物化法去除氨氮废水方法综述及工程实例
- 格式:pdf
- 大小:1.11 MB
- 文档页数:4
第1篇一、引言随着工业生产和农业发展的不断推进,水体污染问题日益严重。
其中,氨氮污染是水体污染的重要来源之一。
氨氮是一种有机氮化合物,主要来源于生活污水、工业废水、养殖业废水等。
氨氮在水中容易转化成亚硝酸盐和硝酸盐,对水生生物产生毒害作用,影响水体的生态环境。
因此,研究氨氮去除技术具有重要的现实意义。
本文将针对氨氮去除问题,介绍几种常见的氨氮去除解决方案。
二、氨氮去除原理1. 物理法物理法是利用物理作用去除氨氮,主要包括沉淀法、吸附法、膜分离法等。
(1)沉淀法:利用氨氮与某些化学物质发生反应,生成难溶的沉淀物,从而实现氨氮的去除。
常见的沉淀剂有硫酸铝、硫酸铁、硫酸铜等。
(2)吸附法:利用吸附剂对氨氮进行吸附,达到去除氨氮的目的。
常见的吸附剂有活性炭、沸石、树脂等。
(3)膜分离法:利用膜的选择透过性,将氨氮从水中分离出来。
常见的膜分离技术有反渗透、纳滤、电渗析等。
2. 化学法化学法是利用化学反应去除氨氮,主要包括化学沉淀法、化学氧化法等。
(1)化学沉淀法:利用化学沉淀剂与氨氮反应,生成难溶的沉淀物,从而实现氨氮的去除。
常见的化学沉淀剂有硫酸铝、硫酸铁、硫酸铜等。
(2)化学氧化法:利用氧化剂将氨氮氧化成无害的氮气或亚硝酸盐,从而实现氨氮的去除。
常见的氧化剂有臭氧、氯气、高锰酸钾等。
3. 生物法生物法是利用微生物的代谢活动去除氨氮,主要包括硝化反硝化法、生物膜法等。
(1)硝化反硝化法:利用硝化菌将氨氮氧化成亚硝酸盐,再由反硝化菌将亚硝酸盐还原成氮气,从而实现氨氮的去除。
(2)生物膜法:利用生物膜上的微生物对氨氮进行转化,实现氨氮的去除。
三、氨氮去除解决方案1. 沉淀法(1)硫酸铝沉淀法:在废水处理过程中,加入适量的硫酸铝,使氨氮与硫酸铝发生反应,生成硫酸铝氨氮沉淀物,从而实现氨氮的去除。
(2)硫酸铁沉淀法:在废水处理过程中,加入适量的硫酸铁,使氨氮与硫酸铁发生反应,生成硫酸铁氨氮沉淀物,从而实现氨氮的去除。
物化法除氨氮的技术汇总!氨氮的去除手段我们常用到生化脱氮,但是在一些特殊场合或者应急情况下,可能需要用到非生化的手段去去除!1、吹脱法吹脱法的基本原理是气液相平衡和传质速度理论。
废水中的NH3-N通常以铵离子(NH4+)和游离氨(NH3)的状态把持平衡而存在的:NH4++OH↹NH3+H2O当PH为中性时,NH3-N主要以铵离子(NH4+)形式存在,当PH值为碱性,NH3-N主要以游离氨(NH3)状态存在吹脱法是在沸水中加入碱,调节PH值至碱性,先将废水中的NH4+转化为NH3,然后通入蒸汽或空气进行解吸,将废水中的NH3转化为气相,从而将NH3-N从水中去除。
常用空气或水蒸气作载气,前者称为空气吹脱,后者称为蒸汽吹脱。
而控制吹脱效率高低的关键因素是温度、气液比和pH。
在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000mg/L的垃圾渗滤液,去除率可达到90%以上。
吹脱法在低温时氨氮去除效率不高。
采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882mg/L)进行了处理试验。
最佳工艺条件为pH=11,超声吹脱时间为40min,气水比为1000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。
同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
在处理经UASB预处理的垃圾渗滤液(2240mg/L)时发现在pH=11.5,反应时间为24h,仅以120r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。
而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。
据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。
242018年4月下 第08期 总第284期废水中氮素存在形式多种,主要有分子态、硝酸盐态、氰化物态等,氨氮是最主要的形式之一。
目前,水中氨氮的处理方法主要可分为两大类:物理化学法和生物脱氮法。
各处理技术有其自身优缺点,如何依据污水氨氮含量选择适宜的处理方法是工艺成败的关键。
本文对现有处理技术进行简要梳理,为污水氨氮脱除工艺选择提供借鉴。
1 物理化学法脱氮1.1 吹脱/汽提法吹脱/汽提法主要用于脱除水中溶解气体和某些挥发性物质。
氨吹脱、汽提是一个传质过程,即在高p H 时,使废水与空气密切接触从而降低废水中氨浓度的过程。
吹脱/气提法除氨氮,工艺流程简单,去除率稳定可达60-95%,氨气可回收制备铵肥或者回用于纯碱母液。
但是,由于氨气水中溶解度随温度改变而变化,水温低时往往吹脱效率低,不适合冬季使用且面对低浓度氨氮时效果欠佳。
1.2 折点氯化法折点氯化法除氨的机理为C l 2与N H 3反应生成无害的氮气逸入大气。
加氯比例:M(Cl 2)与M(NH 3-N)之比为8:l~10:1。
当氨氮浓度小于20mg/L时,脱氮率大于90%,pH影响较大,pH高时产生NO 3-,低时产生NCl 3,将消耗氯,通常控制p H 在6-8。
一般地,基于该法除氮率高、成本低、反应迅速完全等优点,折点氯化法可废水深度处理。
但是,最为基本原料的液氯贮存要求高,反应对p H 要求严格,且产生的水需加碱中和,副产物会造成二次污染。
1.3 化学沉淀法该法基本原理是向NH 4+废水中投加Mg +和PO 43-,使之和NH 4+生成难溶复盐MgNH 4PO 4·6H 2O(简称MAP)结晶,再通过重力沉淀使M A P ,从废水中分离。
这样可以避免往废水中带入其它有害离子,而且M g O 还起到了一定程度的中和H +的作用,节约了碱的用量。
化学沉淀法可以处理各种浓度氨氮废水,与硝化-反硝化法相比,能耗大大节省,反应温度易控制,不受有毒物质的干扰,其产物可用作肥料,进一步降低处理费用。
氨氮水处理方法
1. 生物处理法就像是一个神奇的魔法箱呀!比如活性污泥法,让微生物欢快地工作,把氨氮大口吃掉。
你想想,那些小小的微生物多厉害呀,能帮我们解决大问题呢!
2. 物理化学法,哎呀呀,那可是个很直接的办法呢!像吹脱法,把氨氮像赶鸭子一样给赶出去。
就好比你打扫房间,把那些脏东西统统清理掉,多痛快呀!
3. 折点氯化法呢,就好像是给氨氮来一个精准打击!例子嘛,就像消防员灭火一样,精确地把有害的氨氮灭掉,是不是很赞呀!
4. 离子交换法,这不就是给氨氮找个合适的“家”嘛。
拿树脂来当房子,让氨氮舒舒服服地住进去。
你说神奇不神奇呀!
5. 膜分离法哟,就像是给氨氮设置了一道关卡,好的留下,坏的不许通过。
就类似小区门口的保安,严格把关呢!
6. 高级氧化法,那可是个厉害的角色呀!像超级英雄一样把氨氮打败。
比如臭氧氧化,快速又高效,多牛啊!
7. 厌氧氨氧化法,这可是个新招来的大将!能让氨氮在特殊环境下发生奇妙的反应。
这不跟变魔术一样嘛!
8. 土地处理法,那就是让大自然来帮忙呀!把污水放到土地上,让土地妈妈来照顾处理。
想想大自然的力量多大呀,肯定能处理好氨氮问题咯!
我觉得呀,这些氨氮水处理方法都各有千秋,我们要根据实际情况选择最合适的方法,让我们的水资源更干净、更健康!。
吸附法处理氨氮废水人民生活物质和工农业生产水平的不断提高,含氮废水排放量也急剧增加。
高浓度的含氮废水对人类、动植物具有一定的毒性,严重危害生态环境。
因此,有效治理含氮废水已然成为目前亟待解决的全球性问题。
治理氨氮废水的新技术仍处于研究阶段。
到目前为止,氨氮废水的处理技术主要分为生物处理法和物化处理法。
生物处理法主要包括A/O工艺、A2O工艺、硝化—反硝化工艺、SBR工艺、厌氧氨氧化工艺、UCT工艺等;物化处理法主要包括折点氯化法、离子交换法、高级氧化法、化学沉淀法和吹脱法。
目前针对工业废水中高浓度氨氮的处理方法主要使用物理化学方法做预处理,其他方法进行后续处理,虽能取得较好的处理效果,但仍存在结垢、二次污染等问题。
生物法具有操作简单、效果稳定、不产生二次污染且经济的优点,缺点占地面积大,处理效率易受温度和有毒物质等的影响且对运行管理要求较高。
同时,在工业运用中应考虑某些物质对微生物活动和繁殖的抑制作用。
此外,高浓度的氨氮对生物法硝化过程具有抑制作用。
采用吸附法处理氨氮废水,能将废水中的氨氮高效去除,满足企业的要求,降低废水后续处理的压力。
吸附法的优点有:1、高效去除废水中的氨氮,严格控制处理后废水氨氮的浓度。
2、大大降低企业的废水处理费用。
3、对企业现场产生的废酸采样样品进行实验,以科技为基础,实验为依据来设计吸附工艺,废水和工艺之间的匹配度100%。
4、设备占地节省、结构紧凑,土建和设备投资少;脱附剂多次套用、逐级提浓,药剂利用率高,运行费用低。
5、可实现模块组件形式,能根据生产能力灵活调节,安装方便。
6、工艺先进、成熟,无二次污染,有强大的技术支持和丰富的工程应用经验。
应用案例案例:某企业生产产生的废水氨氮浓度在450mg/L左右,生化处理后氨氮无法有效去除,浓度达150mg/L,经过吸附工艺处理后,氨氮大大降低,去除率达到90%以上。
表1 原水与出水对比来源水量NH3-N外观吸附进水300m³/d 445mg/L 淡黄色、浑浊出水300m³/d 27mg/L 淡黄色、清澈去除率94%江苏海普功能材料有限公司是一家专注于高性能吸附剂、催化剂及其工艺应用研发的高新技术企业。
氨氮废水的处理方法氨氮废水主要来源于化肥、焦化、石化、制药、食品等行业废水,由于存在一定的隐患问题,因此人们对于这一废水的处理很重视,传统的处理方法有物理法、化学法、物理化学以及生化法等。
(1)生物法传统的生化法主要用于低浓度氨氮废水处理,它是利用微生物的硝化及反硝化作用使氨氮转变为氮气。
低浓度氨氮废水通常具有比低的特点,有些生产废水甚至不含COD,因此采用生物脱氮的方式处理,需要加入碳源,运行成本很高。
常见工艺有A/O或A2/O)和SBR工艺。
其缺点是处理过程对温度和工业废水中某些组分的干扰非常敏感,需要的反应器体积比较大,而且反硝化过程中会产生N2O,易转化为其它影响臭氧层的氮氧化物,反硝化把NH4+这种有价值的物质转化成N2逸入空气,造成浪费。
在A/O工艺中,为了促使反硝化反应顺利进行,一般要求C/N大于3。
(2)蒸汽汽提法蒸汽汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,其处理机理与吹脱法基本相同,也是一个气液传质过程,即在高pH值时,使废水与蒸汽密切接触,从而降低废水中氨浓度的过程。
传质过程的推动力是气相中氨的分压与废水中氨的浓度对应的平衡分压之间的差值。
蒸汽汽提法由于采用的工作介质是蒸汽,氨自废水进入蒸汽中,然后在塔顶精馏成为浓氨水回收,因此无需增加后处理工序。
蒸汽汽提所需蒸汽体积要比空气吹脱法中所需空气体积小得多,因此设备体积较小,占地面积较少。
汽提法比较适用于处理1000mg/L以上的高浓度氨氮废水,对氨氮的去除率可达99%以上,效率高,技术成熟度好。
但是,常规的汽提废水脱氨技术蒸汽消耗量大,处理废水单耗比较高。
蒸汽汽提废水脱氨技术的普及推广应用需要在节能降耗方面加大研究开发的力度。
(3)离子交换法离子交换法适用于氨离子浓度在10~100mg/L的废水。
其原理是选用阳离子交换树脂,将水中的铵离子与树脂上的钠离子交换,从而达到去除铵的目的。
沸石具有从含钠、镁和钙等离子的溶液中有选择地去除氨离子的特点,因而选其作为交换树脂也叫有选择性的离子交换法,穿透的树脂要用2%的氯化钠溶液再生,再生液经过去氨处理后再循环使用,达一定的循环率后排放。
氨氮去除方法及原理cdpulin LV.0 2楼根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。
物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮污水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
4种物理化学法去除处理污水、废水氨氮工艺分析与设计实施方案1.吹脱法及汽提法:吹脱、汽提法主要用于脱除水中溶解气体和某些挥发性物质。
即将气体通入水中,使气水相互充分接触,使水中溶解气体和挥发性溶质穿过气液界面,向气相转移,从而达到脱除污染物的目的。
常用空气或水蒸气作载气,前者称为吹脱,后者称为汽提。
氨吹脱、汽提是一个传质过程,即在高pH时,使废水与空气密切接触从而降低废水中氨浓度的过程,推动力来自空气中氨的分压与废水中氨浓度相当的平衡分压之间的差。
氨吹脱、汽提工艺具有流程简单、处理效果稳定、基建费和运行费较低等优点,但其缺点是生成水垢,在大规模的氨吹脱、汽提塔中,生成水垢是一个严重的操作问题。
如果生成软质水垢,可以安装水的喷淋系统;而如果生成硬质水垢,不论用喷淋或刮刀均不能消除此问题。
2.折点氯化法:折点氯化法是将氯气通入废水中达到某一点,在该点时水中游离氯含量较低,而氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此,该点称为折点。
该状态下的氯化称为折点氯化。
折点氯化法除氨的机理为氯气与氨反应生成无害的氮气,N2逸入大气,使反应源源不断向右进行。
加氯例:M(Cl2)与M(NH3-N)之比为8 :l - 10 :1 。
当氨氮浓度小于20 mg/ L 时,脱氮率大于90 % ,pH 影响较大,pH 高时产生NO3-,低时产生NCl3,将消耗氯,通常控制pH在6-8。
此法用于废水的深度处理,脱氮率高、设备投资少、反应迅速完全,并有消毒作用。
但液氯安全使用和贮存要求高,对pH要求也很高,产生的水需加碱中和,因此处理成本高。
另外副产物氯胺和氯代有机物会造成二次污染。
3.化学沉淀法:化学沉淀法应用于废水处理,随着对化学沉淀法的不断研究,发现化学沉淀法最好使用H3PO4和MgO。
其基本原理是向NH4+废水中投加Mg+和PO43-,使之和NH4+生成难溶复盐MgNH4PO4*6H2O(简称MAP)结晶,再通过重力沉淀使MAP,从废水中分离。
临汾某焦化厂蒸氨废水回用处理工程实例临汾某焦化厂蒸氨废水回用处理工程实例一、前言焦化厂是我国重要的煤炭加工行业,在煤炭燃烧过程中会产生大量的焦炉废水。
废水中含有高浓度的有机物、悬浮物和重金属离子等有害物质,对环境造成严重污染。
本文将以临汾某焦化厂蒸氨废水回用处理工程为例,介绍焦化废水回用处理的技术及实践经验,旨在为类似行业提供参考。
二、工程背景临汾某焦化厂位于山西省临汾市,年产焦炭60万吨。
在生产过程中,焦炉废水是主要的废水来源之一。
废水中的有机物浓度较高,CODcr指标达到500-800mg/L,氨氮浓度达到100-200mg/L,废水污染较为严重。
为了减少对环境的污染,提高资源利用率,该焦化厂决定对焦化废水进行回用处理。
三、工程设计1. 工程流程设计焦化废水回用处理流程主要包括初次过滤、进一步处理、深度处理和再生利用。
通过物理和化学方法处理废水,使之达到国家指标要求后,可用于冷却塔和锅炉供水。
2. 工程设备设计本工程采用主动污泥法处理焦化废水。
主要设备包括废水收集池、曝气池、沉淀池、污泥反应池、过滤池等。
此外,还安装了搅拌设备、泵站和出水监测系统。
3. 工程运行参数设计根据实际废水含量和水质要求,工程设计中确定了进水流量、沉淀时间和曝气时间等运行参数。
确保处理效果达到标准要求,且设备运行稳定可靠。
四、实施过程1. 设备安装在工程实施过程中,焦化厂安排了相关人员负责设备安装调试。
各设备按照设计要求布置,并与废水处理系统进行连接和调试。
2. 工艺调试在设备安装完成后,焦化厂的技术人员进行了工艺调试。
通过不断调整运行参数,改变进水流量和曝气时间等,逐渐达到废水处理的最佳效果。
3. 出水协调经过工艺调试,焦化废水经过处理后达到国家标准要求。
焦化厂与相关部门协商,确保出水指标能够满足再生利用的要求。
五、效果分析经过蒸氨废水回用处理工程的实施,临汾某焦化厂废水处理效果显著。
废水中的有机物、悬浮物和重金属离子得到有效去除,水质得到明显改善。
水厂去除氨氮的工艺一、物理法物理法去除氨氮主要包括沉淀法、膜分离技术等。
1. 沉淀法沉淀法是通过向水中投加药剂,使水中悬浮物和胶体物质形成絮凝体,在沉淀池中沉淀分离,以达到去除氨氮的目的。
常用的药剂有氯化钙、氢氧化钙等,这些药剂可以与水中的氨氮反应生成沉淀物,从而降低水中氨氮的含量。
2. 膜分离技术膜分离技术是利用半透膜,使水在压力作用下通过膜过滤,从而去除氨氮。
膜分离技术主要包括反渗透、超滤、纳滤等。
其中反渗透技术去除氨氮的效果最好,但成本较高。
二、化学法化学法去除氨氮主要包括折点氯化法、酸化吹脱法等。
1. 折点氯化法折点氯化法是通过向水中投加氯气,使氯气与氨氮反应生成氮气,以达到去除氨氮的目的。
该方法的优点是去除效率高,操作简单,但需要消耗大量的氯气,成本较高。
2. 酸化吹脱法酸化吹脱法是通过向水中加酸,使水中的氨氮转化为铵离子,再通过吹脱作用将铵离子从水中去除。
该方法的优点是去除效率高,操作简单,成本较低,但会产生酸性废水。
三、生物法生物法去除氨氮是利用微生物的硝化反硝化作用,将水中的氨氮转化为硝酸盐或氮气,以达到去除氨氮的目的。
常用的生物法包括A/O工艺、A2/O工艺等。
生物法去除氨氮的优点是处理效果好,无二次污染,但需要一定的反应时间和反应条件,处理周期较长。
四、高级氧化法高级氧化法去除氨氮是利用强氧化剂将水中的氨氮氧化成硝酸盐或氮气,以达到去除氨氮的目的。
常用的高级氧化法包括芬顿试剂氧化法、臭氧氧化法等。
高级氧化法去除氨氮的优点是反应速度快,处理效果好,但需要投加大量的氧化剂,成本较高。
氨氮废水处理技术——物化法【格林大讲堂】氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。
废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。
武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。
18年来公司设计并施工了上百个交钥匙式的污水处理工程。
目前随着化肥、石油化工等行业的迅速发展壮大,由此而产生的高氨氮废水也成为行业发展制约因素之一;据报道,2001年我国海域发生赤潮高达77次,氨氮是污染的重要原因之一,特别是高浓度氨氮废水造成的污染。
因此,经济有效的控制高浓度氨氮废水污染也成为当前环保工作者研究的重要课题,得到了业内人士的高度重视。
1、MAP沉淀法主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
2、沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3、化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
4、膜分离技术当左侧温度 T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
《废水中氨氮的去除》篇一废水中的氨氮去除:技术、挑战与解决方案一、引言随着工业化和城市化的迅速发展,大量的工业废水和城市生活污水产生,这些废水中含有的氨氮浓度较高。
氨氮不仅会降低水体的氧含量,导致水生生物窒息死亡,还可能转化为有害的亚硝酸盐,影响饮用水质量。
因此,废水中氨氮的去除显得尤为重要。
本文将详细探讨废水中氨氮的去除技术、面临的挑战以及解决方案。
二、废水中的氨氮及其危害氨氮是废水中常见的污染物之一,主要来源于生活污水、工业废水以及农业废水等。
氨氮在水体中积累,会降低水体的氧含量,影响水生生物的生长和繁殖。
此外,氨氮还可能转化为亚硝酸盐,对人类健康产生潜在危害。
长期摄入含有高浓度亚硝酸盐的水可能导致人体健康问题。
三、废水中的氨氮去除技术1. 生物法:生物法是一种常用的氨氮去除技术,主要利用微生物的代谢作用将氨氮转化为无害的物质。
常见的生物法包括活性污泥法、生物膜法等。
这些方法具有处理效果好、成本低等优点,但需要较长的处理时间和适宜的微生物生长环境。
2. 物理化学法:物理化学法主要包括化学沉淀法、离子交换法、电渗析法等。
这些方法可以通过添加化学药剂或利用电场等物理手段去除废水中的氨氮。
物理化学法的处理速度快,但可能产生二次污染,需注意处理过程中产生的废弃物的处理与处置。
3. 高级氧化技术:高级氧化技术如光催化氧化、臭氧氧化等,可以通过产生强氧化剂将氨氮氧化为无害的物质。
这些方法具有处理效果好、适用范围广等优点,但设备成本较高,且可能产生其他有害物质。
四、面临的挑战尽管现有的氨氮去除技术具有一定的效果,但仍面临诸多挑战。
首先,不同来源的废水中的氨氮浓度和性质差异较大,需要针对不同的废水制定相应的处理方案。
其次,许多传统处理方法存在能耗高、成本高、易产生二次污染等问题。
此外,部分地区由于地理和环境因素,难以实现废水的有效处理和排放。
五、解决方案针对上述挑战,我们可以采取以下措施:1. 深入研究各种废水的性质和特点,开发针对不同废水的氨氮去除技术。
物化法去除氨氮废水方法综述及工程实例陈建(上海宝钢工程技术有限公司)摘要:本文针对实际工程中不适合采用生物脱氮的情况下,介绍了几种常见的去除氨氮的物理化学方法,并列举了国内外的工程实例,对含不同浓度氨氮的工业废水的工艺选择及工程设计有一定的借鉴意义。
关键词:物化法氨氮化学沉淀氨吹脱折点氯化离子交换1 前言废水中的氮常以含氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
从工业废水中去除氨氮已有多种方法,如:离子交换法、反渗透、电渗析、氯化法、蒸馏、氨吹脱、焚烧、催化裂解、电化学处理、土壤灌溉、藻类养殖、生物硝化等[1]。
对一给定的废水,氨氮处理技术的选择主要取决于水的性质、要求达到的处理效果、经济性、处理后出水的最终处置方法等。
根据目前的经验,较适用的去除氨氮的方法有:生物脱氮、化学沉淀法、氨吹脱法、折点氯化法、离子交换法。
虽然生物脱氮是目前较常用的一种方法,但有些场合却不适用。
比如间断性的小水量,像电厂检修废水含有较高浓度的氨氮,一年检修一两次,每次水量几百吨,原本没有生物处理系统的水处理工艺此时不可能再加生物处理系统,即使用了生物系统,可能其水量还不够调试用。
再如高浓度的氨氮废水,像垃圾渗滤液,过低的C/N比使得系统的脱氮效率不高,高浓度的氨氮对系统的生物活性也有抑制作用[2]。
诸如此类情况下物化法就有了得天独厚的优势。
本文着重介绍常用的几种物化法去除氨氮的方法。
2方法综述及工程实例2.1化学沉淀法化学沉淀法从20世纪60年代就开始用于废水处理,随着对化学沉淀法的不断研究。
发现化学沉淀法最好用H3PO4和MgO。
通过投加Mg2+和PO43-,使之与废水中的氨氮生成难溶于水的复盐沉淀物MgNH4PO4·6H2O(Magnesium Ammonium Phosphate 简称MAP)再通过重力沉淀使MAP从废水中分离,其反应式为:Mg2++NH4++HPO42-+6H2O →MgNH4PO4·6H2O ↓+H+Mg2++NH4++PO43-+6H2O →MgNH4PO4·6H2O ↓Mg2++NH4++H2PO4-+6H2O →MgNH4PO4·6H2O ↓+2H+MgNH4PO4·6H2O俗称鸟粪石,溶度积2.5×10-13。
污水中氨氮去除方法总结氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。
一、生物脱氮法微生物去除氨氮过程需经两个阶段。
第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。
第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。
在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。
常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。
1、多级污泥系统此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长、构筑物多、基建费用高、需要外加碳源、运行费用高、出水中残留一定量甲醇等。
2、单级污泥系统单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。
前置反硝化的生物脱氮流程,通常称为A/O流程与传统的生物脱氮工艺流程相比,A/O工艺具有流程简单、构筑物少、基建费用低、不需外加碳源、出水水质高等优点。
后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果可高于前置式,理论上可接近100%的脱氮。
交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。
该系统本质上仍是A/O系统,但其利用交替工作的方式,避免了混合液的回流,因而脱氮效果优于一般A/O流程。
其缺点是运行管理费用较高,且一般必须配置计算机控制自动操作系统。
3、生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。
此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
二、物化除氮物化除氮常用的物理化学方法有折点氯化法、化学沉淀法、离子交换法、吹脱法、液膜法、电渗析法和催化湿式氧化法等。
废水中氨氮的去除废水中氨氮的去除废水中氨氮的去除一直是环境保护领域的重要课题之一。
氨氮是指水体中以氨的形式存在的氮,主要来自于工业生产废水、农业养殖废水等。
氨氮的排放对环境造成严重影响,会导致水体富营养化、酸碱平衡破坏、生态系统紊乱等问题。
因此,对废水中的氨氮进行有效去除是非常必要的。
目前,常用的废水中氨氮去除方法主要包括物理法、化学法和生物法。
物理法主要是利用吸附、萃取、蒸发和膜分离等技术手段将氨氮从废水中分离出来。
化学法则是通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
而生物法则是利用微生物的作用将废水中的氨氮转化成无害的氮气,从而达到去除的目的。
物理法中比较常用的方法是吸附。
吸附是指通过固体材料对氨氮的接触和吸附,将其从废水中分离出来。
常用的吸附剂有活性炭、氧化铁等。
活性炭吸附剂有较大的比表面积,能够有效地吸附氨氮。
氧化铁则是一种常见的吸附剂,它能够与氨氮形成络合物,从而实现氨氮的去除。
此外,萃取、蒸发和膜分离等技术也可以用于废水中氨氮的去除,但相比吸附而言,其成本较高。
化学法中,常用的方法是氨氮的沉淀。
氨氮的沉淀是指通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
常用的化学药剂有氢氧化钙、氯化铁等。
氢氧化钙是一种碱性物质,能够与氨氮发生反应,形成氨氮的沉淀物。
氯化铁则是一种常见的混凝剂,能够与氨氮形成沉淀,并与其一同被沉淀下来。
此外,还可以通过氧化、氮化等化学反应将氨氮转化成不可溶于水的化合物,从而实现氨氮的去除。
生物法中,常用的方法是利用微生物将废水中的氨氮转化成无害的氮气。
这类方法主要包括硝化和反硝化。
硝化是指通过一系列的微生物反应,将废水中的氨氮转化成硝态氮。
硝态氮不仅不具有毒性,而且还可以作为植物的肥料,有助于环境的改善。
反硝化是指通过一系列的微生物反应,将硝态氮还原成氮气。
这样即实现了氨氮向氮气的转化,达到了废水中氨氮的去除目的。
通过对不同行业氨氮废水的处理方法进行介绍,总结了氨氮浓度1000~5000 mg/L废水的物化法和生物法去除效果,并对各处理工艺的原理、研究现状、所需条件、存在问题等进行介绍。
氮是造成水体富营养化和环境污染的重要污染物质,氨氮污染主要产生于化工废水、化肥废水、焦化废水、味精废水、垃圾渗滤液、养殖废水等。
一般而言,对生活污水和食品加工厂废水等低浓度氨氮废水,主要采用生化法处理,对大多数中等浓度氨氮的工业废水,根据废水实际情况和处理要求,可选择物理方法或生物硝化法处理。
1、物理法1)吹脱法吹脱法是目前国内用于处理高浓度氨氮废水较多的方法,吹脱出的氨可以回收利用。
吹脱法适合处理高浓度氨氮废水,主要缺点是温度影响比较大,在北方寒冷季节效率会大大降低。
但须注意国内对吹脱出的氨有效利用不高,仅仅是将氨从水体转移至空气中,氨的污染问题并未得到妥善解决。
2)沉淀法化学沉淀法是通过向含氨氮废水中加入含Mg2+和PO43-离子的药剂,与废水中的NH4+反应生成MgNH4PO4·6H2O复合盐(俗称鸟粪石),从而将氨氮从废水中去除。
该方法在去除废水中氨氮的同时,得到了一种许多农作物所需的复合肥料MgNH4PO4·6H2O,而且同时也可去除废水中的磷,是一种变废为宝、经济可行的高浓度氨氮废水处理技术。
温度对化学沉淀法处理高浓度氨氮废水的影响并不显著,而pH值的影响却很明显,一般要求反应的pH值控制在8~10之间,氨氮去除率可达到93%以上。
3)吸附法沸石是一类以硅酸盐为主,具有阳离子交换性和较大吸附能力的矿物,其结构中含有碱金属或碱土金属离子,如Na+、Ca2+、Mg2+等。
这些离子极易与周围水溶液中的阳离子发生交换作用,交换后的沸石晶格骨架结构不被破坏,并可再生,从而使沸石具有离子交换树脂的特性。
沸石作为极性吸附剂也是一种理想的生物载体。
当废水浓度为200 mg/L,对氨氮的对数吸附等温线符合Freundlich 方程,直线的斜率在0.1~0.5之间,可以作为高浓度氨氮废水的吸附剂使用。