合成高分子
- 格式:ppt
- 大小:553.00 KB
- 文档页数:51
三大有机合成高分子材料:合成、应用及未
来展望
有机高分子材料是一类重要的高分子材料,广泛用于医疗、电子、汽车、环保等领域。
其中,通过有机合成方法制备的高分子材料具有
良好的性能和结构可控性,因此被广泛应用。
本文将介绍三种有机合
成高分子材料:聚醚酮、聚酰亚胺、聚碳酸酯。
聚醚酮是一种具有良好热稳定性、耐化学腐蚀性和高强度的高分
子材料,常用于制备汽车零部件、航空航天材料、医疗设备和电子元
器件等。
其合成方法一般为聚合法和交替共轭聚合法。
聚合法中,利
用二酮类和二醇类反应合成聚醚酮;交替共轭聚合法是指将副交替共
轭单体和有机高分子材料进行反应得到聚醚酮。
聚酰亚胺是又称聚酰胺酸,具有极高的热稳定性、耐化学腐蚀性
和抗辐射能力。
因此,聚酰亚胺广泛应用于航空航天、电子、医疗和
环保等领域。
其合成方法一般为亲核芳香取代反应、缩合聚合法和热
回流法。
聚碳酸酯是一类重要的生物降解高分子材料,具有良好的塑料化、热稳定性、透明度和耐久性。
目前,聚碳酸酯已被广泛用于食品包装、医疗器械、群众娱乐用品等领域。
其合成方法主要为缩合聚合法和无
催化剂的环氧开环聚合法。
总之,有机合成高分子材料具有广泛的应用前景,值得我们继续深入研究其合成方法和性能优化。
未来,随着新型材料合成方法的不断出现,有机高分子材料在各个领域的应用将变得更加广泛。
合成高分子化合物的方法合成高分子化合物的方法有多种,下面将详细介绍其中的一些主要方法。
聚合反应是一种常用的合成高分子化合物的方法。
聚合反应是将低分子化合物(单体)通过共价键的形成进行化学反应,形成长链高分子化合物。
聚合反应可以分为自由基聚合反应、阴离子聚合反应、阳离子聚合反应、离子复合聚合反应和开环聚合反应等。
自由基聚合反应是最常见的聚合反应之一,其特点是反应活性高、反应速度快。
自由基聚合反应中,单体通过自由基的产生和引发剂的作用形成自由基,并与其他自由基反应形成长链高分子。
例如,乙烯的自由基聚合反应可以用过氧化二丁酮作为引发剂,产生苯乙烯聚合物。
阴离子聚合反应是另一种常用的聚合反应方式,其特点是反应活性高、反应速度快。
阴离子聚合反应中,单体通过阴离子的产生和负离子引发剂的作用形成阴离子,并与其他阴离子进行共价结合,形成高分子链。
例如,苯乙烯的阴离子聚合反应可以用强碱如氢氧化钠作为引发剂,产生聚苯乙烯。
阳离子聚合反应是较为常见的聚合反应,其特点是反应活性高、反应速度快。
阳离子聚合反应中,单体通过阳离子的产生和阳离子引发剂的作用形成阳离子,并与其他阳离子进行共价结合,形成高分子链。
例如,异丁烯的阳离子聚合反应可以用酸催化剂如三氯化铝作为引发剂,产生聚异丁烯。
离子复合聚合反应是一种通过阳离子和阴离子之间的吸引作用形成高分子的合成方法。
离子复合聚合反应中,单体通过引发剂的作用分别产生阳离子和阴离子,然后通过离子的复合作用形成高分子链。
例如,聚合四甲基氯化铵和聚合对苯二硫酸酯就是通过离子复合聚合反应进行的。
开环聚合反应是通过开环单体在环内进行聚合形成高分子链。
开环聚合反应可以分为阻章聚合和开环增长两种方式。
阻章聚合是指环内单体通过聚合反应断裂环内键,形成高分子链。
开环增长是指环内单体通过向环内键添加反应物,使高分子链不断增长。
例如,乳酸聚合通过对乳酸环内的酸酐进行聚合开环而形成聚乳酸。
此外,还有其他合成高分子化合物的方法,如缩聚反应、溶液聚合、悬浮聚合等。
高分子材料合成方法高分子材料是一种重要的功能材料,广泛应用于塑料、橡胶、纤维、涂料、胶粘剂等领域。
高分子材料的合成方法多种多样,本文将介绍几种常见的高分子材料合成方法。
一、聚合反应法。
聚合反应法是一种常见的高分子材料合成方法,其原理是通过将单体分子进行聚合反应,形成高分子链。
聚合反应法包括自由基聚合、阴离子聚合、阳离子聚合、离子聚合等多种类型,其中自由基聚合是最为常见的一种。
在自由基聚合过程中,单体分子中的双键被引发剂或光引发剂引发,产生自由基,自由基不断地进行加成反应,最终形成高分子链。
聚合反应法具有操作简单、反应条件温和、产率高等优点,因此被广泛应用于高分子材料的合成中。
二、缩聚反应法。
缩聚反应法是另一种常见的高分子材料合成方法,其原理是通过两个或多个分子中的官能团之间的结合反应,形成高分子链。
缩聚反应法包括酯化缩聚、醚化缩聚、酰胺化缩聚等多种类型,其中酯化缩聚是应用最为广泛的一种。
在酯化缩聚过程中,两个羧酸分子经过脱水反应形成酯键,不断地进行重复反应,最终形成高分子链。
缩聚反应法具有原料易得、反应条件温和、产率高等优点,因此也被广泛应用于高分子材料的合成中。
三、环氧树脂固化法。
环氧树脂固化法是一种特殊的高分子材料合成方法,其原理是通过环氧树脂与固化剂之间的反应,形成三维网络结构的高分子材料。
环氧树脂固化法具有操作简单、成型方便、性能优异等优点,因此被广泛应用于复合材料、粘接剂、涂料等领域。
四、离子交换法。
离子交换法是一种特殊的高分子材料合成方法,其原理是通过高分子材料中的官能团与离子交换树脂中的离子进行交换反应,形成新的高分子材料。
离子交换法具有选择性强、反应速度快、操作简便等优点,因此被广泛应用于高分子材料的改性和功能化中。
综上所述,高分子材料合成方法多种多样,包括聚合反应法、缩聚反应法、环氧树脂固化法、离子交换法等多种类型。
不同的合成方法适用于不同的高分子材料,选择合适的合成方法对于高分子材料的性能和应用具有重要意义。
合成高分子材料的特点高分子材料是由大量重复单元组成的化合物,其分子量通常较大。
与其他材料相比,高分子材料具有以下特点:1. 多样性:高分子材料可以通过改变单体的组成、结构和聚合方式来获得不同性质的材料。
由于具有丰富的单体和聚合方法,高分子材料可以满足各种应用需求,如塑料、橡胶、纤维等。
2. 易加工性:高分子材料具有较低的熔点和软化温度,可以通过热塑性加工(如挤出、注塑、吹塑等)和热固性加工(如压力成型、模塑等)等方法制备成各种形状和尺寸的制品。
3. 机械性能优良:高分子材料具有较高的强度和韧性,可以适应各种载荷条件下的应力和变形。
同时,高分子材料还具有较低的密度,使其在轻质结构材料领域具有广阔的应用前景。
4. 耐化学性能好:高分子材料具有较好的化学稳定性,能够在酸、碱、溶剂等恶劣环境中保持较好的性能。
这使得高分子材料在化工、医药、食品等领域得到广泛应用。
5. 热稳定性:高分子材料具有较好的耐热性能,可以在高温条件下保持较好的结构稳定性和性能。
这使得高分子材料在航空航天、电子电器等高温环境下的应用具备优势。
6. 电绝缘性:高分子材料具有较好的电绝缘性能,可以用于制造电缆、绝缘材料等电气产品。
同时,高分子材料还可以通过掺杂、复合等方法改变其电导性能,实现导电材料的制备。
7. 生物相容性:某些高分子材料具有良好的生物相容性,能够与生物体相互作用而不引起明显的免疫排斥和组织损伤。
这使得高分子材料在医学领域的应用具备潜力,如人工心脏瓣膜、组织工程支架等。
高分子材料具有多样性、易加工性、机械性能优良、耐化学性能好、热稳定性、电绝缘性和生物相容性等特点。
这些特点使得高分子材料在各个领域得到广泛应用,并在人类社会的发展中发挥着重要的作用。
人造高分子材料和合成高分子材料下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!人造高分子材料和合成高分子材料在现代工业中扮演着至关重要的角色。
合成高分子化合物的方法(一)合成高分子化合物的方法合成高分子化合物的方法是指将单体(单个分子)通过化学反应形成高分子的过程。
高分子化合物应用广泛,例如塑料、橡胶、纤维、涂料、胶水等。
下面将介绍常见的合成高分子化合物的方法。
添加剂聚合法添加剂聚合法是一种将单体通过化学反应形成高分子的方法。
该方法需要加入反应助剂来促进聚合反应发生。
该方法可以用于聚合单独的单体或在聚合物中引入新的单体。
添加剂聚合法是合成聚合物的常用方法之一。
溶剂聚合法溶剂聚合法是将单体加入到溶剂中,通过化学反应形成高分子的过程。
该方法需要加入适当的引发剂来促进聚合反应发生。
该方法可以用于聚合单独的单体或多个单体。
溶剂聚合法常用于制备高分子薄膜和涂料。
光聚合法光聚合法是使用紫外线或可见光引发器来促进单体的聚合反应。
该方法常用于有机光敏材料的制备,例如光刻板、光学元件等。
该方法具有快速、高效、无残留、反应条件温和等优点。
自由基聚合法自由基聚合法是一种将单体通过化学反应形成高分子的方法。
该方法需要加入适当的引发剂来促进聚合反应发生。
该方法可以用于聚合单独的单体或多个单体。
自由基聚合法常用于制备聚乙烯、聚丙烯等聚合物。
离子聚合法离子聚合法是将带电单体通过离子反应形成高分子的过程。
该方法需要加入适当的溶剂和离子型引发剂来促进聚合反应发生。
离子聚合法常用于制备聚乳酸、聚丙烯酸等聚合物。
以上是常见的合成高分子化合物的方法。
具体方法的选择应根据单体的特殊性质和目标聚合物的化学结构。
•如何选择方法不同的高分子化合物可能需要不同的方法来进行合成,选择合适的方法可以提高合成的效率和质量。
以下几点需要考虑:1.单体的化学特性:根据单体它所拥有的化学性质,从而选择适合的聚合方法。
2.聚合物结构:如果想要得到特定结构的高分子聚合物,应该考虑合适的方法来控制聚合反应。
3.操作条件:选择合适的方法需要根据实验室设备、操作人员技能和反应条件等因素进行权衡。
4.目标用途:高分子化合物的应用领域广泛,选择适合的合成方法可以提高材料的性能及降低成本。
高分子合成材料范文高分子合成材料是一种由化学合成而成的大分子化合物,通常具有高分子量、高强度和高导电性等特点。
高分子合成材料广泛应用于各个领域,如塑料、橡胶、纤维、涂料、胶黏剂等。
在本篇文章中,将会探讨高分子合成材料的特点、分类以及应用领域。
1.高分子量:高分子合成材料的分子量通常在10^4-10^6之间,因此具有较高的物理强度和化学稳定性。
2.可塑性:高分子合成材料具有较好的塑性,可以通过热加工、注塑等方法加工成不同形状的制品。
3.耐磨性:高分子合成材料通常具有较好的耐磨性能,可以用于制造耐磨部件,如轮胎、刷子等。
4.耐化学性:高分子合成材料通常具有较好的耐化学性,不易受到化学药品的侵蚀。
1.聚合物:聚合物是一种由同种或不同种化学单体通过聚合反应合成的高分子化合物,可以进一步分为塑料和橡胶。
塑料是一种具有可塑性的高分子合成材料,可以根据聚合单体的不同特性,如聚乙烯、聚丙烯、聚氯乙烯等分类。
橡胶是一种具有高弹性的高分子合成材料,可以根据其硬度和化学结构的不同,如天然橡胶、丁苯橡胶等。
2.高分子复合材料:高分子复合材料由高分子基质和增强材料组成,可以提高材料的力学性能。
常见的高分子复合材料包括聚合物基复合材料、纳米复合材料和纤维增强复合材料等。
3.高分子溶液:高分子溶液是指高分子化合物在溶剂中形成的溶液。
通过调整高分子溶液的浓度、溶剂的种类和温度等条件,可以使其具有不同的性质和应用前景。
1.医疗领域:高分子合成材料被广泛用于医疗器械的制造,如医用塑料制品、人工骨骼和人工器官等。
此外,高分子合成材料还被用于制造药物缓释系统和生物医学材料。
2.电子领域:高分子合成材料被广泛应用于电子器件的制造,如电子电缆、绝缘材料和电子芯片等。
3.环保领域:高分子合成材料被广泛应用于环保材料的研发和生产,如可降解塑料和水处理材料等。
4.能源领域:高分子合成材料被应用于太阳能电池板、燃料电池和锂离子电池等能源领域。
总之,高分子合成材料具有高分子量、可塑性、耐磨性和耐化学性等特点,广泛应用于医疗、电子、环保和能源等领域。
高分子合成基础知识点总结高分子是由许多重复单元构成的大分子化合物。
它们通常可以通过聚合反应来合成,聚合是一种化学反应,通过将单体分子(也称为单体)连接在一起形成高分子。
在这个过程中,会产生一个称为聚合物的长链分子结构。
这些聚合物可以根据其结构和属性被分为许多不同的类别,其中包括塑料、橡胶和纤维等。
在高分子合成的过程中,有许多基础知识点需要了解。
以下是高分子合成的基础知识点总结:1. 聚合反应的类型聚合反应可以分为两种基本类型:加成聚合和缩聚聚合。
加成聚合是指在聚合过程中,单体分子的双键被开启,并且单体分子之间的化学键被形成,从而形成聚合物。
缩聚聚合是指两个或更多不同的单体分子通过形成共价键而结合在一起,产生一个较大的分子结构。
2. 聚合物的特性聚合物的特性取决于许多因素,包括单体的结构、聚合反应的类型以及合成的条件等。
例如,聚合物的分子量决定了其在物理和化学性质上的表现,比如硬度、柔软度和耐磨性等。
此外,聚合物的结构和形态也会影响其物理性质和化学性质,从而影响其在应用中的性能。
3. 聚合反应的机理聚合反应的机理是指聚合发生的化学步骤和过程。
对于加成聚合反应来说,一个典型的机理包括引发、传递和终止三个步骤。
在引发步骤中,引发剂会引发单体的自由基、阳离子或负离子开环形成自由基、离子或双键。
在传递步骤中,自由基、离子或双键会与其他单体分子发生反应,形成更长的聚合链。
在终止步骤中,聚合链的生长会停止,通常是由于引发剂的耗尽或者由于传递反应的竞争。
4. 聚合反应的条件聚合反应通常需要适当的条件来进行,包括适当的温度、压力和溶剂等。
这些条件可以影响聚合物的结构和性质。
例如,适当的温度和压力可以确保聚合反应的进行,而适当的溶剂可以促进单体之间的混合和反应。
此外,添加催化剂和引发剂也可以加快聚合反应的进行。
5. 聚合物的应用聚合物在许多方面都有应用,包括塑料、橡胶、纤维、涂料、胶粘剂、化妆品、医药品、食品包装等。
合成高分子的基本方法
这简直太神奇了!就像魔法师在调配神秘药水一样。
那合成高分子到底咋弄呢?其实主要有两种方法,加聚反应和缩聚反应。
加聚反应就好比搭积木,把一个个小分子像积木块一样拼接起来,变成长长的高分子链。
缩聚反应呢,有点像两人拉手,一边拉还一边掉点“小零碎”,这些“小零碎”就是小分子副产物。
合成的时候有啥要注意的呢?嘿,那可得小心操作温度和压力啥的。
温度高了,说不定高分子就“烧焦”啦;压力不对,也可能搞砸整个过程。
这就像做饭,火候不对,菜就不好吃了。
那安全性咋样呢?只要严格按照操作规程来,一般没啥大问题。
但要是瞎搞,那可就危险了,就像玩火自焚一样。
稳定性呢,合成好的高分子通常都挺稳定的,能经得住不少折腾。
合成高分子的应用场景那可多了去了。
比如塑料,到处都是啊!还有合成纤维,咱穿的衣服很多都是合成纤维做的呢。
这优势也很明显啊,强度高、耐腐蚀、重量轻。
这不是美滋滋吗?
举个实际案例呗,那汽车上的很多部件都是合成高分子材料做的。
又轻又结实,让汽车跑得更快更省油。
这效果多棒啊!
合成高分子就是这么牛!它让我们的生活变得更加丰富多彩,更加方便快捷。
咱可得好好利用这神奇的技术,创造更多的好东西。
合成高分子化学合成高分子化学是研究高分子材料的合成与结构性能之间关系的一门重要学科。
这一领域涵盖了从单体的设计、聚合反应机制的探讨到聚合物的后处理和应用等诸多方面。
随着科学技术的进步,合成高分子化学日益成为现代材料科学、医药工程、环境科学等领域的重要基础。
高分子的基本概念高分子(Polymer)是由大量相同或不同单体通过共价键连接而成的巨分子。
其基本特点是分子量极大,通常在几千到几百万之间。
根据其组分和结构,高分子可以分为天然高分子和合成高分子两大类。
天然高分子如蛋白质、纤维素、核酸等,而合成高分子包括聚乙烯、聚丙烯以及各种功能性聚合物等。
单体与聚合物单体是构成高分子的基本单位。
合成高分子的过程可以看作是将单体通过化学反应结合在一起,形成链状结构。
在聚合过程中,单体的数量和性质会直接影响最终聚合物的性能及其应用场景。
聚合物的性质取决于几个关键因素,包括:化学结构:单体的类型、组合方式及其空间构型。
链长:高分子的链长会影响其熔点、溶解性和力学性能等。
交联度:交联强度影响聚合物的弹性和力学强度。
取向性:链的取向程度对材料性能有显著影响,例如结晶度会提高力学强度。
合成方法合成高分子的主要方法包括以下几种:1. 加聚反应加聚反应,又称为链增长聚合,是一种通过逐步添加单体来形成高分子的过程。
此类反应往往涉及自由基、离子或掺杂催化剂等化学过程。
常见的加聚反应包括:自由基聚合:主要用于丙烯酸酯、苯乙烯等材料的制备。
阴离子聚合:适用于特定类型的单体,如环氧乙烷等。
阳离子聚合:通过阳离子机制进行的单体聚合,多用于异戊二烯和苯乙烯。
2. 缩聚反应缩聚反应是一种小分子副产物伴随形成聚合物的过程。
这类反应通常发生在两个或多个不同功能团之间,例如酯化、醚化、酰胺化等。
缩聚反应通常用来制造耐热性较好的工程塑料,如尼龙和酚醛树脂。
3. 共聚反应共聚是将两种或多种不同类型的单体同时参与到同一反应中,进而形成具有不同性质的新型高分子。
合成高分子材料合成高分子材料主要包括合成树脂、合成橡胶和合成纤维三大类。
合成树脂主要用于制备建筑塑料、建筑涂料和胶粘剂等,是用量最大的合成高分子材料。
合成橡胶主要用于防水密封材料、桥梁支座和沥青改性材料等,用量仅次于合成树脂。
合成纤维主要用于土工织物、纤维增强水泥、纤维增强塑料和膜结构用膜材料等,用量也在不断增加。
高分子化合物的概述基本知识一、基本概念高分子化合物又称高聚物或聚合物,其分子量很大,一般为104~106。
其分子往往由许多相同的、简单的结构单元,通过共价键重复连接而成。
其中每个单元称为“链节”,结构单元的重复数量称为“聚合度”。
二、聚合物的分类按聚合物的来源:天然聚合物和合成聚合物;按分子结构:线型聚合物和体型聚合物;按聚合物受热的行为:热塑性聚合物和热固性聚合物;按主链元素:碳链高分子(主链只含碳元素)、杂链高分子(主链含碳、氧、氮、磷等元素)、元素有机高分子(主链不含碳元素)和无机高分子(主链不含有机元素)。
三、聚合物的命名天然聚合物用专有名称,如纤维素、淀粉、蛋白质等;合成聚合物在单体名称前加上“聚”字,例如聚氯乙烯、聚苯乙烯等;也可在原料名称后加“树脂”、“橡胶”、“纤维”等来命名.四、聚合反应由低分子单体合成聚合物的反应叫做聚合反应。
聚合反应按单体和聚合物在组成和结构上发生的变化,分为加聚反应和缩聚反应两大类。
加聚反应:以单体通过加成的方式,聚合形成聚合物的反应。
缩聚反应:含有两个以上官能团的单体,通过官能团间的反应生成聚合物的反应。
缩聚反应聚合物分子链增长过程是逐步反应,同时伴有低分子副产物如水、氨、甲醇等的生成。
聚合物的结构与性质一、聚合物的分子结构分为为线型聚合物和体型聚合物。
(一)线型聚合物定义:线型聚合物的大分子链排列成线状主链(如图8-1a),有时带有支链(如图8-1b),且线状大分子间以分子间力结合在一起。
具有线型结构的聚合物包括全部加聚树脂和部分缩聚树脂。
特性:具有线型结构的树脂,强度较低,弹性模量较小,变形较大,耐热、耐腐蚀性较差,且可溶可熔。
高分子合成工艺高分子合成工艺是指将单体分子通过化学反应连结在一起,形成高分子化合物的过程。
高分子合成工艺是一项复杂而关键的技术,广泛应用于塑料制品、橡胶制品、纤维材料等行业。
高分子合成通常分为两种方法:聚合反应和缩聚反应。
聚合反应是将单体分子通过共价键连接在一起,形成高分子链。
这种反应常见的形式有自由基聚合、阴离子聚合和阳离子聚合。
自由基聚合是指通过自由基引发剂引发的聚合反应,如自由基聚合聚乙烯。
阴离子聚合和阳离子聚合是通过阴离子或阳离子引发剂引发的聚合反应,如阴离子聚合聚苯乙烯和阳离子聚合丙烯酸乙酯。
缩聚反应是指通过活性官能团或官能基将单体分子连接在一起,形成高分子化合物。
这种反应常见的形式有醚化缩聚、酯化缩聚和胺化缩聚。
醚化缩聚是通过醚键将单体分子连接在一起,形成醚类高分子。
酯化缩聚是通过酯键将单体分子连接在一起,形成酯类高分子。
胺化缩聚是通过胺键将单体分子连接在一起,形成胺类高分子。
高分子合成工艺的关键步骤包括单体选择、反应条件控制和产物回收。
单体选择是根据所需高分子的性质和应用选择适当的单体,以确保合成的高分子具有所需的性能。
反应条件的控制包括温度、压力、反应时间和反应物配比等参数的选择,以确保反应进行顺利和产物的质量稳定。
产物回收是指将合成的高分子从反应体系中分离出来,并采用合适的方法进行后处理,以得到纯净的高分子产品。
高分子合成工艺还需要考虑环境友好性和经济性。
为了减少对环境的影响,可以采用绿色合成方法,如催化剂催化、溶剂替代和废物利用等。
为了经济生产,可以提高反应的产率和选择性,降低原料成本和能耗,并改进生产工艺和设备。
总之,高分子合成工艺是一项复杂而关键的技术,在众多工业应用中起着重要作用。
通过合理选择单体、优化反应条件和改进工艺,可以实现高分子合成的高效、环保和经济生产。
不断推动高分子合成工艺的发展是现代化工领域中一个重要的研究方向。
通过不断改进合成方法和优化工艺条件,可以提高高分子材料的性能和应用范围。
11、生活中常有合成高分子资料[考点解析 ]天然高分子〔如棉花、羊毛、淀粉、纤维素、蛋白质〕1.高分子资料合成高分子〔如涂料、黏合剂、电木,聚乙烯〕橡胶、塑料、纤维2.常有合成高分子主要性能主要代表物塑料不导电,密度小,雅观,耐腐化,常有的塑料有:聚乙烯、聚氯乙烯、聚丙烯、易加工,可塑性、可燃性等聚苯乙烯、聚甲基丙烯酸甲酯〔有机玻璃〕、酚醛塑料〔电木〕、聚四氟乙烯〔塑料王〕等。
合成纤维高强度、弹性好、耐化学腐化等常有的有:涤纶〔确实良〕、锦纶〔尼龙〕、腈纶〔人造羊毛〕丙纶、维纶〔维尼纶〕等合成橡胶在合成橡胶中参加增强剂——通用橡胶〔丁苯橡胶、顺丁橡胶、氯丁橡胶〕碳黑,能够增加橡胶的耐拉、抗特种橡胶〔聚硫橡胶、硅橡胶〕切割和抗磨损等强度。
[典例解析 ] 例1.不粘锅内壁有一薄层为聚四氟乙烯的高分子资料的涂层,用不粘锅烹烧菜肴时不易粘锅、烧焦。
以下关于聚四氟乙烯的说法正确的选项是〔〕。
A .不粘锅涂层为新式有机高分子资料,商品名为“特氟隆〞B.聚四氟乙烯的单体是不饱和烃C.聚四氟乙烯中氟元素的质量分数为76%D.聚四氟乙烯的化学性质较爽朗解析:聚四氟乙烯仍属于传统的三大合成资料之一——塑料,它的单体是四氟乙烯,属于不饱和卤代烃;其氟元素的质量分数;化学性质稳定,广泛应用于炊具,商品名为“特氟隆〞。
答案: C例 2.塑料的主要成分是___________,热塑性塑料的特点是___________,热固性塑料的特点是 ___________。
人们依照需要制成了好多特别用途的塑料,如___________塑料、___________塑料、 ___________塑料等,其中___________ 塑料在宇宙航空、原子能工业和其他尖端技术领域将发挥重要的作用。
答案:合成树脂;加热到必然温度可消融甚至消融,能够屡次加工,屡次使用;一旦加工成型,就不会受热消融;工程;增强;改性;工程解析:认识几种常有塑料的品种、性能及用途。
合成高分子生物材料分类
1. 蛋白质高分子材料:由天然或人工合成的蛋白质组成,具有良好的生物相容性和生物可降解性。
常见的蛋白质高分子材料有胶原蛋白、丝素蛋白、壳聚糖等。
2. 多糖高分子材料:由不同种类的多糖组成,如明胶、海藻酸钠、玻璃化多糖等。
多糖高分子材料具有良好的生物相容性、生物可降解性和生物活性,广泛应用于组织工程和药物传递等领域。
3. 聚酯高分子材料:由含有酯键的分子组成,如聚羟基酸酯、聚乳酸、聚己内酯等。
这些材料具有生物可降解性和良好的生物相容性,在医疗领域中应用广泛。
4. 聚氨酯高分子材料:由含有尿素键的分子组成,如聚乙烯醇-聚丙烯酸酯等。
聚氨酯材料具有良好的生物相容性和生物降解性,可以应用于组织修复和药物传递等领域。
5. 聚乙烯醇高分子材料:由聚乙烯醇分子组成,具有良好的溶解性和生物相容性。
常用作药物传递、医用涂层、口腔黏膜贴片等。
6. 天然高分子材料:由天然产物提取得到的高分子材料,如天然橡胶、木聚糖等。
这些材料与生物体相容性好,广泛应用于医学和食品工业。