毕设题目汇总表(最新)
- 格式:xls
- 大小:64.00 KB
- 文档页数:2
生意要记住:手头上永远要有一样产品是天塌下来你也能赚钱的。
少为失败找理由多为成功找方法大多数人想要改革这个世界却不晓得即时从小事做起通信工程毕业设计题目精选1. 智能压力传感器系统设计2. 智能定时器3. 液位控制系统设计4. 液晶控制模块的制作5. 嵌入式激光打标机运动控制卡软件系统设计6. 嵌入式激光打标机运动控制卡硬件系统设计7. 基于单片机控制的数字气压计的设计与实现8. 基于MSC1211的温度智能温度传感器9. 机器视觉系统10. 防盗与恒温系统的设计与制作12. AT89S52单片机实验系统的开发与应用13. 在单片机系统中实现SCR〔可控硅〕过零控制14. 微电阻测量系统15. 基于单片机的电子式转速里程表的设计16. 基于GSM短信模块的家庭防盗报警系统17. 公交车汉字显示系统18. 基于单片机的智能火灾报警系统19. WIN32环境下对PC机通用串行口通信的研究及实现20. FIR数字滤波器的MATLAB设计与实现方法研究21. 无刷直流电机数字控制系统的研究与设计22. 直线电机方式的地铁模拟地铁系统制作23. 稳压电源的设计与制作24. 线性直流稳压电源的设计25. 基于CPLD的步进电机控制器26. 全自动汽车模型的设计制作27. 单片机数字电压表的设计28. 数字电压表的设计29. 计算机比值控制系统研究与设计30. 模拟量转换成为数字量的红外传输系统31. 液位控制系统研究与设计32. 基于89C2051 IC卡读/写器的设计33. 基于单片机的居室平安报警系统设计34. 模拟量转换成为数字量红外数据发射与接收系统35. 有源功率因数校正及有源滤波技术的研究36. 全自动立体停车场模拟系统的制作37. 基于I2C总线气体检测系统的设计38. 模拟量处理为数字量红外语音传输接收系统的设计39. 精细VF转换器与MCS-51单片机的接口技术40. 远程监控系统的研究与制作41. 基于UCC3802的开关电源设计42. 串级控制系统设计43. 分立式生活环境表的研究与制作(多功能电子万年历)44. 高效智能汽车调节器45. 变速恒频风力发电控制系统的设计46. 全自动汽车模型的制作47. 信号源的设计与制作48. 智能红外遥控暖风机设计49. 基于单片控制的交流调速设计50. 基于单片机的多点无线温度监控系统51. 蔬菜公司恒温库微机监控系统52. 数字触发提升机控制系统53. 农业大棚温湿度自动检测54. 无人监守点滴自动监控系统的设计55. 积分式数字电压表设计56. 智能豆浆机的设计57. 采用单片机技术的脉冲频率测量设计58. 基于DSP的FIR滤波器设计59. 基于单片机实现汽车报警电路的设计60. 多功能数字钟设计与制作61. 超声波倒车雷达系统硬件设计62. 基于AT89C51单片机的步进电机控制系统63. 模拟电梯的制作64. 基于单片机程控精细直流稳压电源的设计65. 转速、电流双闭环直流调速系统设计66. 噪音检测报警系统的设计与研究67. 转速闭环〔V-M〕直流调速系统设计68. 基于单片机的多功能函数信号发生器设计69. 基于单片机的超声波液位测量系统的设计70. 仓储用多点温湿度测量系统71. 基于单片机的频率计设计72. 基于DIMM嵌入式模块在智能设备开发中的应用73. 基于DS18B20的多点温度巡回检测系统的设计74. 计数及数码显示电路的设计制作75. 矿井提升机装置的设计76. 中频电源的设计77. 数字PWM直流调速系统的设计78. 开关电源的设计79. 基于ARM的嵌入式温度控制系统的设计80. 锅炉控制系统的研究与设计81. 智能机器人的研究与设计--\u001F自动循轨和语音控制的实现82. 基于CPLD的出租车计价器设计--软件设计83. 声纳式高度计系统设计和研究84. 集约型无绳多元心脉传感器研究与设计85. CJ20-63交流接触器的工艺与工装86. 六路抢答器设计87. V-M双闭环不可逆直流调速系统设计88. 机床润滑系统的设计89. 塑壳式低压断路器设计90. 直流接触器设计91. SMT工艺流程及各流程分析介绍92. 大棚温湿度自动控制系统93. 基于单片机的短信收发系统设计――硬件设计94. 三层电梯的单片机控制电路95. 交通灯89C51控制电路设计96. 基于D类放大器的可调开关电源的设计97. 直流电动机的脉冲调速98. 红外快速检测人体温度装置的设计与研制99. 基于8051单片机的数字钟100. 48V25A直流高频开关电源设计101. 动力电池充电系统设计102. 多电量采集系统的设计与实现103. PWM及单片机在按摩机中的应用104. IC卡预付费煤气表的设计105. 基于单片机的电子音乐门铃的设计106. 基于单片机的温湿度测量系统设计107. 基于单片机的简易GPS定位信息显示系统设计108. 基于单片机的简单数字采集系统设计109. 大型抢答器设计110. 新型出租车计价器控制电路的设计111. 500kV麻黄线电磁环境影响计算分析112. 单片机太阳能热水器测控仪的设计113. LED点阵显示屏-软件设计114. 双容液位串级控制系统的设计与研究115. 三电平Buck直流变换器主电路的研究116. 基于PROTEUS软件的实验板仿真117. 基于16位单片机的串口数据采集118. 电机学课程CAI课件开发119. 单片机教学实验板--软件设计120. PN结〔二极管〕温度传感器性能的实验研究121. 微电脑时间控制器的软件设计122. 基于单片机AT89S52的超声波测距仪的研制123. 硼在TLP扩散连接中的作用机理研究124. 多功能智能化温度测量仪设计125. 电网系统对接地电阻的智能测量126. 基于数字采样法的工频电参数测量系统的设计127. 动平衡检测系统的设计128. 非正弦条件下电参测量的研究129. 频率测量新原理的研究130. 基于LABVIEW的人体心率变异分析测量131. 学校多功能厅音响系统的设计与实现132. 利用数字电路实现电子密码锁133. 矩形微带天线的设计134. 简易逻辑仪的分析135. 无线表决系统的设计136. 110kV变电站及其配电系统的设计137. 10KV变电所及低压配电系统设计138. 35KV变电所及低压配电系统设计139. 6KV配电系统及车间变电所设计140. 交流接触器自动化生产流水线设计141. 63A三极交流接触器设计142. 100A交流接触器设计143. CJ20-40交流接触器工艺及工装设计144. JSS型数字式时间继电器设计145. 半导体脱扣器的设计146. 12A交流接触器设计147. CJ20-100交流接触器装配线设计148. 真空断路器的设计149. 总线式智能PID控制仪150. 自动售报机的设计151. 小型户用风力发电机控制器设计152. 断路器的设计153. 基于MATLAB的水轮发电机调速系统仿真154. 数控缠绕机树脂含量自控系统的设计155. 软胶囊的单片机温度控制〔硬件设计〕156. 空调温度控制单元的设计157. 基于人工神经网络对谐波鉴幅158. 基于单片机的鱼用投饵机自动控制系统的设计159. 基于MATLAB的调压调速控制系统的仿真研究160. 锅炉汽包水位控制系统161. 基于单片机的无刷直流电机控制系统设计162. 煤矿供电系统的保护设计--硬件电路的设计163. 煤矿供电系统的保护设计--软件设计164. 大容量电机的温度保护--软件设计165. 大容量电机的温度保护--硬件电路的设计166. 模块化机器人控制器设计167. 电子式热分配表的设计开发168. 中央冷却水温控制系统169. 基于单片机的玻璃管加热控制系统设计170. 基于AT89C51单片机的号音自动播放器设计171. 基于单片机的普通铣床数控化设计172. 基于AT89C51单片机的电源切换控制器的设计173. 基于51单片机的液晶显示器设计174. 手机电池性能检测175. 自动门控制系统设计176. 汽车侧滑测量系统的设计177. 超声波测距仪的设计及其在倒车技术上的应用178. 篮球比赛计时器设计179. 基于单片机控制的红外防盗报警器的设计180. 智能多路数据采集系统设计181. 继电器保护毕业设计182. 电力系统电压频率紧急控制装置研究183. 用单片机控制的多功能门铃184. 全氢煤气罩式炉的温度控制系统的研究与改造185. 基于ATmega16单片机的高炉透气性监测仪表的设计186. 基于MSP430的智能网络热量表187. 火电厂石灰石湿法烟气脱硫的控制188. 家用豆浆机全自动控制装置189. 新型起倒靶控制系统的设计与实现190. 软开关技术在变频器中的应用191. 中频感应加热电源的设计192. 智能小区无线防盗系统的设计193. 智能脉搏记录仪系统194. 直流开关稳压电源设计195. 用单片机实现远程控制家用电器196. 无线话筒制作197. 温度检测与控制系统198. 数字钟的设计199. 汽车尾灯电路设计200. 篮球比赛计时器的硬件设计201. 公交车报站系统的设计202. 频率合成器设计203. 基于RS485总线的远程双向数据通信系统的设计204. 宾馆客房环境检测系统205. 智能充电器的设计与制作206. 基于单片机的电阻炉温度控制系统设计207. 单片机控制的PWM直流电机调速系统的设计208. 遗传PID控制算法的研究209. 模糊PID控制器的研究及应用210. 楼宇自动化系统的设计与调试211. 基于AT89C51单片机控制的双闭环直流调速系统设计212. 基于89C52的多通道采集卡的设计213. 单片机自动找币机械手控制系统设计214. 单片机控制PWM直流可逆调速系统设计。
毕业设计论文题目大全1. 基于深度学习的图像识别技术应用研究2. 基于区块链的数字资产交易系统设计与实现3. 基于物联网的智能家居系统设计与实现4. 跨境电商发展的影响及对策研究5. 移动互联网电商平台用户体验研究与优化6. 无人驾驶技术研究与应用7. 软件定义网络在大型企业网络中的应用研究8. 电子商务平台的信息安全防护研究9. 农村电商发展现状及对策研究10. 人工智能在医疗诊断中的应用研究11. 即时通讯工具的用户体验与安全研究12. 全球供应链管理中的信息系统研究13. 虚拟现实技术在教育领域中的应用研究14. 大数据分析在金融风险评估中的应用研究15. 基于区块链的电子合同设计与实现16. 人工智能在智能交通系统中的应用研究17. 微信小程序在电商领域的应用研究18. 物联网技术在智能农业中的应用研究19. 电子医疗健康监测系统设计与实现20. 基于云计算的企业信息化平台建设研究21. 区块链技术在供应链金融中的应用研究22. 无线传感网络在环境监测中的应用研究23. 物联网技术在智慧城市建设中的应用研究24. 大数据挖掘技术在社交网络分析中的应用研究25. 人工智能在安防监控系统中的应用研究26. 电子政务系统的建设与应用研究27. 基于云计算的大规模数据处理方法研究28. 社交媒体用户行为分析与个性化推荐研究29. 无线传感网络在智能交通系统中的应用研究30. 虚拟现实技术在企业培训中的应用研究31. 基于区块链的供应链管理系统设计与实现32. 智能家居系统的安全性与隐私保护研究33. 大数据分析在智慧旅游中的应用研究34. 人工智能在智慧教育中的应用研究35. 新能源汽车充电站布局优化研究36. 物联网技术在智慧物流中的应用研究37. 电子商务平台的社交化设计与实现38. 微博数据挖掘与情感分析研究39. 室内定位技术在商场导航中的应用研究40. 全球位置系统在智慧交通中的应用研究。
1、基于MATLAB的数字滤波器设计与仿真2、电力电子电路缓冲器研究与仿真3、电力系统振荡的数字仿真研究4、基于labview虚拟仪器的电力系统测量技术研究5、基于Labview的虚拟数字钟设计6、基于LabVIEW的虚拟频谱分析仪的设计7、电力有源滤波器控制设计8、电力系统谐波分量计算-傅立叶与最小二乘法比较9、太阳能电池的应用前景分析10、电力电子电路缓冲器研究与仿真11、智能温度控制系统的研究12、110kV变电站及其配电系统的设计智能化住宅防盗报警系统设计电力系统谐波分量计算-傅立叶与最小二乘法比较基于小波分析和神经网络理论的电力系统短路故障研究单周期控制的有源滤波器的研究2.出租车计费系统设计4.基于单片机的数字万年历设计5.供电电缆故障检测6.基于数字图像处理的物体检测系统设计7.多功能秒表设计8.单片机控制的电机交流调速系统设计11.楼宇对讲系统的安全性分析与研究12.智能化通信(火灾报警系统)在高层防火中的应用13.太阳能电池的应用前景分析14.浅谈变频器在家用电器中的应用17.大型变压器的继电保护设计与整定18.110kV变电所电气部分所设计21.电力系统继电保护故障信息采集及处理系统22.基于单片机的数字电能表设计24.多传感器信息融合方法研究25.基于信息融合技术的变压器故障检测26.电梯PLC控制系统设计28.智能温度控制系统的研究30.直流开关电源的设计31.基于瞬时无功功率理论的谐波和无功电流实时检测32.基于单片机的蓄电池容量测试系统33.发光二极管最佳驱动方式的对比研究35.数字流量计设计40.简易无线电遥控系统41.基于Labview的虚拟数字钟设计42.基于LabVIEW的虚拟频谱分析仪的设计基于单片机的数字钟设计45.基于单片机的数字电压表的设计46.基于单片机的交流调功器设计47.虚拟信号发生器设计和远程实现49.基于单片机的八路抢答器设计53.单片机打铃系统设计55.电子体温计的设计56.数字电子秤的设计58.基于单片机的火灾报警器59.基于89C51的点阵屏显示设计62.用集成温度传感器组成测温控制系统63.智能抢答器设计64.防盗报警器设计66.110kV变电站及其配电系统的设计69.6KV配电系统及车间变电所设计70.高压输电线路微机保护系统设计82.无刷直流电机数字控制系统的研究与设计87.数字温度测控仪的设计88.下棋定时钟设计89.温度测控仪设计90.数字频率计91.数字集成功率放大器整体电路设计92.数字电容表的设计96.扩音机的设计97.交直流自动量程数字电压表基于AT89C51单片机的步进电机控制系统单片机水温控制系统。
一、工程类1. 基于物联网的智能家居系统设计与实现2. 太阳能光伏发电系统的优化设计与性能分析3. 无人机自动飞行控制系统的研究与开发4. 5G通信技术在智慧城市中的应用研究5. 智能交通信号控制系统的设计与仿真二、计算机类1. 基于深度学习的图像识别系统设计与实现2. 区块链技术在供应链管理中的应用研究3. 大数据分析在医疗健康领域的应用研究4. 云计算环境下的大规模数据处理技术研究三、设计类1. 基于用户需求的移动应用界面设计2. 传统文化元素在现代家居设计中的应用3. 可持续发展的绿色建筑设计研究4. 基于虚拟现实技术的互动体验设计5. 数字媒体艺术在商业广告中的应用研究四、管理类1. 企业战略管理中的创新思维与方法2. 供应链金融风险管理与优化策略3. 互联网时代的企业营销模式创新研究4. 项目管理中的沟通与协调技巧研究5. 人力资源管理中的员工激励机制研究五、经济类1. 股票市场波动性与风险管理研究2. 互联网金融对传统银行业务的影响分析3. 可持续发展视角下的区域经济发展研究4. 国际贸易中的贸易壁垒与对策研究5. 金融市场中的资产配置策略研究六、社会类1. 社交媒体对青少年心理发展的影响研究2. 社区养老服务体系的构建与优化研究3. 环境保护与经济发展的协调机制研究4. 公共卫生事件中的应急管理研究5. 社会保障体系中的公平与效率问题研究七、教育类1. 网络教育平台的设计与实现2. 虚拟现实技术在教育中的应用研究3. 教育公平问题研究4. 个性化学习系统的设计与实现5. 教育资源优化配置研究八、艺术类1. 现代艺术风格在服装设计中的应用2. 传统音乐在现代舞台表演中的应用3. 数字技术在艺术创作中的应用研究4. 艺术品的收藏与鉴赏研究5. 艺术史上的重要流派与代表作品研究。
电气专业毕业设计题目汇总表说明:本表题目仅供测控技术与仪器专业大四学生选择,每人1题,并要征得指导教师同意。
未列入本表的题目,选题均无效,不接受补交题目。
本学期考试前一周开题,请大家选题后立即与指导教师联系,了解具体要求,做好开题准备工作。
开题通过的学生,才可以正式开展毕设工作。
选题时间截止到本周5.附录:From the world of radio in the world to a single chipModern computer technology, industrial revolution, the world economy from the capital into the economy to knowledge economy. Field in the electronic world, from the 20th century into the era of radio to computer technology in the 21st century as the center of the intelligent modern era of electronic systems. The basic core of modern electronic systems are embedded computer systems (referred to as embedded systems), while the microcontroller is the most typical and mostextensive and most popular embedded systems.First, radio has created generations of excellence in the worldFifties and sixties in the 20th century, the most representative of the advanced electronic technology is wireless technology, including radio broadcasting, radio, wireless communications (telegraph), Amateur Radio, radio positioning, navigation and other telemetry, remote control, remote technology. Early that these electronic technology led many young people into the wonderful digital world, radio show was a wonderful life, the prospects for science and technology. Electronics began to form a new discipline. Radio electronics, wireless communications began e-world journey. Radio technology not only as a representative of advanced science and technology at that time, but also from popular to professional fields of science, attracting the young people and enable them to find a lot of fun. Ore from the bedside to the superheterodyne radio radio; report issued from the radio amateur radio stations; from the telephone, electric bell to the radio control model. Became popular youth radio technology, science and technology education is the most popular and most extensive content. So far, many of the older generation of engineers, experts, Professor of the year are radio enthusiasts. Fun radio technology, radio technology, comprehensive training, from basic principles of electronics, electronic components to the radio-based remote control, telemetry, remote electronic systems, has trained several generations of technological excellence.Second, from the popularity of the radio era to era of electronic technologyThe early radio technology to promote the development of electronic technology, most notably electronic vacuum tube technology to semiconductor electronictechnology. Semiconductor technology to realize the active device miniaturization and low cost, so more popular with radio technology and innovation, and to greatly broaden the number of non-radio-control areas. The development of semiconductor technology lead to the production of integrated circuit, forming the modern electronic technology leap from discrete electronics into the era of era of integrated circuits. Electronic design engineers no longer use the discrete electronic components designed circuit modules, and direct selection of integrated circuit components constitute a single system. They freed the design of the circuit unit dedicated to system design, greatly liberating the productive forces of science and technology, promote the wider spread of electronic systems. Semiconductor integrated circuits in the basic digital logic circuits first breakthrough. A large number of digital logic circuits, such as gates, counters, timers, shift registers, and analog switches, comparators, etc., for the electronic digital control provides excellent conditions for the traditional mechanical control to electronic control. Power electronic devices and sensor technology to make the original to the radio as the center of electronic technology turned to mechanical engineering in the field of digital control systems, testing in the field of information collection, movement of electrical mechanical servo drive control object. Semiconductor and integrated circuit technology will bring us a universal age of electronic technology, wireless technology as the field of electronic technology a part of. 70 years into the 20th century, large scale integrated circuit appeared to promote the conventional electronic circuit unit-specific electronic systems development. Many electronic systems unit into a dedicated integrated devices such as radios, electronic clocks, calculators, electronic engineers in these areas from the circuit, the system designed to debug into the device selection, peripheral device adapter work. Electronic technology, and electronic products enriched, electronic engineers to reduce the difficulty, but at the same time, radio technology, electronic technology has weakened the charm.The development of semiconductor integrated circuits classical electronic systems are maturing, remain in the large scale integrated circuit other thanthe shrinking of electronic technology, electronic technology is not the old days of radio fun times and comprehensive engineering training.Third, from the classic era of electronic technology to modern electronic technology of the times80 years into the 20th century, the century of economic change is the most important revolution in the computer. The computer revolution in the most important sign is the birth of the computer embedded applications. Modern computer numerical requirements should be born. A long period of time, is to develop the massive computer numerical duty. But the computer shows the logic operation, processing, control, attracting experts in the field of electronic control, they want development to meet the control object requirements of embedded applications, computer systems. If you meet the massive data-processing computer system known as general-purpose computer system, then the system can be the embedded object (such as ships, aircraft, motorcycles, etc.) in a computer system called the embedded computer. Clearly, both the direction of technology development are different. The former requires massive data storage, handling, processing and analysis of high-speed data transmission; while the latter requires reliable operation in the target environment, the external physical parameters on high-speed acquisition, analysis and processing logic and the rapid control of external objects. It will add an early general-purpose computer data acquisition unit, the output driver circuit reluctance to form a heat treatment furnace temperature control system. This general-purpose computer system is not possible for most of the electronic system used, and to make general-purpose computer system meets the requirements of embedded applications, will inevitably affect the development of high-speed numeric processing. In order to solve the contradiction between the development of computer technology, in the 20th century 70s, semiconductor experts another way, in full accordance with the electronic system embedded computer application requirements, a micro-computer's basic system on a chip, the formation of the early SCM (Single Chip Microcomputer). After the advent of single chip in the computer industry began to appear in the general-purpose computer systems and embedded systems the two branches. Since then, both the embedded system, or general-purpose computer systems have been developed rapidly.Although the early general-purpose computer converted the embedded computer systems, and real embedded system began in the emergence of SCM. Because the microcontroller is designed specifically for embedded applications, the MCU can only achieve embedded applications. MCU embedded applications that best meet environmental requirements, for example, chip-level physical space, large-scale integrated circuits low-cost, good peripheral interface bus and outstanding control of instruction. A computer system microcontroller core, embedded electronic systems, intelligent electronic systems for the foundation. Therefore, the current single chip electronic system in widespread use of electronic systems to enable rapid transition to the classical modern intelligent electronic systems.4, single chip to create the modern era of electronic systemsA microcontroller and embedded systems Embedded computer systems from embedded applications, embedded systems for early general-purpose computer adapted to the object system embedded in a variety of electronic systems, such as the ship's autopilot, engine monitoring systems. Embedded system is primarily a computer system, followed by it being embedded intothe object system, objects in the object system to achieve required data collection, processing, status display, the output control functions, as embedded in the object system, embedded system computer does not have an independent form and function of the computer. SCM is entirely in accordance with the requirements of embedded system design, so SCM is the most typical embedded systems. SCM is the early application of technical requirements in accordance with the design of embedded computer chip integration, hence the name single chip. Subsequently, the MCU embedded applications to meet the growing demands of its control functions and peripheral interface functions, in particular, highlight the control function, so has international name the single chip microcontroller (MCU, Microcontroller Unit).2 MCU modern electronic systems consisting of electronic systems will become mainstreamMCU is a device-level computer systems, it can be embedded into any object system to achieve intelligent control. Small to micro-machinery, such as watches,hearing aids. Low-cost integrated device-level, low-to a few dollars, ten dollars, enough to spread to many civilian SCM appliances, electronic toys to go. SCM constitutes a modern electronic systems has in-depth to the households, are changing our lives, such as home audio, televisions, washing machines, microwave ovens, telephones, security systems, and air conditioners. SCM innovation the original electronic systems, such as microwave ovens use SCM, it can easily set the clock, the program memory, power control; air conditioner after use of SCM is not only convenient for remote parameter setting, running automatically transform, frequency control can be achieved. At present, many household appliances such as VCD, DVD only single chip to achieve its function may occur before. 3 Embedded Systems led the entire electronics industry Current electronic components industry, in addition to microprocessors, embedded system devices, the most modern electronic systems around the supporting components industries, such as keys used to meet the human-computer interaction, LED / LCD display drivers, LED / LCD display units, voice integrated device, etc., to meet the requirements of data acquisition channel digital sensor, ADC, data acquisition module, signal conditioning modules to meet the servo drive control in the DAC, solid state relays, stepper motor controller, frequency control unit, etc., to meet the communication requirements various bus driver, level converters. Electronic components in the embedded systems world, driven by embedded applications along fully meet requirements of modern electronic systems development. This makes the original classic world of increasingly small electronic systems. Practitioners in the various electronic systems to modern electronic systems as early as possible to stay.5, SCM will create a new generation of electronic eliteIf the 50's, radio has created several generations of the world elite, then today's SCM will create a new generation of e-world elite. A single chip with you to the intelligent electronics If we as a dead classic electronic system electronic system, then the intelligent modern electronic systems is a "life" of the electronic system. Application System of hardware, electronic systems, "body", microcontroller applications, the applicationgives it "life." For example, in the design of intelligent machines monitor display, it can boot the system self-test results show, not to enter the work shows a variety of stand-by state, equipment run-time display running processes, work can be displayed after the end of the current results, self results, raw data, reports and other various processing. Unattended, it can run automatically given a variety of functions. Intelligent electronic systems for the endless realm, often without additional hardware resources can achieve all kinds of renovated function. It is alsopresent in many household appliances feature a large number of additional factors. 2 single chip computer with you to the industrial area The 21st century is the century of humanity into the computer age, many people are not used in the manufacture of computer is the computer. People using the computer, only the people engaged in embedded system applications really into the internal computer system hardware and software systems, can we truly understand the nature of the computer's intelligence and grasp the knowledge of intelligent design. MCU applications starting from the learning technology applications in today's computer software training, hardware and technical personnel of one of the best roads. 3 SCM bring you into the most attractive in the digital world Charming single chip to enable you to experience the true meaning of the computer, you can design intelligent microcontroller hands-on toys, different applications can be designed to achieve different functions. Both software design and hardware making there, both mental and physical, but also hands. Primary level can develop intelligent toys, with macro programming. Intermediate levels can develop some intelligent controller, such as computer mouse, smart cars, all kinds of remote control model. High levels can be developed robots, such as robot soccer, the development of industrial control units, network communications, and high-level language with assembly language or design application. Microcontroller and embedded systems around the formation of the future of the electronics industry, will provide a vast world of electronic fans, an even broader than the current wireless world, richer, more durable, more attractive in the digital world. Plunge into the microcontroller in the world to, will benefit your life.MCU AttacksCurrently, there are four single chip attack technique, namely: (1) software attack The technology is commonly used processor communication interface and use protocol, encryption algorithm or the algorithm of security vulnerabilities to attack. The success of software attack is a typical example of the early ATMEL AT89C MCU attacks. Attacker single chip erase operation of the timing design flaw, erase the encryption used by ourselves locked in place, the next stop on-chip program memory data erase operation, thus bringing into too close a single chip SCM not encrypted, and then use the programmer to read out chip program. (2) electronic detection of attacks The technology is usually a high time resolution to monitor the processor during normal operation of all power and interface simulation features, and by monitoring the electromagnetic radiation characteristics of it to attack. Because SCM is an active electronic device, when it executes a different command, the corresponding changes in the power consumption accordingly. This through the use of special electronic measuring instruments and mathematical statistical analysis and detection of these changes, you can access key information specific microcontroller.(3) fault generation technology Abnormal working conditions of the technology used to make the processor errors, and provide additional access to attack. Produce the most widely used means of attack, including the fault of the impact and the clock voltage shock. Low voltage and high voltage protection circuit attack can be used to prohibit the work of processor execution errors or enforcement action. Clock transition may reset the transient protection circuit will not damage the protected information. Power and clock transients transition effects in certain single-processor instruction decoding and execution. (4) probe This technology is directly exposed to chip connection, and then observe, manipulate, interfere with single chip to achieve the attack purpose. For convenience, these four people will attack techniques are divided into two categories is the intrusion type attack (physical attack), such attack requires destruction of package, then use semiconductor test equipment, microscopes and micro-positioning device, in a special laboratoryspend hours or even weeks to complete. All of the micro-probe techniques are invasive type attack. The other three methods are non-invasive type attack, attack the MCU will not be physical damage. In some cases, non-invasive-type attacks are particularly dangerous, but because of non-invasive type attacks can usually be made and the necessary equipment to upgrade, so it is cheap. Most non-invasive type attack requires the attacker have a good knowledge of processors and software knowledge. In contrast, the invasive type of probe do not need too much of the initial attack of knowledge, and usually a set of similar technology available to deal with a wide range of productsMCU general process of invasion-type attackInvasive type of attack is thrown off its first chip package. There are two ways to achieve this goal: the first one is completely dissolved out chip package, exposed metal connections. The second is only removed to the top of the plastic package silicon core. The first method is the need to bind to the test fixture on the chip, using bind Taiwan to operate. The second method requires the attacker in addition to a certain degree of knowledge and necessary skills, but also the wisdom and patience, but operate relatively easy. Above the plastic chips can be opened with a knife, epoxy around the chip can be eroded by concentrated nitric acid. Hot concentrated nitric acid will dissolve out without affecting the chip, chip packaging and connection. This process usually very dry conditions, because the presence of water may erode the aluminum wire connections have been exposed. Then, in ultrasonic cleaning of the pool first chip with acetone to remove residual nitric acid, then washed with water to remove salt and dried. No ultrasound pool, are generally skip this step. This case, the chip surface, a bit dirty, but do not affect the operation of UV effects on the chip. The final step is to find the location of the protection fuse and fuse protection under exposure to UV light. General use at least a 100 times magnification microscope, from the programming voltage input pin of the connection tracking in, to find protection fuse. If there is no microscope, theuse of different parts of the chip is exposed to ultraviolet light and observe the results under the simple search mode. Operation applied opaque paper cover to protect the program memory chips are not erased by ultraviolet light. Will protect the fuse exposed under UV light 5 to 10 minutes to destroy the protection bit of the protective effect, use a simple programmer can directly read the contents of program memory. The use of the protective layer to protect the MCU EEPROM cell, using ultraviolet light reset protection circuit is not feasible. For this type of MCU, the general use of micro-probe technology to read the memory contents. In the chip package is opened, the chip placed under the microscope can easily find from the memory circuit connected to other parts of the data bus. For some reason, the chip lock-bit programming mode is not locked in the memory of the visit. Advantage of this flaw on the data lines to probe the above data can be read all you want. In programming mode, restart the process of reading and connect probe to the other data can be read online program and data memory, all of the information. There is also a possible means of attack is the use of microscopy and laser cutting machines and other equipment to find the fuse protection to this part of the circuit tracing and linking all the signal lines. Because of the design defects, so long as cut off from other circuit protection fuse to a one signal line, you can ban the entire protection. For some reason, this thread is very far from the other line, so the use of laser cutting machine can cut the wire without affecting the adjacent line. In this way, using a simple programmer can directly read the contents of program memory. Although the most common single chip microcontroller has fuse blown inside the code protection features, butbecause of general low-end MCU is not positioning the production of safe products, so they often do not provide targeted preventive measures and the low level of security. MCU applications with a broad, large sales volume, commission processing and transfer of technology between firms frequently spilled a lot of technical data, making use of loopholes in the design of such chips and test interface manufacturer, and by modifying the invasive type fuse protection bits, etc. means of attack or invasion-type attack to read MCU's internal procedureshave become easier.About common single chipSTC microcontroller STC's mainly based on the 8051 microcontroller core is a new generation of enhanced MCU, the instruction code is fully compatible with the traditional 8051, 8 to 12 times faster, with ADC, 4 Road, PWM, dual serial ports, a global unique ID, encryption of good, strong anti-interference. PIC Microcontroller: MICROCHIP's products is its prominent feature is a small, low power consumption, reduced instruction set, interference, reliability, strong analog interface, the code of confidentiality is good, most of the chip has its compatibleFLASH program memory chips. EMC SCM: Elan's products in Taiwan, with much of the PIC 8-bit microcontroller compatible, and compatible products, resources, compared to the PIC's more, cheap, there are many series of options, but less interference. ATMEL microcontroller (MCU 51): ATMEl company's 8-bit microcontroller with AT89, A T90 two series, AT89 series is the 8-bit Flash microcontroller 8051 is compatible with the static clock mode; AT90 RISC MCU is to enhance the structure, all static methods of work, containing the line can be Flash MCU programming, also known A VR microcontroller. PHLIPIS 51PLC Microcontroller (MCU 51): PHILIPS company's MCU is based on the 80C51 microcontroller core, embedded power-down detection, simulation and on-chip RC oscillator and other functions, which makes 51LPC in highly integrated, low cost, low power design to meet various applications performance requirements. HOLTEK SCM: Sheng Yang, Taiwan Semiconductor's single chip, cheap more categories, but less interference for consumer products. TI company microcontroller (MCU 51): Texas Instruments MSP430 provides the TMS370 and two series of general-purpose microcontroller. TMS370 MCU is the 8-bit CMOS MCU with a variety of storage mode, a variety of external interface mode, suitable for real-time control of complex situations; MSP430 MCU is a low power, high functionality integrated 16-bit low-power microcontroller, especially for applications that require low power consumption occasions Taiwan Sonix's single, mostly 8-bit machines, some with PIC 8-bit microcontroller compatible, cheap, the system clock frequency may be more options there PMW ADC internal noise filtering within the vibration. Shortcomings RAM space is too small, better anti-interference.。