件中抽取9件,测得其长度为( 单位:mm ):2.设随机变量X ~N(μ,9),Y ~N(μ,25),记}5{},3{21+≥=-≤=μμY p X P p ,则( B )。
A. p1<p2B. p1=p2C. p1>p2D. p1与p2的关系无法确定3.一批螺丝钉中,随机抽取9个, 测得数据经计算如下:16.10, 2.10x cm s cm ==。
设螺丝钉的长度服从正态分布,试求该批螺丝钉长度方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;解:因为螺丝钉的长度服从正态分布,所以222(1)~(1)n S W n χσ-=-220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫-- ⎪ ⎪--⎝⎭ 2σ的置信度0.95的置信区间为 228 2.108 2.10,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭ 即()2.012,16.1834.设离散型随机变量的概率分布为101)(+==k k X P ,3,2,1,0=k ,则)(X E =( B )。
A. 1.8B. 2C. 2.2D. 2.45.在假设检验中, 下列说法错误的是( C )。
A. 1H 真时拒绝1H 称为犯第二类错误。
B. 1H 不真时接受1H 称为犯第一类错误。
C. 设α=}|{00真拒绝H H P ,β=}|{00不真接受H H P ,则α变大时β变小。
D. α.β的意义同(C ),当样本容量一定时,α变大时则β变小。
6.随机抽取某种炮弹9发做实验,测得炮口速度的样本标准差S=3(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的方差2σ的置信度为0.95的置信区间。
概率统计、概率论与数理统计、随机数学课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考;1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质;5、理解随机变量的概念,能熟练写出0—1分布、二项分布、泊松分布的分布律;6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质;7、掌握指数分布参数λ、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度;9、会求分布中的待定参数;10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性;11、掌握连续型随机变量的条件概率密度的概念及计算;12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率;13、了解求二维随机变量函数的分布的一般方法;14、会熟练地求随机变量及其函数的数学期望和方差;会熟练地默写出几种重要随机变量的数学期望及方差;15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念;会用独立正态随机变量线性组合性质解题;17、了解大数定理结论,会用中心极限定理解题;18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布及性质、t分布、F分布及其分位点概念;19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数;20、掌握极大似然估计法,无偏性与有效性的判断方法;21、会求单正态总体均值与方差的置信区间;会求双正态总体均值与方差的置信区间;23、明确假设检验的基本步骤,会U检验法、t检验、2χ检验法、F检验法解题;24、掌握正态总体均值与方差的检验法;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法;2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;3.准确地选择和运用全概率公式与贝叶斯公式;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;5.会用中心极限定理解题;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理;4.会求未知参数的矩估计、极大似然估计; 5.掌握无偏性与有效性的判断方法; 6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率; 例2:袋中有a 个白球,b个黑球,c 个红球,从中任意取出mm ≤a +b个球,求取出的m 个球中有k 1≤a 个白球、k 2≤b 个黑球、k 3≤c 个红球k 1+k 2+k 3=m 的概率. 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;如对于事件A ,B ,A 或B ,已知P A ,PB ,P AB ,P A B ,P A |B ,PB |A 以及换为A 或B 之中的几个,求另外几个; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 3.准确地选择和运用全概率公式与贝叶斯公式;若已知导致事件A 发生或者是能与事件A 同时发生的几个互斥的事件B i ,i =1,2,…,n ,…的概率PB i ,以及B i 发生的条件下事件A 发生的条件概率P A |B i ,求事件A 发生的概率P A 以及A 发生的条件下事件B i 发生的条件概率PB i | A ;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;1已知一维离散型随机变量X 的分布律PX =x i =p i ,i =1,2,…,n ,… 确定参数 求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的分布律及期望EgX 例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E2已知一维连续型随机变量X 的密度函数fx确定参数求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的密度函数及期望EgX例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k求概率}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数X Y =的密度及期望)(X E3已知二维离散型随机变量X ,Y 的联合分布律PX =x i ,Y =y j =p ij ,i =1,2,…,m ,…;j =1,2,…,n ,… 确定参数求概率P {X ,Y ∈G }求边缘分布律PX =x i =p i.,i =1,2,…,m ,…;PY =y j =, j =1,2,…,n ,… 求条件分布律PX =x i |Y =y j ,i =1,2,…,m ,…和PY =y j |X =x i , j =1,2,…,n ,… 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的分布律及期望EgX , Y 例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X =1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律4已知二维连续型随机变量X 的联合密度函数fx , y 确定参数求概率P {X ,Y ∈G }求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的密度函数及期望EgX , Y例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;对于来自总体X 的样本n X X X ,,,21 ,由样本构成的各种函数是否是统计量; 2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;对于来自总体X 的样本n X X X ,,,21 ,判断估计量是否无偏,比较哪个更有效; 例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;对于正态总体,由样本结合给出条件,导出参数的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤; 对于单、双正态总体根据给定条件,确定使用什么检验方法,明确基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤;1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球; 解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a AC r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关;例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 PB =120/1001=占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布;故样本点总数为:N n1在n 个格子中放有n 个质点,且每格有一个质点,共有n 种不同放法;因此,事件A 包含的样本点数:n,则n Nn A P !)(=2先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n 种不同方法;因此,事件B 包含的样本点数: n Nn NA C n =!,则n n NNA B P =)(3在指定的一个格子中放mm ≤n 个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有mn N --)1(种不同方法.因此,事件C 包含的样本点数:m n C mn N --)1(, 则mn m m n nm n m n N N N C NN C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} ;若允许千位数为0,此时千位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个;其中,千位数为0的“四位偶数”有多少个 此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A种选法;从而共有428A=224个; 因此410283945)(A A A B P -==2296/5040= 2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B 解:P AB = P APB =,P A -B = P A -P AB =,P A B = P A +PB -P AB =例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 解:P A -B =,P A B =,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,)|(B A P =)(1)()()(B P B A P B P B A P -= =2/33.准确地选择和运用全概率公式与贝叶斯公式;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;解:设事件A 表示“顾客买下该箱”,i B 表示“箱中恰好有i 件次品”,2,1,0=i ;则8.0)(0=B P ,1.0)(1=B P ,1.0)(2=B P ,1)|(0=B A P ,54)|(4204191==C C B A P ,1912)|(4204182==C C B A P ;由全概率公式得 ∑==⨯+⨯+⨯==294.019121.0541.018.0)|()()(i i i B A P B P A P ; 由贝叶斯公式 85.094.018.0)()|()()|(000=⨯==A PB A P B P A B P ; 4.1例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,P 1<X <3 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E 解:由1=∑iip,有 k +2 k +3 k +4 k =1 得 k =P 0<X <3= PX =1+PX =2=,P 1<X <3= PX =2=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=41436.0323.0211.010)(x x x x x x F∑=ii i p x X E )(=3,∑=i i p x X E 22)(=10,DX =22))(()(X E X E -=12)3(-X E =12例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k 求概率P 1<X <3 求分布函数Fx 求期望EX ,方差DX 求函数X Y =的密度函数及期望)(X E 解:由⎰+∞∞-dx x f )(=1,有⎰+∞∞-dx x f )(=k dx kx 38202=⎰=1,得 k =3/8P 1<X <3=⎰31)(dx x f =⎰21283dx x =7/8. ⎪⎩⎪⎨⎧≥<<≤=2120800)(3x x x x x F⎰+∞∞-=dx x xf X E )()(=⎰2383dx x =3/2,⎰+∞∞-=dx x f x X E )()(22=⎰20483dx x =12/5DX =22))(()(X E X E -=3/20⎪⎩⎪⎨⎧<<=其他02043)(5y y y f)(X E =⎰+∞∞-dx x f x )(=⎰202583dx x =726 3例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X=1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律 解:PX <Y =, PX =Y =YXY =iij ji p x X E )(=,=iij ji p x X E )(=,DX =))(()(X E X E -=∑∑=i ij j j p y Y E )(=2,∑∑=i ij jj p y Y E 22)(=5,DY =22))(()(Y E Y E -=1∑∑=iij jj i p y x XY E )(=,cov X ,Y =)()()(Y E X E XY E -=XY ρ=)()(),cov(Y D X D Y X = 相关V =min{X ,Y }4例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 解:由⎰⎰+∞∞-+∞∞-dxdy y x f ),(=1,有⎰⎰+∞∞-+∞∞-dxdy y x f ),(=⎰⎰-11212ydy x c dx x=1,得 c =21/4PX <Y =⎰⎰-12421ydx x dy y y = ⎪⎩⎪⎨⎧≤≤--==⎰其它011)1(821421)(42122x x x ydy x x f x X ⎪⎩⎪⎨⎧≤≤==⎰-其它1027421)(252y y ydx x y f yy Y X 与Y 不独立⎪⎩⎪⎨⎧≤≤-==-其它023)(),()|(232|yx y y x y f y x f y x f YY X⎪⎩⎪⎨⎧≤≤-==其它0118)(),()|(24|y x x y x f y x f x y f X X Y⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(=⎰⎰-11312421ydy x dx x =0⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(22=⎰⎰-11412421ydy x dx x =7/15DX =22))(()(X E X E -=7/15⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(=⎰⎰-112212421dy y x dx x =7/9⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(22=⎰⎰-113212421dy y x dx x =7/11DY =22))(()(Y E Y E -=28/891⎰⎰+∞∞-+∞∞-=dxdy y x f xy XY E ),()(=⎰⎰-112312421dy y x dx x =0cov X ,Y =0, XY ρ=0,X 与Y 不相关5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率. 解:例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率; 解:设这批种子发芽数为X ,则)9.0,1000(~B X ,由中心极限定理得所求概率为}880{≥X P 9826.0)108.2()108.2(1)90900880(1=Φ=-Φ-=-Φ-=;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤; 解: 1 1.提出假设 u u H u u H ≠=:,:12.选取统计量nS u X t /)(0-=3.对给定的显著性水平α,查表得)1(2-n t α4.计算 ns u x t /)(0-=5.判断 若),1(2->n t t α拒绝; H 反之,接受. H21.提出假设2021202:,:σσσσ>≤H H2.选取统计量2022)1(σχS n -=3.对给定的显著性水平α,查表得)1(2-n αχ4.计算.)1(2022σχs n -=5.判断 若),1(22-<n αχχ拒绝; H 反之,接受. H。