6-3万有引力定律
- 格式:ppt
- 大小:592.00 KB
- 文档页数:55
6.3万有引力定律课时:一课时教学重点万有引力定律的理解及应用.教学难点万有引力定律的推导过程.三维目标知识与技能1.了解万有引力定律得出的思路和过程.2.理解万有引力定律的含义并掌握用万有引力定律计算引力的方法.3.记住引力常量G并理解其内涵.过程与方法1.了解并体会科学研究方法对人们认识自然的重要作用.2.认识卡文迪许实验的重要性,了解将直接测量转化为间接测量这一科学研究中普遍采用的重要方法.情感、态度与价值观通过牛顿在前人研究成果的基础上发现万有引力定律的过程,说明科学研究的长期性、连续性及艰巨性.教学过程:导入新课1666年夏末,一个温暖的傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进他母亲家的花园里,坐在一棵树下,开始埋头读书.当他翻动书页时,他头顶的树枝中有样东西晃动起来,一只历史上最著名的苹果落了下来,打在23岁的伊萨克·牛顿的头上.恰巧在那天,牛顿正苦苦思索着一个问题:是什么力量使月球保持在环绕地球运行的轨道上,以及使行星保持在其环绕太阳运行的轨道上?为什么这只打中他脑袋的苹果会坠落到地上?(如图所示)正是从思考这一问题开始,他找到了这些问题的答案——万有引力定律.这节课我们将共同“推导”一下万有引力定律.太阳对行星的引力使得行星围绕太阳运动,月球围绕地球运动,是否能说明地球对月球有引力作用?抛出的物体总要落回地面,是否说明地球对物体有引力作用?推进新课问题探究1.行星为何能围绕太阳做圆周运动?2.月球为什么能围绕地球做圆周运动?3.人造卫星为什么能围绕地球做圆周运动?4.地面上物体受到的力与上述力相同吗?5.根据以上四个问题的探究,你有何猜想?教师提出问题后,让学生自由讨论交流.明确:1.太阳对行星的引力使得行星保持在绕太阳运行的轨道上.2.月球、地球也是天体,运动情况与太阳和行星类似,因此猜想是地球对月球的吸引使月球保持在绕地球运行的轨道上.3.人造卫星绕地球运动与月球类似,也应是地球对人造卫星的引力使人造卫星保持在绕地球运行的轨道上.4.地面上的物体之所以会落下来,是因为受到重力的作用,在高山上也是如此,说明重力必定延伸到很远的地方.5.由以上可猜想:“天上”的力与“人间”的力应属于同一种性质的力.讨论交流由上述问题的探究我们得出了猜想:“天上”的力与“人间”的力相同,我们能否将其作为一个结论呢?讨论:探究上述问题时我们运用了类比的方法得出了猜想,猜想是否正确需要进行检验,因此不能把它作为结论.课件展示:牛顿的设想:苹果不离开地球,是否也是由于地球对苹果的引力造成的?地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢?若真是这样,物体离地面越远,其受到地球的引力就应该越小.可是地面上的物体距地面很远时,如在高山上,似乎重力没有明显地减弱,是物体离地面还不够远吗?这样的高度比起天体之间的距离来,真的不算远!再往远处设想,如果物体延伸到地月距离那样远,物体是否也会像月球那样围绕地球运动?地球对月球的力、地球对地面上物体的力、太阳对行星的力,也许真是同一种力!一、月—地检验问题探究1.月—地检验的目的是什么?2.月—地检验的验证原理是怎样的?3.如何进行验证?学生交流讨论,回答上述三个问题.在学生回答问题的过程中,教师进行引导、总结.明确:1.目的:验证“天上”的力与“人间”的力是同一种性质的力.2.原理:假定上述猜想成立,即维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“平方反比”规律,那么,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍,所以月球轨道上一个物体受到的引力,比它在地面附近时受到的引力要小,前者只有后者的1/602.根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球公转的向心加速度)也就应该是它在地面附近下落时的加速度(自由落体加速度)的1/602.3.验证:根据验证原理,若“天上”“人间”是同种性质的力,由“平方反比”规律及地球表面的重力加速度,可求得月球表面的重力加速度.根据人们观测到的月球绕地球运动的周期,及月—地间的距离,可运用公式a =4π2T 2·r 求得月球表面的重力加速度.若两次求得结果在误差范围内相等,就验证了结论.若两次求得结果在误差范围内不相等,则说明“天上”与“人间”的力不是同一种性质的力.理论推导:若“天上”的力与“人间”的力是同一种性质的力,则地面上的物体所受重力应满足:G ∝1R 2 月球受到地球的引力:F ∝1r 2 因为:G =mg ,F =ma 所以a g =R 2r 2 又因为:r =60R 所以:a g =13 600a =g 3 600=9.83 600m/s 2≈2.7×10-3 m/s 2. 实际测量:月球绕地球做匀速圆周运动,向心加速度a =ω2r =4π2T 2r 经天文观察月球绕地球运动的周期T =27.3天=3 600×24×27.3 sr =60R =60×6.4×106 m.所以:a =4×3.142(3 600×24×27.3)2×60×6.4×106 m/s 2≈2.7×10-3 m/s 2. 验证结论:两种计算结果一致,验证了地面上的重力与地球吸引月球的力是相同性质的力,即“天上”“人间”的力是相同性质的力.点评:在实际教学过程中,教师引导学生重现牛顿的思维过程,让学生体会牛顿当时的魄力、胆识和惊人的想象力.物理学的许多重大理论的发现,不是简单的实验结果的总结,需要直觉和想象力、大胆的猜想和假设,再引入合理的模型,需要深刻的洞察力、严谨的数学处理和逻辑思维,常常是一个充满曲折和艰辛的过程.借此对学生进行情感态度与价值观的教育.二、万有引力定律思考下面问题:1、用自己的话总结万有引力定律的内容?2、万有引力定律的数学表达式是什么?3、引力常量G 是怎样规定的?4、两物体间的距离是怎样确定的?5、有引力定律的适用条件?6、万有引力的发现有什么重要意义?学生思考后回答.总结:1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间的距离r 的二次方成反比.2.表达式:由F =GMm r 2(M :太阳质量,m :行星的质量) 得出:F =Gm 1m 2r 2(m 1:物体1的质量,m 2:物体2的质量) 3、引力常量G :适用于任何两个物体。
§6.3万有引力定律学习目标1、能说出万有引力定律得出的思路和过程。
2、理解万有定律的定律的含义并能应用万有引力定律解决实际问题。
3、知道任何物体间都存在有万有引力。
能把地面上的物体所受的重力与天体间的引力是同性质的力联系起来。
合作探究1、月-地检验引导:阅读教材“月-地检验”部分的内容,完成下列问题地面附近的重力加速度g=9.8m/s2,月球绕地球运动的周期为27.3天,地球半径为R =6.4×106m,轨道半径为地球半径的60倍。
设质量为m的物体在月球的轨道上运动的加速度(月球公转的向心加速度)试利用教材提供的信息,通过上面计算结果,你能得出什么结论?2、万有引力定律引导:阅读教材,思考问题:(1)、把太阳与行星之间、地球与月球之间、地球与地面物体之间的引力遵从的规律推广到宇宙万物之间,你觉得合适吗?发表自己的见解。
(2)、万有引力定律的内容是什么?写出表达式。
并注明每个符号的单位和物理意义(3)、“两个物体的距离”是指物体哪两部分的距离?3、引力常量引导学生阅读教材,思考问题:(1)、测定引力常量有何意义?(2)、引力常量是由哪位物理学家测出的,它的数值是多大?能力提升1.对于万有引力定律的表述式,下面说法中正确的是()A. 公式中G为引力常量,它是由实验测得的,而不是人为规定的B. 当r趋近于零时,万有引力趋于无穷大C. m1与m2受到的引力大小总是相等的,方向相反,是一对平衡力D. m1与m2受到的引力总是大小相等的,而与m1、m2是否相等无关2、氢原子有一个质子和围绕质子运动的电子组成,已知质子的质量为1.67×10-27kg,电子的质量为9.1×10-31kg,如果质子与电子的距离为1.0×10-10m,求它们之间的万有引力。
例题1.2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法 中正确的有(A )在轨道Ⅱ上经过A 的速度小于经过B 的速度(B )在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能 (C )在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期(D )在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度【命题立意】本题以航天飞机在完成对哈勃空间望远镜的维修为背景,通过对航天飞机在不同轨道上运行的周期、加速度、能量的讨论,来考查万有引力定律的应用及航天知识。
第6章 第3节 万有引力定律基础夯实1.(2011·北京日坛中学高一检测)下列关于天文学发展历史说法正确的是( ) A .哥白尼建立了日心说,并且现代天文学证明太阳就是宇宙的中心B .开普勒提出绕同一恒星运行的行星轨道的半长轴的平方跟公转周期的立方之比都相等C .牛顿建立了万有引力定律,该定律可计算任何两个有质量的物体之间的引力D .卡文迪许用扭秤实验测出了万有引力常量G ,其在国际单位制中的单位是:Nm 2/kg 2 答案:D2.(2011·南京六中高一检测)一颗人造卫星在地球引力作用下,绕地球做匀速圆周运动,已知地球的质量为M ,地球的半径为R ,卫星的质量为m ,卫星离地面的高度为h ,引力常量G ,则地球对卫星的万有引力大小为( )A .GMm(R +h )2B .GMmR 2C .G Mm h 2D .G Mm R +h答案:A3.苹果落向地球,而不是地球向上碰到苹果,对此论断的正确解释是( )A .由于地球质量比苹果质量大得多,地球对苹果的引力比苹果对地球的引力大得多造成的B .由于地球对苹果的引力作用,而苹果对地球无引力作用造成的C .由于苹果对地球的引力和地球对苹果的引力大小相等,但地球的质量远远大于苹果,地球不能产生明显的加速度D .以上解释都不对 答案:C解析:苹果与地球之间的吸引力是相互的,它们大小相等;在相同的力作用下,质量越大物体加速度越小.4.(2011·江苏盐城中学高一检测)2010年10月1日,我国成功发射了“嫦娥二号”探月卫星,在卫星飞赴月球的过程中,随着它与月球间距离的减小,月球对它的万有引力将( )A .变小B .变大C .先变小后变大D .先变大后变小答案:B5.(上海外国语学校高一检测)已知地球半径为R ,将一物体从地面发射至离地面高h 处时,物体所受万有引力减少到原来的一半,则h 为( )A .RB .2R C.2R D .(2-1)R答案:D解析:根据万有引力定律,F =G mM R 2,F ′=G mM (R +h )2=12F ,代入可求解得结论.6.引力常量为G ,地球质量为M ,把地球当作球体,半径为R ,忽略地球的自转,则地球表面的重力加速度大小为( )A .g =GMRB .g =GRC .g =GM R2 D .缺少条件,无法算出地面重力加速度 答案:C解析:在地球表面附近G Mm R 2=mg ,∴g =GMR27.(2010·扬州高一检测)地球可近似看成球形,由于地球表面上物体都随地球自转,所以有( )A .物体在赤道处受的地球引力等于两极处,而重力小于两极处B .赤道处的角速度比南纬30°大C .地球上物体的向心加速度都指向地心,且赤道上物体的向心加速度比两极处大D .地面上的物体随地球自转时提供向心力的是重力 答案:A解析:由F =G MmR 2可知,物体在地球表面任何位置受到地球的引力都相等,此引力的两个分力一个是物体的重力,另一个是物体随地球自转的向心力.在赤道上,向心力最大,重力最小,A 对.地表各处的角速度均等于地球自转的角速度,B 错.地球上只有赤道上的物体向心加速度指向地心,其他位置的向心加速度均不指向地心,C 错.地面上物体随地球自转的向心力是万有引力与地面支持力的合力,D 错.8.火星半径为地球半径的一半,火星质量约为地球质量的1/9.一位宇航员连同宇航服在地球上的质量为100kg ,则在火星上其质量为________kg ,重力为________N.答案:100 436解析:地球表面的重力加速度g 地=GM 地R 地2①火星表面的重力加速度g 火=GM 火R 火2②由①②:g 火=R 地2M 火R 火2M 地·g 地=22×19×9.8m/s 2=4.36m/s 2物体在火星上的重力:mg 火=100×4.36N =436N.9.(广西鸿鸣中学高一检测)在一次测定引力常量的实验里,已知一个质量是0.50kg 的球.以2.6×10-10N 的力吸引另一个质量是12.8×10-3kg 的球.这两个球相距4.0×10-2m ,地球表面的重力加速度是9.8m/s 2,地球直径是12.8×103km.根据这些数据计算引力常量.答案:6.5×10-11N·m 2/kg 2解析:(1)对两球应用万有引力定律,∵F =G m 1m2r2∴G =Fr 2m 1m 2=2.6×10-10×(4.0×10-2)20.50×12.8×10-3N·m 2/kg 2 =6.5×10-11N·m 2/kg 2能力提升1.两艘质量各为1×107kg 的轮船相距100m 时,它们之间的万有引力相当于( ) A .一个人的重力量级 B .一个鸡蛋的重力量级 C .一个西瓜的重力量级 D .一头牛的重力量级 答案:B解析:由F 引=G m 1m2r2F 引=0.667N 相当于一个鸡蛋的重力量级.2.据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600N 的人在这个行星表面的重量将变为960N.由此可推知,该行星的半径与地球半径之比约为( )A .0.5B .2C .3.2D .4答案:B解析:若地球质量为M 0,则“宜居”行星质量为M =6.4M 0,由mg =G Mm r 2得:g g ′=M 0r 02·r2M =600960所以r r 0=600M960M 0=600×6.4M 0960M 0=2.3.(吉林一中高一检测)地球和火星的质量之比M 地 M 火=8 1,半径比R 地 R 火=2 1,表面动摩擦因数均为0.5,用一根绳在地球上拖动一个箱子,箱子获得10m/s 2的最大加速度,将此箱和绳送上火星表面,仍用该绳子拖动木箱,则木箱产生的最大加速度为( )A .10m/s 2B .12.5m/s 2C .7.5m/s 2D .15m/s 2答案:B解析:g 地g 火=M 地·r 火2M 火·r 地2=2,F -μmg 地=ma 地,F -μmg 火=ma 火由上面各式解得a 火=12.5m/s 2.4.(吉林一中高一检测)目前,中国正在实施“嫦娥一号”登月工程,已知月球上没有空气,重力加速度为地球的16,假如你登上月球,你能够实现的愿望是( )A .轻易将100kg 物体举过头顶B .放飞风筝C .做一个同地面上一样的标准篮球场,在此打球,发现自己成为扣篮高手D .撇铅球的水平距离变为原来的6倍 答案:AC5.(广西鸿鸣中学高一检测)1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km ,若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同.已知地球半径R =6400km ,地球表面重力加速度为g .这个小行星表面的重力加速度为( )A .400g B.1400g C .20g D.120g 答案:B解析:由g =GM R 2,得g ′g =mR 2Mr 2=43πr 3ρR243πR 3ρr 2=r R =1400,∴g ′=1400. 6.质量为60kg 的宇航员,他在离地面高度等于地球半径的圆形轨道上绕地球运行时,他所受地球吸引力是__________N ,这时他对卫星中的座椅的压力为____________N .(设地面上重力加速度g =9.8m/s 2).答案:147 0解析:在地球表面mg =G Mm R 2,在离地面高度等于h 处,mg ′=G Mm(R +h )2,当h =R 时mg ′=14mg =147N.由于万有引力全部作为向心力,宇航员处于完全失重状态,他对卫星中的座椅的压力为零.7.已知月球质量是地球质量的1/81,月球半径是地球半径的1/3.8(1)在月球和地球表面附近,以同样的初速度分别竖直上抛一个物体时,上升的最大高度之比是多少?(2)在距月球和地球表面相同高度处(此高度较小),以同样的初速度分别水平抛出一个物体时,物体的水平射程之比为多少?答案:(1)5.6 (2)2.37解析:(1)在月球和地球表面附近竖直上抛的物体都做匀减速直线运动,其上升的最大高度分别为:h 月=v 02/2g 月,h 地=v 02/2g 地.式中,g 月和g 地是月球表面和地球表面附近的重力加速度,根据万有引力定律得:g 月=GM 月R 月2,g 地=GM 地R 地2于是得上升的最大高度之比为: h 月h 地=g 地g 月=M 地R 月2M 月R 地2=81×(13.8)2=5.6. (2)设抛出点的高度为H ,初速度为v 0,在月球和地球表面附近做平抛运动的物体在竖直方向做自由落体运动,从抛出到落地所用时间分别为:t 月=2Hg 月,t 地=2H g 地在水平方向做匀速直线运动,其水平射程之比为 s 月s 地=v 0t 月v 0t 地=g 地g 月=R 月R 地M 地M 月=93.8=2.37.。
第3节万有引力定律1 月——地检验(1)牛顿的思路:地球绕太阳运动是因为受到太阳的引力,人跳起后又能落回地球是因为人受到地球的引力,这些力是否是同一种力?是否遵循相同的规律?实践是检验真理的唯一标准,但在当时的条件下很难通过实验来验证,这就自然想到了月球.(2)月一地检验:基本思想是如果重力和星体间的引力是同一性质的力,都与距离的二次方成反比关系,那么月球绕地球做近似圆周运动的向心加速度就应该是地面重力加速度的1/3600,因为月心到地心的距离约为地球半径的60倍.(3)检验过程:牛顿根据月球的周期和轨道半径,计算出月球围绕地球做圆周运动的向心加速度23224 2.710m/s ra Tπ-==⨯.—个物体在地面的重力加速度为g =9.8m/s 2,若把这个物体移到月球轨道的高度,根据开普勒第三定律可以导出21a r ∝(21a r ∝,而32r k T =,则21a r∝).因为月心到地心的距离是地球半径的60倍,32212.7210m/s 60a g -==⨯.即其加速度近似等于月球的向心加速度的值.(4)检验结果:月球围绕地球做近似圆周运动的向心加速度十分接近地面重力加速度的1/3600,这个重要的发现为牛顿发现万有引力定律提供了有力的证据,即地球对地面物体的引力与天体间的引力,本质上是同一性质的力,遵循同一规律. 2 万有引力定律(1)内容:自然界中任何两个物体都互相吸引,引力的方向良它们的连线上,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间距离r 的二次方成反比.(2)公式:122m m F Gr=,其中11226.6710N m /kg G -=⨯⋅,称为万有引力常量,而12m m 、分别为两个质点的质量.r 为两质点间的距离.(3)适用条件:①严格地说,万有引力定律只适用于质点间的相互作用.②两个质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 是两个球体球心间的距离,③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离. ④两个物体间的距离远远大于物体本身的大小时,公式也近似适用,其中r 为两物体质心间的距离.(4)注意:公式中F 是两物体间的引力,F 与两物体质量乘积成正比,与两物体间距离的平方成反比,不要理解成F 与两物体质量成正比,与距离成反比.(5)对万有引力定律的理解.①万有引力的普遍性:万有引力是普遍存在于宇宙中任何有质量物体之间的相互吸引力,它是自然界中物质之间的基本相互作用之一,任何客观存在的两部分有质量的物质之间都存在着这种相互作用.②万有引力的相互性:两个物体相互作用的引力是一对作用力和反作用力,它们大小相等,方向相反,分别作用在两个物体上,③万有引力的客观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量臣大的天体间,它的作用才有宏观物理意义.④万有引力的特殊性:两个物体间的万有引力,只与它们本身的质量有关,与它们之间的距离有关,和所在空间的性质无关,和周围有无其他物体的存在无关.(6)发现万有引力定律的重大意义.它把地面上的运动和天体运动的规律统一起来,第一次揭示了自然界中一种基本的相互作用力,使人们树立了认识并支配宇宙自然规律的信心,解放了思想. 3 引力常量的测定通过查阅资料得到地球、月球的质量和半径,月地距离,月球绕地球一周的时间,以此估算G 的大小,发现G 值是很小的,那么如何测定G 的大小?牛顿之后的100多年,英国物理学家卡文迪许在实验室里通过扭秤装置,比较准确地得出了G 值,当时测量11226.74510N m /kg G -=⨯⋅.目前标准值为11226.6725910N m /kg G -=⨯⋅,通常取11226.6710N m /kg G -=⨯⋅.引力常量G 的三点说明:(1)引力常量测定的理论公式为212Fr G m m =,单位为22N m /kg ⋅.(2)物理意义:引力常量在数值上等于两个质量都是1kg 的质点相距1m 时的相互吸引力.(3)由于引力常量G 很小,我们日常接触的物体的质星又不是很大,所以我们很难觉察到它们之间的引力,例如两个质量各为50kg 的人相距1m 时,他们相互间的引力相当于几粒尘埃的重力.但是,太阳对地球的引力可以将直径为几千米的钢柱拉断. 4 引力常量测量的意义(1)卡文迪许通过改变质量和距离,证实了万有引力的存在及万有引力定律的正确性. (2)第一次测出了引力常量,使万有引力定律能进行定量计算,显示出真正的实用价值.(3)标志着力学实验精密程度的提高,开创了测量弱力的新时代.(4)卡文迪许实验是物理学上非常著名和重要的实验,学习时要注意了解和体会前人是如何巧妙地将物体间的非常微小的力显现和测量出来的;引力常量G 的测定有重要的意义,如果没有G 的测定,则万有引力定律只有其理论意义,而无更多的实际意义.正是由于卡文迪许测定了引力常量G ,才使得万有引力定律在天文学的发展上起了重要的作用.此实验不仅用实验证明了万有引力的存在,更使得万有引力定律有了真正的实用价值.例如,可以用测定地球表面物体重力加速度的方法,测定地球的质量,电正是由于这一应用,使卡文迪许被人们称为是“能称出地球质量的人”. 5 重力加速度的基本计算方法(1)在地球表面附近(h R 处的重力加速度g .(不考虑自转) 方法一:根据万有引力定律,有2Mmmg GR=,229.8m/s M g G R ==. 式中245.8910kg M =⨯,66.3710m R =⨯.方法二:利用与地球平均密度的关系,得3224/343M R g G G G R R R πρπρ===. (2)在地球上空距离地心r R h =+处的重力加速度为g .根据万有引力定律,得221M g G r r'=∝,22g R R g r R h '⎛⎫⎛⎫== ⎪ ⎪+⎝⎭⎝⎭,则()22R g g R h '=+.(3)在质量为M ',半径为R '的任意天体表面上的重力加速度为g ',根据万有引力定律,有22M M g G R R '''=∝'',2g M R g M R ''⎛⎫= ⎪'⎝⎭,则2M R g g M R '⎛⎫'= ⎪'⎝⎭.上述中M 均为地球的质量,g 均为地球表面的重力加速度. 6 物体在赤道上失重的四个重要规律地球在不停地自转,除两极之外,地球上的物体由于绕地轴做匀速圆周运动,都处于失重扶态,且赤道上的物体失重最多,设地球为匀质球体,半径为R ,表面的引力加速度为0g g ≈,并不随地球自转变化.(1)物体在赤道上的视重等于地球的引力与物体随同地球自转所需的向心力之差. 如图6-3-1所示,根据牛顿第二定律,有2N mg F m R ω-=.所以物体在赤道上的视重为2N F mg m R mg ω=-<.(2)物体在赤道上的失重等于物体绕地轴转动所需的向心力. 物体在赤道上的失重,即视重的减少量为2N F mg F m R ω=-=. (3)物体在赤道上完全失重的条件.设想地球自转角速度加快,使赤道上的物体刚好处于完全失重状态,即0N F =,有20N F mg mR ω=-,则22200002v mg ma mR m m R R T πω⎛⎫==== ⎪⎝⎭.所以完全失重的临界条件为209.8m/s a g ==,01rad/s 800ω=,07.9km/s v =,025024s 84min T ===. 上述结果恰好是近地面人造地球卫星的向心加速度、角速度、线速度和周期. (4)地球不因自转而瓦解的最小密度.地球以T =24h 的周期自转,不发生瓦解的条件是赤道上的物体受到的万有引力大于或等于该物体做圆周运动所需的向心力,即22mg m R T π⎛⎫≥ ⎪⎝⎭,根据万有引力定律,有243M g GG R R πρ==, 所以,地球的密度应为32318.9kg/m GTπρ≥=. 即最小密度为3min 18.9kg/m ρ=.地球平均密度的公认值为30min 5523kg/m ρρ= .足以保证地球处于稳定状态. 7 万有引力定律的两个重要推论推论一:在匀质球层的空腔内任意位置处.质点受到地壳万有引力的合力为零,即0F =∑.推论二:在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力,即2M mF G r ''=.例题1 (1)天文观测数据可知,月球绕地球运行周期为27.32天,月球与地球间相距3.87×108m ,由此可计算出加速度a =0.0027m/s 2;(2)地球表面的重力加速度为9.8m/s 2,月球的向心加速度与地球表面重力加速度之比为1:3630,而地球半径(6.4×106m )和月球与地球间距离的比值为1:60.这个比值的平方1:3600与上面的加速度比值非常接近.以上结果说明(). A 地面物体所受地球的引力与月球所受地球的引力是同一种性质力 B 地面物体所受地球的引力与月球所受地球的引力不是同一种类型的力 C 地面物体所受地球的引力只与物体质量有关,即G=mg D 月球所受地球的引力除与月球质量有关外,还与地球质量有关例题2 对于万有引力定律的表达式122Gm m F r,下列说法中正确的是(). A 只要1m 和2m 是球体,就可用上式求解万有引力 B 当r 趋于零时,万有引力趋于无限大C 两物体间的引力总是大小相等的,而与12m m 、是否相等无关D 两物体间的引力总是大小相等、方向相反,是一对平衡力例题3 两艘轮船,质量都是1.0×104t ,相距10krn ,它们之间的引力是多大?这个力与轮船所受重力的比值是多少?例题4 如图6-3-4所示,一个质量为M 的匀质实心球,半径为R ,如果从球上挖去一个直径为R 的球,放在相距为d 的地方.求下列两种情况下,两球之间的引力分别是多大?(1)从球的正中心挖去;(2)从与球面相切处挖去;并指出在什么条件下,两种计算结果相同?例题5 关于引力常量,下列说法正确的是().A 引力常量是两个质量为1 kg 的质点相距1m 时的相互吸引力B 牛顿发现了万有引力定律,给出了引力常量的值C 引力常量的测定,证明了万有引力的存在D 引力常量的测定,使人们可以测出天体的质量例题6如图6-3-5所示,火箭内平台上放有测试仪器,火箭从地面启动后,以加速度2g竖直向上做匀加速运动,升到某一高度时,测试仪对平台的压力为启动前压力的1718.已知地球半径为R .求火箭此时离地面的高度.(g 为地面附近重力加速度)例题7某星球“一天”的时间是T =6h ,用弹簧测力计在星球的“赤道”上比在“两极”处测同一物体的重力时读数小10%,设想该星球自转的角速度加快,使赤道上的物体会自动飘起来,这时星球的“一天”是多少小时?例题8 地球赤道上的物体,由于地球自转产生的向心加速度223.3710m/s a -=⨯,赤道上的重力加速度29.77m/s g =,试问:(1)质量为m 的物体在地球赤道上所受地球的万有引力为多大?(2)要使在赤道上的物体由于地球的自转完全失去重力(完全失重),地球自转的角速度应加快到实际角速度的多少倍?例题9 宇航员站在一星球表面上某高处,沿水平方向抛出一个小球,经过时间t 小球落到星球表面,测得抛出点与落地点之间的距离为L ,若抛出时的初速度增大为原来的2倍,则,已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G ,求该星球的质量M .例题10 中子星是恒星演化过程中的一种可能结果,它的密度很大.现有一中子星,观测到它的自转周期为1s 30T =,问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解?(计算时星体可视为均当匀球体,引力常量11226.6710N m /kg G -=⨯⋅)基础演练1如图6-3-7所示两球间的距离为r ,两球的质量分布均匀,大小分别为12m m 、,则两球的万有引力大小为().A 122m m Gr B 1221m m G r C ()12212m m G r r +D ()12212m m G r r r ++2万有引力定律首次揭示了自然界中物体间一种基本相互作用的规律,以下说法正确的是().A 物体的重力不是地球对物体的万有引力引起的B 人造地球卫星离地球越远,受到地球的万有引力越大C 人造地球卫星绕地球运动的向心力由地球对它的万有引力提供D 宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用3引力常量为G ,地球质量为M ,地球可看成球体,半径为R .忽略地球的自转,则地球表面重力加速度的大小为(). A GM g R = B g GR = C 2GMg R= D 缺少条件,无法算出 知能提升1假如地球自转角速度增大,关于物体的万有引力以及物体重力,下列说法正确的是().A 放在赤道地面上物体的万有引力不变B 放在两极地面上物体的重力不变C 放在赤道地面上物体的重力减小D 放在两极地面上物体的重力增大2设地球表面重力加速度为0g ,物体在距离地心4R (R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则0/g g 为(). A1 B1/9 C1/4 D1/163地核的体积约为整个地球体积的16%,地核的质量约为地球质量的34%,经估算,地核的平均密度为___________kg/m 3.(地球的半径66.410m R =⨯,万有引力常量11226.710N m /k g G -=⨯⋅,结果取两位有效数字)4月球半径是地球半径的14,在地球和月球表面分别用长度相同的细线拴住一个小球,使之在竖直平面内做圆周运动,已知小球通过圆周最高点的临界速度,在地球上是1v ,在月球上是2v ,求地球与月球的平均密度之比.5宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g =10m/s 2,空气阻力不计) (1)求该星球表面附近的重力加速度g ';(2)已知该星球的半径与地球半径之比为:R R 星地=1:4,求该星球的质量与地球质量之比:M M 星地.6某宇航员在飞船发射前测得自身连同宇航服等随身装备共重840N ,在火箭发射阶段,发现当飞船随火箭以/2a g =的加速度匀加速竖直上升到某位置时(其中g 为地球表面处的重力加速度),其身下体重测试仪的示数为1220N .设地球半径R =6400km ,地球表面重力加速度g 取10m/s 2 1.03 1.02=).问: (1)该位置处的重力加速度g '是地面处重力加速度g 的多少倍? (2)该位置距地球表面的高度h 为多大?最新5年高考名题诠释考题1 天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为 1.4小时,引力常量11226.6710N m /kg G -=⨯⋅,由此估算该行星的平均密度约为(). A 331.810kg/m ⨯B 335.610kg/m ⨯C 431.110kg/m ⨯D 432.910kg/m ⨯考题 2 已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天,利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为().A0.2 B2 C20 D200考题3火星的质量和半径分别约为地球的110和12,地球表面的重力加速度为g ,则火星表面的重力加速度约为().A0.2gB0.4g C2.5g D5g考题 4 探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比().A 轨道半径变小B 向心加速度变小C 线速度变小D 角速度变小例题5为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为1h 和2h 的圆轨道上运动时,周期分别为1T 和2T .火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G .仅利用以上数据,可以计算出().A 火星的密度和火星表面的重力加速度B 火星的质量和火星对“萤火一号”的引力C 火星的半径和“萤火一号”的质量D 火星表面的重力加速度和火星对“萤火一号”的引力考题6 一物体静置在平均密度为ρ的球形天体表面的赤道上,已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为(). A 1243G πρ⎛⎫ ⎪⎝⎭B 1234G πρ⎛⎫ ⎪⎝⎭C 12G πρ⎛⎫ ⎪⎝⎭D 123G πρ⎛⎫ ⎪⎝⎭考题7 质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的().A 线速度v =角速度ω=C 运行周期2T =向心加速度2Gm a R= 考题8 一行星绕恒星做圆周运动,由天文观测可得,其运行周期为T ,速度为v ,引力常为G ,则().A 恒星的质量为32v T G πB 行星的质量为2324v GT π C 行星运动的轨道半径为2vT πD 行星运动的速度为2v Tπ。
万有引力定律知识点总结万有引力定律一.开普勒运动定律 (1)开普勒第一定律:所有的行星绕太阳运动的轨道都是,太阳处在所有椭圆的一个上.相等.D.两个物体间的引力总是大小相等,方向相反的,是一对平衡力:三、万有引力和重力不考虑自转的情况下,F 万=mg(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的 (3)开普勒第三定律:所有行星的轨道的的比值都相等.四.天体表面重力加速度问题)例 1:火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知(A.火星与木星公转周期相等 B.火星和木星绕太阳运行速度的大小始终相等 C.太阳位于木星运行椭圆轨道的某焦点上 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积设天体表面重力加速度为 g,天体半径为 R,由重力加速度的关系为g1 R22 M 1 ? ? g 2 R12 M 2得 g= GM ,由此推得两个不同天体表面 R2例3:据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的 6.4 倍,一个在地球表面重量为 600 N 的人在这个行星表面的重量将变为960 N,由此可推知该行星的半径与地球半径之比约为 A.0.5 B.2. C.3.2 D.4 五.天体质量和密度的计算二.万有引力定律 (1) 公式:F= ,其中 G ? 6.67 ? 10?11 N ? m 2 / kg 2 ,称为为有引力恒量。
间的相互作用,当两个物体间的距离远远大于物体本身间的距离.对于均匀的球体,r 是两1.只能求中心天体的质量2. 只要用实验方法测出卫星做圆周运动的半径 r 及运行周期 T,就可以算出天体的质量 M.若知道行星的半径则可得行星的密度 4? 2 3?r 2 4? 2 r 3 M mM M G 2 =m 2 r,由此可得:M= ;ρ = = = (R 为行星的半径) 2 4 3 GT 2 R 3 V GT T r ?R3(2) 适用条件:严格地说公式只适用于的大小时,公式也可近似使用,但此时 r 应为两物体间的距离对于质量为 m 1 和质量为 m 2 的两个物体间的万有引力的表达式 F=Gm1m2 r2例 2:下()例4:登月火箭关闭发动机在离月球表面112 km 的空中沿圆形轨道运动,周期是 120.5 min,月球的半径是 1740 km,根据这组数据计算月球的质量和平均密度.土星 29.5列说法正确的是公转周期(年)水星 0.241金星 0.615地球 1.0火星 1.88木星 11.86A.公式中的 G 是引力常量,它是人为规定的 B.当两物体间的距离 r 趋于零时,万有引力趋于无穷大 C.两物体间的引力大小一定是相等的六、讨论天体运动规律的基本思路基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。