胶力学性能与测试
- 格式:doc
- 大小:21.00 KB
- 文档页数:4
橡胶混凝土力学性能与耐久性试验提纲:一、橡胶混凝土力学性能试验分析二、橡胶混凝土耐久性试验分析三、橡胶混凝土在建筑工程中的应用四、橡胶混凝土的环境效应分析五、橡胶混凝土的未来发展趋势展望一、橡胶混凝土力学性能试验分析:橡胶混凝土具有一定的特殊性,在力学性能分析中需要考虑橡胶颗粒与混凝土基材之间的组合情况。
实验表明,将橡胶颗粒添加到混凝土中可以有效增加混凝土的抗拉强度和韧性。
本文对橡胶混凝土强度、变形率和破坏模式等性能进行了分析。
研究证明,对于橡胶混凝土的强度和刚度,单一橡胶混凝土比例的增加对于提高力学性能有明显的帮助。
一定范围内,橡胶颗粒添加量的增加可改善混凝土的韧性,但超过一定比例后反而会削弱混凝土的强度和刚度。
因此,在橡胶混凝土的力学性能试验中,需要确定添加比例和混凝土配合比等参数,以提高橡胶混凝土的力学性能。
二、橡胶混凝土耐久性试验分析:橡胶混凝土的使用寿命与其耐久性有关。
对于橡胶颗粒质量、橡胶颗粒与混凝土基材之间的粘着性、混凝土硬化过程中有无影响等因素,可以影响橡胶混凝土的耐久性。
为此,本文从橡胶混凝土的水泥强度、橡胶颗粒的化学析出、橡胶颗粒与混凝土接触性能等方面进行了研究。
结果表明,合理的橡胶颗粒添加量和细度可提高橡胶混凝土的耐久性。
同时,保证混凝土的水泥强度和质量,可有效增强混凝土的抵御化学侵蚀的效能,从而提高橡胶混凝土的使用寿命。
三、橡胶混凝土在建筑工程中的应用:橡胶混凝土的广泛应用可以有效地提高建筑物能耗效能。
橡胶颗粒填补了混凝土的空隙,形成了大量的热阻隔层,可以降低建筑幕墙的热传输系数和动态热载荷,进而减少建筑物维护保养费用。
同时,在建筑工程中使用橡胶混凝土可以提高建筑物的抗震性能、冲击性能和减振性能等方面。
橡胶混凝土在桥梁等大型结构的应用也得到了广泛的关注和应用。
四、橡胶混凝土的环境效应分析:橡胶混凝土的生产和应用也存在环境影响。
橡胶颗粒的制造和运输会产生一些废弃物和能源消耗,而橡胶混凝土在建筑工程中的应用也会产生一定程度的污染。
橡胶力学性能测试标准橡胶作为一种重要的弹性材料,在工程领域中有着广泛的应用。
为了确保橡胶制品的质量和性能,需要对其力学性能进行全面的测试。
橡胶力学性能测试标准是评价橡胶制品性能的重要依据,本文将介绍橡胶力学性能测试的相关标准和方法。
首先,橡胶力学性能测试标准包括拉伸性能、硬度、抗撕裂性能、耐磨性能等多个方面。
其中,拉伸性能是衡量橡胶材料抗拉伸能力的重要指标,通常采用拉伸试验机进行测试。
硬度是指橡胶材料的硬度和柔软程度,常用的测试方法包括shore硬度测试和洛氏硬度测试。
抗撕裂性能是指橡胶材料在受到撕裂作用时的抵抗能力,通常采用梯形撕裂试验进行测试。
耐磨性能是指橡胶材料在受到摩擦磨损时的性能表现,常用的测试方法包括橡胶磨耗试验和橡胶磨损试验。
其次,橡胶力学性能测试标准的制定是为了保证橡胶制品的质量和性能稳定。
各个国家和地区都有相应的标准机构,制定了针对橡胶制品的力学性能测试标准。
这些标准包括测试方法、设备要求、样品制备、试验条件等内容,确保了测试结果的准确性和可比性。
通过遵循这些标准,可以有效地评估橡胶制品的性能,指导生产和应用过程中的质量控制和技术改进。
此外,橡胶力学性能测试标准的应用范围非常广泛,涉及到橡胶制品的生产、研发、质量检测等各个环节。
在橡胶制品的生产过程中,可以通过力学性能测试标准对原材料进行评估,指导配方设计和工艺优化。
在橡胶制品的研发过程中,可以通过力学性能测试标准对新材料和新工艺进行评估,指导新产品的开发和改进。
在橡胶制品的质量检测过程中,可以通过力学性能测试标准对成品进行检验,确保产品符合相关标准和规定。
总之,橡胶力学性能测试标准是评价橡胶制品性能的重要依据,对于保证橡胶制品的质量和性能稳定具有重要意义。
各个国家和地区的标准化机构都制定了相应的标准,通过遵循这些标准,可以对橡胶制品的力学性能进行全面、准确的评估。
橡胶制品生产、研发、质量检测等领域都离不开橡胶力学性能测试标准的支持和指导,为橡胶制品的质量和性能提供了可靠的保障。
橡胶材料力学性能测试方法橡胶材料是一种具有高弹性和耐磨性的材料,广泛应用于汽车、电子、建筑等各行各业。
为了确保橡胶材料的质量和性能,需要对其进行力学性能测试。
本文将介绍一些常见的橡胶材料力学性能测试方法。
1. 拉伸试验拉伸试验是评估橡胶材料拉伸性能的常用方法。
该试验使用拉伸试验机,将橡胶样品固定在两个夹具之间,施加拉力逐渐增加,记录拉力和伸长率的变化。
通过拉伸试验可以获得橡胶的强度、伸长率、断裂强度等性能指标。
2. 压缩试验压缩试验用于评估橡胶材料的弹性和抗压性能。
该试验使用压缩试验机,将橡胶样品置于平板夹具之间,施加垂直压力逐渐增加,记录压力和变形的变化。
通过压缩试验可以获得橡胶的抗压强度、压缩模量等性能指标。
3. 硬度测试硬度测试用于评估橡胶材料的硬度和弹性特性。
常见的硬度测试方法有杜氏硬度测试和洛氏硬度测试。
杜氏硬度测试使用硬度计,通过测量针头对橡胶材料的穿透深度来判断硬度。
洛氏硬度测试使用硬度计,通过测量钢球的反弹高度来判断硬度。
硬度测试结果可用于比较不同橡胶材料的硬度和弹性特性。
4. 压痕测试压痕测试用于评估橡胶材料的耐磨性能和硬度。
常见的压痕测试方法有杜拉布试验和布氏硬度试验。
杜拉布试验使用杜拉布硬度计,在一定载荷下,将橡胶样品与砂纸接触并施加往复运动,记录橡胶样品的耐磨性能。
布氏硬度试验使用布氏硬度计,通过测量钻头在橡胶样品上产生的压痕直径来评估硬度和耐磨性能。
5. 动态力学分析动态力学分析用于评估橡胶材料的动态性能和频率响应。
常见的动态力学测试方法有动态拉伸试验和复合模量测试。
动态拉伸试验使用动态力学分析仪,施加连续变化的拉伸载荷,记录橡胶样品在不同频率下的力学性能。
复合模量测试使用复合模量测试仪,测量橡胶样品在不同温度和频率下的动态模量和耗散因子。
以上是几种常见的橡胶材料力学性能测试方法。
通过这些测试方法,可以客观评估橡胶材料的强度、弹性、硬度、抗压性能、耐磨性能等关键指标。
这些测试结果对于橡胶材料的选择、设计和质量控制具有重要意义,能够保证橡胶制品的性能和可靠性,满足各行各业的需求。
橡胶制品的力学性能测试橡胶制品是一种常用的材料,在工业和日常生活中有很广泛的应用。
为确保橡胶制品的质量和性能,需要对其进行力学性能测试,以评估其性能和可靠性。
本文将介绍橡胶制品的力学性能测试的相关内容。
一、橡胶制品的力学性能橡胶制品的力学性能指的是它们在受力时所表现出来的性质和特点。
主要包括弹性模量、拉伸强度、断裂伸长率、硬度等方面。
下面将对这些性能进行详细介绍。
1.弹性模量弹性模量是指材料在一定载荷下所产生的弹性应变与所受应力之比。
对于橡胶制品来说,其弹性模量通常很低,甚至为负值,这是因为橡胶具有很好的弹性变形能力。
2.拉伸强度拉伸强度是指材料在拉伸过程中所能承受的最大载荷。
对于橡胶制品来说,其拉伸强度与其材料的成分和制造过程有很大的关系。
一般来说,硬度越高的橡胶制品其拉伸强度越高。
3.断裂伸长率断裂伸长率是指材料在拉伸至破裂前所产生的应变量与其初始长度之比。
对于橡胶制品来说,其断裂伸长率较高,这是因为橡胶具有很好的弹性变形能力。
4.硬度硬度是指材料抵抗在表面产生的大面积压缩变形的能力。
对于橡胶制品来说,常见的硬度测试方法有杜氏硬度和 shore硬度。
杜氏硬度是一种能够测量硬度的方法,通过将标准球体压入橡胶制品表面,测量印痕深度来确定材料的硬度。
shore 硬度则是将一个硬度计头压入橡胶表面来测定其硬度。
二、橡胶制品力学性能测试的方法为了确保橡胶制品的质量和性能,需要进行力学性能测试。
橡胶制品力学性能测试的主要方法有以下几种:1.拉伸试验拉伸试验是一种用于测量橡胶强度和变形能力的测试。
使用这种测试方法可以确定橡胶的拉伸强度、断裂伸长率和弹性模量等性能。
在测试过程中,需要将样品悬挂在测试机上,然后施加逐渐增大的载荷,直到样品达到破坏点为止。
2.硬度测试硬度测试是一种用于测量橡胶硬度的测试方法,可以确定橡胶的杜氏硬度或shore硬度。
在测试过程中,需要将硬度计头压在样品表面上,然后读取对应的硬度计数值。
胶水固化率检测方法
1.外观观察法:
这是一种直观的方法。
胶水固化后,观察其外观,依据固化后胶水的光泽、透明度、颜色等指标来判断固化率。
这种方法简单易行,但缺乏客观性和准确性。
2.触感检测法:
这种方法是通过触摸胶水的表面,判断其硬度来估计胶水的固化率。
可以用手指或工具感受胶水表面的硬度变化。
但同样是一种主观评价的方法,结果的准确性有一定的限制。
3.百分比水分测定法:
胶水固化的过程主要是通过胶水中的水分蒸发来完成的。
因此,一种常见的胶水固化率检测方法是通过测定胶水中的水分含量变化来评估固化率。
可以使用烘箱脱水法、电子天平法或气相色谱法等方法测定胶水中水分的含量变化。
4.力学性能测试法:
这是一种更准确可靠的胶水固化率检测方法。
通过测试固化后胶水的力学性能,如拉伸强度、剪切强度、压缩强度等,来判断固化率。
可以使用拉力试验机、剪切试验机等设备进行测试。
这种方法的优点是结果准确可靠,但需要专业的测试设备和一定的测试技术。
5.热分析法:
热分析法是一种常见的固化率检测方法之一、通过热分析仪器(如差
示扫描量热仪、热重分析仪等)对胶水在加热过程中的质量变化进行测定,从而确定胶水的固化率。
这种方法具有精确度高、结果可靠的优点。
综上所述,胶水固化率的检测方法有多种多样,可以根据实际需求选
择适合的方法。
在进行固化率检测时,应选择客观、准确、可靠的方法,
并根据具体情况结合多种方法进行综合评价,以保证胶水产品质量和应用
效果。
橡胶材料的拉伸性能测试方法橡胶材料是一种常见且重要的材料,在各种工业领域中得到广泛应用。
为了保证橡胶制品的质量和可靠性,对其拉伸性能进行准确的测试是十分重要的。
本文将介绍几种常用的橡胶材料拉伸性能测试方法,以供参考。
一、拉伸性能测试的目的和意义拉伸性能测试是评估橡胶材料在拉伸加载下的力学性能的一种方法。
通过测试可以了解橡胶材料的拉伸强度、断裂伸长率、弹性模量等重要参数,以评估橡胶材料在实际使用中的可靠性和耐久性。
对于不同类型和用途的橡胶制品,其拉伸性能要求也不同,因此选择合适的测试方法对于保证产品质量至关重要。
二、常用的拉伸性能测试方法1. 标准拉伸试验方法标准拉伸试验方法是最常用且被广泛采用的一种测试方法。
该方法通常使用万能材料试验机进行测试,将橡胶试样置于夹具之间,并施加均匀的拉伸力。
通过测量加载力和试样的伸长量,可以计算出拉伸强度、断裂伸长率等参数。
这种方法操作简单、可重复性好,被广泛应用于橡胶材料的质量控制和研发过程中。
2. 维卡软材料试验方法维卡(Wickham)软材料试验方法是一种用于测量弹性橡胶材料的应力-应变行为的方法。
该方法通过施加恒定的应变速率并测量应力的变化,绘制出应力-应变曲线。
通过分析曲线的斜率和形状可以得到各种力学参数,如初始刚度、最大应力等。
维卡试验方法适用于测试橡胶材料的非线性力学行为,尤其是在低应变范围下。
3. 动态力学分析方法动态力学分析方法是利用动态力学分析仪器,例如DMA (Dynamic Mechanical Analyzer)进行的测试方法。
DMA可以在不同的温度、频率和应变条件下进行测试,得到橡胶材料的动态力学特性。
通过测量橡胶的储存模量、损耗模量和相位角等参数,可以得到材料的刚度、阻尼和能量耗散性能。
这种方法适用于评估橡胶材料的动态性能和耐久性,特别是在高温或低温条件下。
三、拉伸性能测试的操作步骤无论采用何种方法,进行拉伸性能测试都需要遵循以下一般操作步骤:1. 准备试样:按照相关标准或要求,制备符合尺寸要求的试样,并在试样上标明相关信息。
橡胶材料力学性能与耐久性能研究橡胶材料作为一种重要的弹性材料,具有独特的力学性能和耐久性能。
在工程应用中,了解和研究橡胶材料的力学性能和耐久性能对于保证其可靠性和稳定性至关重要。
本文将重点讨论橡胶材料力学性能与耐久性能的研究进展以及相关的测试方法和机制。
力学性能是评估橡胶材料性能的重要指标之一。
橡胶的力学性能主要包括弹性模量、硬度、拉伸强度和断裂伸长率等。
弹性模量是衡量材料抵抗变形的能力,通常用拉伸试验测得的应力应变曲线来计算。
硬度是材料抵抗局部压力的能力,常用的测量方法有杜氏硬度和洛氏硬度等。
拉伸强度是橡胶材料在拉伸过程中所能达到的最大强度,而断裂伸长率是材料在断裂前发生的拉伸变形程度。
力学性能的研究可以帮助我们深入了解橡胶材料的机械行为,并指导在工程中的应用。
耐久性能是指橡胶材料在长期使用过程中所能保持的各种性能指标。
橡胶材料的耐久性能主要包括疲劳性能、老化性能和耐腐蚀性能等。
疲劳性能是指材料在长期交变加载下所能承受的循环数,可以通过疲劳试验来评估。
老化性能是指材料在长期使用过程中因环境等因素引起的物理或化学变化。
常见的老化方式包括氧化老化、热老化和光老化等。
耐腐蚀性能是指材料在接触腐蚀介质时所能保持的稳定性和抗腐蚀能力。
通过研究耐久性能,我们可以评估橡胶材料在工程应用中的耐用性和可靠性。
为了研究橡胶材料的力学性能与耐久性能,有各种各样的测试方法和机制被开发出来。
拉伸试验是评估橡胶材料力学性能的常见方法之一,通过测量材料在受拉过程中的应力应变关系以及断裂伸长率来获得力学性能指标。
硬度测试可以使用洛氏硬度计或杜氏硬度计来测量材料的硬度。
疲劳试验通常采用交变拉伸或振动加载的方式,通过统计疲劳寿命和疲劳损伤形态来评估材料的耐久性能。
老化性能可以通过在恶劣环境条件下长期暴露材料并观察其性能变化来评估。
耐腐蚀性能的测试可使用不同的腐蚀介质以及相关的试验方法,如浸泡试验、电化学阻抗谱等。
除了测试方法,研究橡胶材料力学性能和耐久性能的机制也是非常重要的。
橡胶力学性能测试范围1、橡胶拉伸性能测试任何橡胶制品都是在一定外力条件下使用,因而要求橡胶应有一定的物理机械性能,而性能中最为明显为拉伸性能,在进行成品质量检查,设计胶料配方,确定工艺条件,及比较橡胶耐老化,耐介质性能时,一般均需通过拉伸性能予以鉴定,因此,拉伸性能则为橡胶重要常规项目之一。
拉伸性能包括如下项目:⑴ 拉伸应力S(tensile stress)试样在拉伸时产生的应力,其值为所施加的力与试样的初始横截面积之比。
⑵ 定伸应力Se(tensile stress at a given elongation)试样的工作部分拉伸至给定伸长率时的拉伸应力。
常见定伸应力有100%、200%、300%、500%定伸应力。
⑶ 拉伸强度TS(tensile strength)试样拉伸至扯断时的最大拉伸应力。
过去曾称为扯断强度和抗张强度。
⑷ 伸长率E(elongation percent)由于拉伸试样所引起的工作部分的形变,其值为伸长的增量与初始长度百分之比。
⑸ 定应力伸长率Eg(elongation at a given stress)试样在给定应力下的伸长率。
⑹扯断伸长率Eb(elongation at break)试样在扯断时的伸长率。
⑺ 扯断永久变形将试样伸至断裂,再受其在自出状态下,恢复一定的时间(3min)后剩余的变形,其值为工作部分伸长的增量与初始长度百分之比。
⑻ 断裂拉伸强度TSb(tensile strength at break)拉伸试样在断裂时的拉伸应力。
如果在屈服点以后,试样继续伸长并伴随着应力下降,为时TS 和TSb 的值是不相同,TSb 值小于TS。
⑼ 屈服点拉伸应力Sy(tensile stress at yield)应力应变曲线上出现应变进一步增加而应力不增加的第一个点对应的应力。
⑽ 屈服点伸长率Ey(elongation at yield)应力应变曲线上出现应变进一步增加而应力不增加的第一个点对应的应变(伸长率)。
胶力学性能与测试|橡胶力学与测试|橡胶力学与测试一、生胶性能未经加工的原料橡胶俗称生胶,其实生胶也并非100%纯净的,如天然胶中含有的非橡胶烃(约5%)包括树脂酸蛋白质等物质,在SR中同样添加了防老剂及未耗尽的合成助剂,如:分子量控制剂,终止剂及分散剂等。
不过大体上讲,生胶与胶料相比更能代表橡胶固有的特性,包括如下:1、分子量。
指橡胶大分子的分子量的平均值,应该把橡胶看成不同分子量聚合物的体系,既有高分子量级份,也混杂一些低分子量级份,这是不可避免的,所以只能以平均分子量的概念来描述。
根据不同测试方法又分粘均分子量、散均分子量及重均分子量。
比较常用的是粘均分子量,因为比较容易测,采用不同粘度来表征不同分子量,更为直观(分子量越大,粘度越高)。
分子量与生胶性能之间有着直接和密切的关系,一般而言分子量越大,则生胶的强度越高,力学性能越好,但是随着分子量的增大,加工时的流动性变差。
2、分子量分布。
橡胶实际上是不同比例的大小分子量不同的分子链的混合物,如果把不同的分子量按出现的频率来排列,则可得到分子量分布曲线。
NR的分子量分布特点:中等分子量占统治地位,高分子量及低分子量级各占少数,其中高的部分有利于力学性而低的部分则有利于加工,因此兼顾了性能和加工。
SR的分子量分布特点:分子量分布很窄,局限在很小的范围,因为缺少低分子量部分所以加工性不及NR,但性能均匀性好。
原因是合成橡胶的分子量由人为地加以控制,所以模式单纯,难以做到大、中、小兼顾。
3、凝胶含量。
一般只发生在SR。
当聚合过程中,因结构控制不同,形成太多的支链结构,结果这一部分就出现凝胶,用溶剂无法溶解故称凝胶。
炼胶时助剂难以进入,影响性能。
4、侧挂基团。
橡胶单体上的不同基团给橡胶带来不同的特性。
如:-COOH (羧基):能赋予良好的粘性;-CL:具有极性及电负性;苯基:体积庞大可以阻拦射线,故具抗射线性良好。
5、极性。
与基团有密切相关,凡是带有腈基(-CN)羟基(-OH)和羧基(-COOH)等基团的橡胶都有较强的极性,称为极性橡胶。
他们与金属有良好的结合性,另外极性接近的橡胶,彼此容易掺和。
二、硫化胶性能如果说生胶和未硫化胶的性能主要为加工生产服务,那么硫化胶性能主要为客户和实际应用服务。
硫化胶性能可以概括分为俩大类即力学性能及抗环境性能,前者都是衡量橡胶在受力情况下的性能,主要有拉伸强度、定伸强度、扯断伸长率、拉伸永久变形(均在拉力机上进行)、硬度、回弹性、压缩永久变形、抗撕裂强度、粘和强度等。
后者是测量橡胶在外界环境下的性能变化,包括热老化性能、抗臭氧性能、阻燃性能、抗霉性能等。
先将常用的硫化胶测定项目简述如下–1、拉伸强度。
用拉动机对橡胶试片进行拉伸,测定断裂时的强度以Mpa表示,是衡量橡胶力学性能的最主要最基本项目,其值越大,表明强度越大,一般在10~30Mpa。
2、定伸强度。
试样拉伸到一定长度时,单位面积所需的力。
可以反映橡胶的交联程度。
其值越高,表明橡胶越坚韧,单位MPa3、扯断伸长率。
试样拉断时,伸长部分与原长的百分比,用以表示橡胶在伸长时的应变能力的极限,以%表示。
4、永久变形。
试样经一定时间的外力作用后,不能恢复的变形部分的百分比,其值越小,则橡胶的弹性复原性越好。
5、撕裂强度。
橡胶抵抗裂口处撕开的性能,以单位长度的撕开力来表示KN/m6、硬度。
将一定直径的钢性球体压入橡胶试样到一定深度所需的负荷与弹性模量之比,用以反映橡胶的弹性模量,也可判断硫化状态。
7、耐磨性。
常用阿克隆磨耗机测定,对滚动磨擦件最适宜,其测试方法是将圆盘形试片定位于磨耗实验机上,在一定压力下,与砂轮以一定斜度角(15°)进行相对摩擦测定其在1.61km(1英里)的行程内被磨下的胶粉,在按密度换算成体积,故其取值单位为cm3/1.61km,值越小耐磨性越好。
8、回弹性。
又称冲击弹性,指橡胶受冲击后能复原的程度,通常以回弹率表示,有两种测定法:⑴落球法将一定质量的钢球,从一定高度落下,打在橡胶试样上侧其回弹的高度。
⑵摆锤法用有支点的钢锤撞击橡胶试样,侧其回弹幅度以前后的百分比表示。
)9、耐老化性。
常用热气老化箱法,将橡胶试样放入有热空气加热的老化烘箱内,定温定时老化(例70℃×100h)后,测定性能的保持率,以表示老化程度,称老化系数,一般系数越接近1.0的越好。
10、耐寒性。
通常以脆性温度表示,脆性温度越低表示橡胶的耐寒性越好。
方法如下,用开水放入保温瓶内制冷,到所需温度后,用夹持器将试样垂直送入保持3分钟取出,在0.5秒内用冲击器冲击试样,出现裂口或扯断的最高温度即脆性温度,表示该橡胶耐低温水平。
三、未硫化胶的性能生胶与助剂相混,但未经硫化的橡胶称未硫化胶,也称胶料。
可以理解为半成品,它们跟加工过程有密切关系:1、流动性。
和可塑性相关,可塑性越大,则流动性越好,吃粉容易;在压延挤出过程中,十分顺利;硫化时受热过程中很快能充满模腔,反之流动性不好则容易出现缺胶。
2、喷霜。
配方中如果某项助剂添加过量,超过其在橡胶中的溶解度,则会逐渐喷出胶料表面形成霜层,故称喷霜。
油类、石蜡、防老剂、硫磺、促进剂等添加过量均会出现喷出,影响外观,并影响界面结合。
3、焦烧。
胶料在加工或停放过程中提前硫化现象称焦烧。
这种现象在高温季节容易发生,对策是添加防焦剂,严格控制加工温度。
4、收缩膨胀变形。
胶料出口型后出现尺寸收缩膨胀,对成型带来不便,可塑度不够或合成胶使用比过高是主要原因,添加软化剂用量有利于减少收缩变形。
橡胶力学性能与测试一、生胶性能未经加工的原料橡胶俗称生胶,其实生胶也并非100%纯净的,如天然胶中含有的非橡胶烃(约5%)包括树脂酸蛋白质等物质,在SR中同样添加了防老剂及未耗尽的合成助剂,如:分子量控制剂,终止剂及分散剂等。
不过大体上讲,生胶与胶料相比更能代表橡胶固有的特性,包括如下:1、分子量。
指橡胶大分子的分子量的平均值,应该把橡胶看成不同分子量聚合物的体系,既有高分子量级份,也混杂一些低分子量级份,这是不可避免的,所以只能以平均分子量的概念来描述。
根据不同测试方法又分粘均分子量、散均分子量及重均分子量。
比较常用的是粘均分子量,因为比较容易测,采用不同粘度来表征不同分子量,更为直观(分子量越大,粘度越高)。
分子量与生胶性能之间有着直接和密切的关系,一般而言分子量越大,则生胶的强度越高,力学性能越好,但是随着分子量的增大,加工时的流动性变差。
2、分子量分布。
橡胶实际上是不同比例的大小分子量不同的分子链的混合物,如果把不同的分子量按出现的频率来排列,则可得到分子量分布曲线。
NR的分子量分布特点:中等分子量占统治地位,高分子量及低分子量级各占少数,其中高的部分有利于力学性而低的部分则有利于加工,因此兼顾了性能和加工。
SR的分子量分布特点:分子量分布很窄,局限在很小的范围,因为缺少低分子量部分所以加工性不及NR,但性能均匀性好。
原因是合成橡胶的分子量由人为地加以控制,所以模式单纯,难以做到大、中、小兼顾。
3、凝胶含量。
一般只发生在SR。
当聚合过程中,因结构控制不同,形成太多的支链结构,结果这一部分就出现凝胶,用溶剂无法溶解故称凝胶。
炼胶时助剂难以进入,影响性能。
4、侧挂基团。
橡胶单体上的不同基团给橡胶带来不同的特性。
如:-COOH (羧基):能赋予良好的粘性;-CL:具有极性及电负性;苯基:体积庞大可以阻拦射线,故具抗射线性良好。
5、极性。
与基团有密切相关,凡是带有腈基(-CN)羟基(-OH)和羧基(-COOH)等基团的橡胶都有较强的极性,称为极性橡胶。
他们与金属有良好的结合性,另外极性接近的橡胶,彼此容易掺和。
二、硫化胶性能如果说生胶和未硫化胶的性能主要为加工生产服务,那么硫化胶性能主要为客户和实际应用服务。
硫化胶性能可以概括分为俩大类即力学性能及抗环境性能,前者都是衡量橡胶在受力情况下的性能,主要有拉伸强度、定伸强度、扯断伸长率、拉伸永久变形(均在拉力机上进行)、硬度、回弹性、压缩永久变形、抗撕裂强度、粘和强度等。
后者是测量橡胶在外界环境下的性能变化,包括热老化性能、抗臭氧性能、阻燃性能、抗霉性能等。
先将常用的硫化胶测定项目简述如下–1、拉伸强度。
用拉动机对橡胶试片进行拉伸,测定断裂时的强度以Mpa表示,是衡量橡胶力学性能的最主要最基本项目,其值越大,表明强度越大,一般在10~30Mpa。
2、定伸强度。
试样拉伸到一定长度时,单位面积所需的力。
可以反映橡胶的交联程度。
其值越高,表明橡胶越坚韧,单位MPa3、扯断伸长率。
试样拉断时,伸长部分与原长的百分比,用以表示橡胶在伸长时的应变能力的极限,以%表示。
4、永久变形。
试样经一定时间的外力作用后,不能恢复的变形部分的百分比,其值越小,则橡胶的弹性复原性越好。
5、撕裂强度。
橡胶抵抗裂口处撕开的性能,以单位长度的撕开力来表示KN/m6、硬度。
将一定直径的钢性球体压入橡胶试样到一定深度所需的负荷与弹性模量之比,用以反映橡胶的弹性模量,也可判断硫化状态。
7、耐磨性。
常用阿克隆磨耗机测定,对滚动磨擦件最适宜,其测试方法是将圆盘形试片定位于磨耗实验机上,在一定压力下,与砂轮以一定斜度角(15°)进行相对摩擦测定其在1.61km(1英里)的行程内被磨下的胶粉,在按密度换算成体积,故其取值单位为cm3/1.61km,值越小耐磨性越好。
8、回弹性。
又称冲击弹性,指橡胶受冲击后能复原的程度,通常以回弹率表示,有两种测定法:⑴落球法将一定质量的钢球,从一定高度落下,打在橡胶试样上侧其回弹的高度。
⑵摆锤法用有支点的钢锤撞击橡胶试样,侧其回弹幅度以前后的百分比表示。
)9、耐老化性。
常用热气老化箱法,将橡胶试样放入有热空气加热的老化烘箱内,定温定时老化(例70℃×100h)后,测定性能的保持率,以表示老化程度,称老化系数,一般系数越接近1.0的越好。
10、耐寒性。
通常以脆性温度表示,脆性温度越低表示橡胶的耐寒性越好。
方法如下,用开水放入保温瓶内制冷,到所需温度后,用夹持器将试样垂直送入保持3分钟取出,在0.5秒内用冲击器冲击试样,出现裂口或扯断的最高温度即脆性温度,表示该橡胶耐低温水平。
三、未硫化胶的性能生胶与助剂相混,但未经硫化的橡胶称未硫化胶,也称胶料。
可以理解为半成品,它们跟加工过程有密切关系:1、流动性。
和可塑性相关,可塑性越大,则流动性越好,吃粉容易;在压延挤出过程中,十分顺利;硫化时受热过程中很快能充满模腔,反之流动性不好则容易出现缺胶。
2、喷霜。
配方中如果某项助剂添加过量,超过其在橡胶中的溶解度,则会逐渐喷出胶料表面形成霜层,故称喷霜。
油类、石蜡、防老剂、硫磺、促进剂等添加过量均会出现喷出,影响外观,并影响界面结合。
3、焦烧。
胶料在加工或停放过程中提前硫化现象称焦烧。