空压机变频节能改造方案(400KW)
- 格式:doc
- 大小:71.00 KB
- 文档页数:6
空压机节能改造方案
背景
空气压缩机是现代工业中必不可少的设备,但运行中会消耗大量电能,造成能源浪费。
因此,如何在保证正常生产的前提下降低空压机能耗和提高能源利用率就成了一项重要的问题。
节能改造方案
1. 实施压缩机内部节能措施
•更换高效节能变频机组:采用电子软启动进行马达启动,运行稳定,避免了传统压缩机随即启停过程中的能耗损失。
•优化制冷系统:增加冷却水,减少啤酒扭矩和背压。
•安装热回收系统:将空气产生的热量转换为热水等能源,提高能源利用效率。
2. 控制空压机使用条件
•采用ICT以及电子式恒压控制:通过电子控制完成压力上下浮动的调控,节省能源消耗。
3. 更换高效节能设备
•更换压缩机主机和空压机各级机组,效率可提升20%~30%。
•用高效干燥系统代替传统冷却水或制冷干燥机,能耗可降低30%以上。
•用高效精密过滤器代替传统粗过滤器,能耗可降低10%~20%。
节能改造效果
空压机节能改造方案可大大降低能源消耗,提高能源利用率,具有显著的节能效果,从而达到减少污染物排放和改善环境的目的。
同时,能有效降低生产成本,提高经济效益。
十二脉冲高低高变频方案 一:变频节能节能: 电力电子、微电子和信息技术的发展、交流电机变频调速技术日益完善并得到了普遍应用。
除节电外,它已对石化、化纤、纺织、造纸、印染等生产线控制产生优质、高产的效果,已成为企业优化生产中不可缺少的关键设备。
但对高压大容量变频装置能否在电力、石化、钢铁、化工等大型连续生产型企业应用。
不少人存在疑虑。
以下就大容量变频调速装置在电厂的应用做出分析,目的是使用变频技术,使其为企业节能、降耗、优质、高产服务。
由于电机功率与转速的三次方成正比,转速下降时,电流下降极大。
由图可知:当电机运行的轴功率为额定量的80%时,变频调速节能效果可达 48%。
原调风系统控制多采用风门调节、液力偶合调速、滑差调速、调压调速、变极调速、正流子电机调速、串极调速等,因其控制方式的原因,不同程度的存在可靠性差、调速精度差、启动电流大、功率因素低、效率低、机械振动和磨损大、操作复杂等问题。
若采用变频调速装置进行控制,以上问题则迎刃而解。
二、3KV/6KV/10KV 高压电机变频调速三种方式1. 高--低--高间接式:在通用变频器(低压)输入侧前加一个降压变压器,在变频器输出侧后加一个轴功率与转速关系式:3=N 1N n n 1N 运行轴功率N 1额定轴功率n 1n 额定转速运行转速升压变压器而构成变频驱动系统。
它将高压电源电压降到低压变频器允许的电压这是目前应用最多的一种方式。
2. 高--低--低方式:在通用变频器(低压)输入侧前加一个降压变压器,将高压电机变成可用低压变频拖动的电压等级(或换高压电机或改高压电机)3. 高--高方式:直接用高压变频器装置拖动高压电机负载.采用SCR 和GTO 等元件在装置内串联成高压,此方法易损坏元件,有谐波,维修复杂.三、变频节能实例茂名石化使用高压变频始于1994年,使用了ABB 的ACS600系列变频器,均为高-低-高方式。
ACS600是拥有DTC 直接转矩控制技术的新一代变频器,无速度反馈满转矩输出,其转矩阶跃响应<5ms ,静态开环控制精度可达0.1%。
由于空压机不排除在满负荷状态下长时间运行的可能性,所以,选型时只能按最大需求来确定电机容量,造成空压机系统余量一般偏大。
传统空压机都采用星三角降压启动,但工频启动时电流仍然能达到额定电流的2~3倍,冲击大,会影响到电网的稳定性。
且大多数空压机是连续运行,由于一般空压机的电机本身不能根据压力需求的变动来实现降速,使电机输出功率与现场实际压力需求量相匹配,导致在用气量少的时候仍然要空载运行,造成巨大的电能浪费。
据统计,空压机占大型工业设备(风机、水泵、锅炉等)几乎所有的耗电量的15%。
空压机的节能改造势在必行。
若能采用变频调速技术,当流量需要量减少时,就可以降低电动机的转速,从而较大幅度减小电动机的运行功率,实现节能的目的。
1.变频器应用方案根据招标要求,我方为该空压机组安装一台变频器,并且采用一拖二的方式启动两台ZR250型空压机,我公司选用的是丹佛斯FC102型250KW变频器,此变频器可以软启动两台空压机,正常工作时,启动一台ZR110空压机,此时压力并不能满足需求,需要变频器启动一台ZR250空压机,并根据压力需求自行调节电机转速,当ZR110变频器出现故障时,可以同时启动两台ZR250空压机,并可以实现工变频切换。
节能原理:变频调速系统以输出压力作为控制对象,由PLC、变频器、压力传感器、电机组成闭环恒压控制系统,工作压力值可由触摸屏直接设置,现场压力由传感器来检测,转换成4~20mA电流信号后反馈到PLC,PLC通过检测值和设定值进行比较,进行PID调节控制变频器转速,达到空压机恒压供气和节能的目的。
变频节能表现在:1、变频器通过调整电机的转速来调整气体流量,使电机的输出功率与流量需求成正比,保持电机高效率工作,功率因数高,无功损耗小,节电效果明显;2、按严格的EMS标准设计,高速低耗的IGBT以及采用了高效的失量控制算法,使得V&T变频器谐波失真和电机的电能损耗最小化;3、自动快速休眠使得空载时间变短,电机完全停止,最大程度节能。
空压机变频改造方案空压机变频改造方案1. 简介空压机是工业生产过程中常用的设备之一,用于为生产提供稳定的空气压力。
传统的空压机通常采用定速电机驱动,这会导致能源的浪费和设备的寿命缩短。
为了节约能源并延长设备的使用寿命,空压机变频改造方案变得越来越受到关注。
2. 变频改造方案的原理空压机变频改造方案基于变频器的技术,通过改变电机的转速来调节空压机的产气量,从而达到节约能源和提高设备效率的目的。
变频器可以根据实际需求调整电机的频率和转速,使空压机在不同负载下工作在最佳状态。
3. 变频改造方案的具体步骤3.1 评估空压机的需求在进行变频改造之前,首先需要评估空压机的实际需求。
这包括生产过程中对空气压力的要求、空气消耗量以及负载变化情况等。
根据评估的结果,确定变频器的规格和性能。
3.2 安装和调试变频器根据空压机的电气系统和变频器的技术参数,进行变频器的安装和调试工作。
这包括连接电源线、电机线和控制线,设置变频器的参数和工作模式等。
在调试过程中,需要对变频器的启动和停止、转速调节、故障保护等功能进行测试,确保其正常运行。
3.3 监控和优化系统性能安装完成后,通过监控系统对空压机的运行状态进行实时监测。
可以监测参数包括电机的转速、电流、功率因数等,以及空气压力、温度和湿度等。
根据监测结果,对系统进行优化和调整,以提高空压机的工作效率和能源利用率。
4. 变频改造方案的优势4.1 节约能源传统的空压机通常采用定速电机驱动,无法根据实际需求进行调节。
而变频改造方案通过调整电机的转速,使得空压机在不同负载下始终工作在最佳点,达到节约能源的效果。
根据实际应用案例,变频改造后的空压机平均节约能源30%以上。
4.2 增强设备寿命空压机变频改造可以使设备在正常负载范围内工作,减少了过高或过低负载对设备的损害,延长了设备的使用寿命。
此外,变频改造还可以减少空压机的启停次数,降低了设备的运行压力和温度,提高了设备的可靠性和稳定性。
空压机节能改造方案
目录
1. 节能改造的必要性
1.1 空压机的能耗情况
1.2 环保意识的普及
1.3 节能改造带来的效益
2. 节能改造方法
2.1 定期维护保养
2.2 更新陈旧设备
2.3 优化系统设计
3. 节能改造的实施步骤
3.1 评估现有系统
3.2 制定节能改造方案
3.3 实施改造措施
4. 节能改造的效果评估
4.1 监测能耗变化
4.2 比较前后成本
4.3 评估环保效益
节能改造的必要性
空压机是工业生产中必不可少的设备,其能耗在整个生产过程中占据重要地位。
随着环保意识的普及,越来越多的企业开始关注能源的节约利用。
通过对空压机进行节能改造,不仅可以减少能耗,还可以降低对环境的影响,提高企业的形象和竞争力。
节能改造方法
空压机的节能改造主要包括定期维护保养、更新陈旧设备和优化系统设计。
定期维护可以保持设备正常运转,降低故障率;更新设备可以提高设备效率,降低能耗;优化系统设计可以根据实际生产情况进行调整,降低系统阻力,提高效率。
节能改造的实施步骤
要实施空压机的节能改造,首先需要评估现有系统的运行情况,了解能耗情况和存在的问题;然后制定详细的节能改造方案,包括具体的改造措施和预期效果;最后按照方案实施改造措施,确保改造的顺利进行。
节能改造的效果评估
改造完成后,需要对节能效果进行评估。
通过监测能耗的变化,可以直观地了解改造效果;比较前后的成本,可以 quant 实际节约了多少费用;评估环保效益,可以 quant 知道改造对环境的影响,为企业形象加分。
空压机变频改造方案一、背景介绍空压机是一种将气体压缩成高压气体的设备,广泛应用于工农业、建筑和能源等领域。
传统的空压机一般采用定速电机驱动,无法根据实时气压需求的变化调节电机的转速,造成能源的浪费和运行的不稳定。
而采用变频器对空压机进行改造,可以实现无级调速,根据气压需求实时调节电机的转速,减少能源消耗,提高运行效率和稳定性。
二、改造方案1.变频器选择变频器是变频空压机的核心设备,直接影响改造效果和性能。
在选择变频器时,需考虑以下几点:(1)功率匹配:根据现有空压机的功率确定变频器的额定功率。
(2)控制精度:要求变频器具有较高的控制精度,能够快速响应和调整转速。
(3)变频范围:变频器的变频范围越宽,适应性越强。
(4)通信接口:变频器需要支持与空压机控制系统的通信接口,实现实时监控和控制。
(5)供电要求:根据现场的供电条件选择相应的变频器。
2.安装和调试(1)拆卸原定速电机,并根据变频器的要求安装新的变频电机。
(2)安装变频器,接入电源和控制线路。
(3)对变频器进行参数设置和调试,设置转速范围、加速度和减速度等参数。
(4)连接压缩机系统的传感器和控制设备,建立与空压机控制系统的通信。
(5)进行试运行,检查各项指标是否满足要求,如电流、转速和气压等。
3.系统优化和监控(1)建立空压机控制系统,实现对空压机运行状态和参数的实时监控和控制。
(2)根据气压需求和使用情况,对变频器进行优化设置,使其在不同负载下运行更加高效。
(3)进行数据分析和统计,找出运行过程中的优化点和问题,及时调整和修复。
(4)做好周期性的维护和保养工作,保证系统的长期稳定运行。
三、改造效益1.节能降耗:采用变频器改造后,空压机可以根据气压需求实时调整转速,减少无功功率的消耗,节约能源,降低运行成本。
2.提高运行效率:变频器能够使空压机在工作范围内保持较高的运行效率,提高空压机的工作效率和生产能力。
3.减少故障率:变频器能够实时监测和控制电机的运行状态,对电机充分保护,减少故障率和损坏风险。
空压机变频改造方案空压机变频改造方案是为了提高其能源利用率和运行效率,从而降低能源消耗和运行成本。
通过将传统的空压机系统中的电动机更换为变频电动机,可以实现压缩机的电机转速和输出能力的无级调节,从而更好地适应不同工况的需求。
下面是一个关于空压机变频改造方案的详细说明。
1.改造目标:提高空压机系统的能源利用率和运行效率,以降低能源消耗和运行成本。
2.改造内容:将传统的空压机系统中的电动机更换为变频电动机,并配备相应的变频控制器和传感器。
3.改造步骤:(1)选购合适的变频电动机:选择适合空压机工作要求的变频电动机,并确保其额定功率和转速范围满足压缩机系统的需求。
(2)安装变频控制器:将变频控制器安装在空压机系统的控制柜中,并与原有的电路连接。
(3)安装传感器:安装压力传感器和流量传感器,用于实时监控空压机系统的压力和气流,并将监测数据传输给变频控制器。
(4)调试和测试:根据压缩机系统的实际情况和要求,对变频控制器进行调试和测试,确保其正常工作和稳定运行。
4.改造效果:(1)能源利用率提升:通过变频技术,可以将压缩机的输出功率与实际需要相匹配,避免电动机长期处于高功率运行状态,从而提高能源利用率。
(2)运行效率改善:变频电动机能够根据压缩机系统的工况变化,实现无级调速,使空压机系统在不同工况下均能以最佳效率运行。
(3)减少能源消耗:通过控制变频电动机的转速,避免传统空压机系统中由于定速电动机的固定转速而造成的能源浪费,从而减少能源消耗。
(4)降低运行成本:空压机系统的能源消耗是其运行成本的主要组成部分,通过降低能源消耗,可以有效降低空压机系统的运行成本。
(5)提高系统稳定性:变频电动机和变频控制器能够根据压缩机系统的实际需求进行自动调节,提供更稳定和可靠的空气压缩服务。
总结:空压机变频改造方案能够实现空压机系统的高效运行和能源节约。
通过替换传统电动机为变频电动机,并安装相应的变频控制器和传感器,可以实现无级调速和智能控制,提高空压机系统的能源利用率和运行效率,降低能源消耗和运行成本,提高系统稳定性。
空气压缩机的变频节能改造摘要:煤矿空压机是煤矿的“四大件”主要设备之一,其耗能很多。
因此,节能显得尤为重要。
本方案利用变频器控制空压机进行恒压供气,达到了的节能目的。
关键词:空压机变频器节能空气压缩机的变频节能改造空压机目前大多使用的是螺杆式空压机,但其供气控制方式几乎都是采用加、卸载控制方式。
该供气控制方式虽然原理简单、操作简便,但存在能耗高,进气阀易损坏、供气压力不稳等诸多问题。
随着社会的发展和进步,应用变频调速技术,实现空压机节省电能。
一、目前空压机存在的问题目前空压机大都采用两点式控制(上、下限控制),也就是当压缩气体气缸内压力达到设定上限值时,空压机通过本身气压或油压关闭进气阀。
当压力下降到设定值下限时,空压机打开进气阀。
这种控制方式存在的主要问题:1、容易对电网造成冲击,对空压机本身也有一定的损害,当用气量频繁波动时,尤其明显。
2、直接启动控制方式(Y/Δ)及加载、卸载时不仅对电网供配电设备及螺杆都会造成较大的冲击,还会造成电能的严重浪费。
3、原有控制系统靠机械方式调节进气阀,使供气量无法连续调节,当用气量不断变化时,供气压力不可避免地产生较大幅度的波动。
再加上频繁调节进气阀和排气阀,会加速进气阀和排气阀的磨损,增加维修量和维修成本。
二、空压机系统节能的工作原理通过变频器控制空压机的转速从而达到节能是一种较为科学的节能控制方式,根据相似定理得出:Q1/Q2=n1/n2H1/H2=(n1/n2)2P1/P2=(n1/n2)3式中:Q为空压机供气流量;H为管网压力;P为电机消耗功率;n为空压机转速。
由此可知,若电机转速降至额定转速的70%时,则空压机供给管网流量降为70%,管网压力降为(70%)平方,电机消耗功率则降为70%的立方,即节能为34.3%,扣除电机机械损耗和电机铜损、铁损等,其节能效率在30%左右。
变频空压机能在恒定排气压力下,精确地根据使用气量的变化改变空压机主电机的转速;空压机只输出所需要的气量,同时也只消耗输出这些空压机所必需的能量,从而达到了节能的目的。
空压机变频改造方案目录1. 传统空压机的局限性1.1 能源消耗大1.2 运行效率低1.3 维护成本高2. 空压机变频改造的意义2.1 节能环保2.2 提升效率2.3 降低维护成本3. 空压机变频改造的关键技术3.1 变频驱动器的安装3.2 控制系统的升级3.3 效率优化的调整4. 空压机变频改造的实施步骤4.1 设计方案制定4.2 设备采购安装4.3 调试测试验收5. 成功案例分析5.1 公司A的变频改造实践5.2 公司B的节能效果对比6. 变频改造的经济效益6.1 投资回收周期6.2 能源消耗降低比例6.3 维护成本节约情况7. 变频改造后的运行管理7.1 监控系统的建立7.2 定期维护保养7.3 数据分析与优化传统空压机的局限性传统空压机在运行过程中存在能源消耗大、运行效率低、维护成本高等问题。
由于传统压缩机采用定速运行方式,无法根据实际需求实现流量的动态调节,导致能源浪费和效率低下。
空压机变频改造的意义通过空压机变频改造,可以实现节能环保、提升运行效率,降低维护成本。
通过变频技术控制压缩机的转速,使其能够根据需求灵活调节输出,大大提高了能效比,降低了运行成本。
空压机变频改造的关键技术空压机变频改造的关键技术包括变频驱动器的安装、控制系统的升级、效率优化的调整。
通过升级这些关键技术,可以有效提高空压机的运行效率和节能性能。
空压机变频改造的实施步骤空压机变频改造的实施步骤包括设计方案制定、设备采购安装、调试测试验收等。
在实施过程中,需要严格按照步骤进行,确保改造工作的顺利进行。
成功案例分析通过对一些公司的成功案例进行分析,可以更直观地了解空压机变频改造的效果。
比如公司A在进行变频改造后,节能效果显著提升,维护成本大幅下降,为企业节省了大量费用。
变频改造的经济效益对于空压机变频改造而言,其经济效益也是非常值得重视的。
通过对投资回收周期、能源消耗降低比例、维护成本节约情况等方面进行分析,可以更好地评估改造的实际收益情况。
空压机变频改造技术方案空压机是一种将电力或者燃气能源转化为压缩空气的设备。
在工业生产中,空压机的能源消耗占据了相当大的比例,因此对其进行改造以提高能源利用效率是非常有必要的。
其中,空压机的变频改造技术是一种有效的节能措施。
下面将介绍空压机变频改造的技术方案。
1.变频器的安装变频器是空压机变频改造的核心设备,其作用是调节空压机的转速,实现空压机的变频运行。
在进行变频改造时,首先需要选择适合空压机的变频器,并按照要求进行安装。
变频器应该具备高效节能的特点,并且适用于该型号的空压机。
2.传感器的安装为了实现对空压机运行状态的监测和控制,需要安装各种传感器。
常见的传感器包括压力传感器、温度传感器、流量传感器等。
这些传感器可以采集到空压机运行过程中的各项数据,并将其传输给变频器进行处理。
通过传感器的安装,可以实时监测和控制空压机的运行状态,从而提高其运行效率。
3.控制系统的优化空压机的控制系统是保证其正常运行的关键。
在进行变频改造时,需要对原有的控制系统进行优化。
首先,可以对控制逻辑进行重新设计,增加变频运行的控制策略,如启停控制、负荷分配等。
其次,可以加入远程控制功能,实现对空压机的远程监控和控制,提高运行的灵活性和可靠性。
4.系统压力控制的优化在空压机的变频改造中,优化系统压力控制是非常重要的。
通过变频运行,可以实现压力的精确控制,避免过高或过低的压力浪费能源。
在进行系统压力控制优化时,需要调整压力传感器的设置,使其能够准确地检测到系统压力,并通过变频器调节空压机的转速,保持系统压力在设定范围内稳定运行。
5.能量回收技术的应用在空压机的变频改造中,可以引入能量回收技术,进一步提高能源利用效率。
常见的能量回收技术包括热回收和压力回收。
热回收技术利用空压机排出的热量进行能量回收,以供其他用途;压力回收技术利用锅炉或发电机回收压缩空气中的能量,提高整体能源利用效率。
通过应用能量回收技术,可以进一步降低空压机的能源消耗。
空压机节能改造方案空压机在工业生产中扮演着重要的角色,它是许多企业生产过程中不可或缺的设备。
然而,传统的空压机在使用过程中存在能源浪费的问题,因此,对空压机进行节能改造成为了许多企业迫切需要解决的问题。
本文将介绍空压机节能改造的方案,以期为企业解决能源浪费问题,提高生产效率。
首先,空压机节能改造的关键在于提高能效。
通过更换高效节能的压缩机头,采用变频调速技术,优化管道布局和降低压缩机的运行压力等方式,可以有效提高空压机的能效。
此外,安装智能控制系统,实现压缩机的智能运行和监控,也是提高能效的有效途径。
其次,空压机节能改造需要考虑到系统的整体优化。
对于空压机系统,除了压缩机本身,还包括气体处理设备、管道系统、配气系统等多个方面。
因此,在进行节能改造时,需要对整个系统进行综合考虑,找出能源浪费的环节,并进行相应的优化和改造。
例如,合理规划管道布局,减小管道阻力和泄漏,优化气体处理设备的配置等,都可以有效提高系统的能效。
此外,在空压机节能改造中,还可以考虑利用余热回收技术。
在空压机的运行过程中会产生大量的余热,如果能够有效利用这些余热,就可以实现能源的再生利用,从而达到节能的目的。
例如,可以采用余热回收装置,将余热用于加热水或空调系统,减少对其他能源的消耗,从而实现能源的循环利用。
最后,空压机节能改造还需要考虑到设备的维护与管理。
定期对空压机进行维护保养,及时更换易损件,保持设备的良好状态,可以有效降低能源消耗,延长设备的使用寿命。
同时,加强对空压机的管理,建立科学的运行管理制度,合理安排设备的运行时间和负荷,也是节能的重要手段。
综上所述,空压机节能改造是企业实现节能减排、提高生产效率的重要举措。
通过提高空压机的能效,优化系统的整体结构,利用余热回收技术,加强设备的维护与管理,可以有效实现节能减排的目的,为企业带来经济效益和环保效益。
因此,企业在进行空压机节能改造时,应该根据自身的实际情况,选择合适的节能改造方案,实现可持续发展的目标。
空压机变频节能改造方案空压机是一种常用的工业设备,用于将空气进行压缩。
传统的空压机通常由电动机驱动,通过双向活塞来进行压缩。
然而,传统的空压机存在能源浪费问题,效率较低,造成了不小的能源损耗。
因此,采用变频技术进行空压机节能改造成为一种有效的解决方案。
变频技术是通过调整电动机的转速来实现节能的一种技术。
传统的空压机一般采用固定频率的电动机来驱动压缩机,而变频空压机则采用可变频率电动机。
这种变频电机可以实现按需提供所需的压缩空气,避免了传统空压机长时间运行、无需产生高压空气的情况。
从而避免了能源浪费的问题。
基于变频技术的空压机节能改造方案,主要包括以下几个方面:1.替换电动机:将传统空压机中的固定频率电动机更换为可变频率电动机。
变频电动机可以根据压缩空气需求来调整转速,从而减少电能的消耗。
同时,变频电动机的启动和停止时间也较短,可以更加精确地控制空压机的运行状态,提高了整个系统的效率。
2.安装变频器:在更换电动机的同时,还需要安装一个变频器来控制电动机的转速。
变频器可以根据实时的工作情况,自动调整电动机的转速和输出功率。
通过变频器,可以实现对空压机运行的精确控制,减少能源的浪费。
3.组件优化:除了更换电动机和安装变频器,还可以进行组件的优化。
例如,可以采用高效的压缩机、冷却器和滤芯等,来提高整个系统的效率。
此外,还可以对传统空压机进行系统优化,改善压缩空气的供应和运行方式,进一步降低能源损耗。
4.数据监测和管理:对于变频空压机的运行监测和数据管理也非常重要。
可以通过安装传感器和数据采集设备,实时监测和记录空压机的运行状态和能耗情况。
基于这些数据,可以进行能源消耗与产能的分析,进一步优化空压机的运行策略,实现更高的能源利用效率。
综上所述,通过采用变频技术进行空压机节能改造,可以明显降低能源消耗,提高空压机的效率。
这对于工业生产企业来说,不仅能够减少能源成本,还能够提高生产效率,降低对环境的影响。
因此,空压机变频节能改造方案是一种非常有效的节能措施。
空压机节能改造方案空压机是工业生产中非常重要的设备,它的作用是将空气压缩成高压气体,用于驱动各种机械设备或进行其它工业生产过程。
然而,空压机的能源消耗也十分巨大,对环境和企业经济都带来负面影响。
因此,如何节约空压机的能源消耗成为企业重要的课题。
以下是具体的空压机节能改造方案。
1. 安装气表和压力表安装气表和压力表可以帮助企业了解空气消耗量和空气压力。
通过实时监控设备的运行情况,可以及时发现问题并采取措施进行调整,从而达到节能的效果。
2. 更换高效过滤装置过滤装置可以帮助净化空气中的颗粒物和水分,保护设备内部不受污染。
选择高效的过滤装置可以让空气流通更加顺畅,并保证设备运行的效率。
3. 更换节能电机空压机耗能最大的部分是电机,因此更换节能电机是重要的节能措施。
节能电机的效率比传统电机高很多,而且功率密度小,同样输出的功率下,体积更小、重量更轻。
4. 安装变频控制器安装变频控制器可以根据实际需要,调整空压机的产气量,达到节能的目的。
变频控制器不仅可以降低设备运行的能量消耗,同时还能延长设备的使用寿命。
5. 安装热回收装置空压机在工作的过程中,会产生大量的热量,这些热量如果不能充分利用,就会造成能源的浪费。
安装热回收装置可以将废热回收利用,提高燃气的热效率,从而减少能源消耗。
6. 更换高压部件高压部件是整个空压机的核心部分,其质量直接影响到整个设备的效率。
因此,选择质量好的高压部件,对于提升空压机的效率也是非常重要的。
7. 实行规范管理除了以上的节能措施,更重要的是实行规范化的管理。
要制定空压机的使用计划,设定合理的运行参数,避免不必要的能源浪费和设备的过度使用,从而达到更加优化的节能效果。
综合以上的七种节能改造方案,可以有效的降低空压机的能源消耗,提高设备的效率,减少企业的运营成本,对于保护环境和促进企业可持续发展也是有着积极的作用。
空压机节能改造方案空压机节能改造方案1. 背景随着工业生产的不断发展,空压机作为重要的工业设备之一,在产生压缩空气过程中消耗了大量的能源。
为了提高能源利用率、减少能源消耗、降低环境负荷,需要进行空压机的节能改造。
2. 目标通过节能改造,达到以下目标:•提高空压机能源利用效率•减少能源消耗•降低压缩空气的生产成本•降低环境排放3. 改造方案定期维护和保养•空压机设备定期维护,包括定期更换滤芯、清洁冷却器、检查压力和温度等。
•合理制定保养计划,确保设备运行在最佳状态,减少能源浪费。
控制系统优化•使用智能化控制系统,根据实时需求调整压缩空气的产量和压力,避免过量供应。
•定期检查和调整压力控制阀,确保系统运行在合理的压力范围内。
废热回收利用•安装废热回收装置,将压缩空气冷却过程中产生的热能回收利用,用于供暖或生产过程中的其他热能需求。
•减少单位能源产生的温室气体排放,降低环境负荷。
气体损失控制•检查和修复气体泄漏,确保系统中气体的密封性。
•安装气体泄漏监测设备,及时发现和修复泄漏问题,减少能源的浪费。
4. 实施计划将改造方案分为以下几个阶段进行实施:1.阶段一:–开展空压机设备的全面检查和维护,确保设备运行正常。
2.阶段二:–安装和优化空压机智能控制系统。
–开展气体泄漏检测和修复工作。
3.阶段三:–安装废热回收装置,实现废热的有效利用。
–定期对设备进行维护和保养。
5. 参考[1] Energy Conservation in Compressed Air Systems - US Department of Energy [2] Compressed Air System Optimization Manual - Compressed Air Challenge以上是空压机节能改造方案的相关资料,旨在提高节能效率、降低环境负荷,希望能为您的工业生产提供一些建议和方向。
6. 预期效果通过实施空压机节能改造方案,预计能够实现以下效果:•能源利用效率提高:通过优化控制系统和定期维护保养,空压机的能源利用效率将得到显著提高。
空压机节能改造方案背景空压机是工作中非常重要的设备,而许多厂家都面临着空压机能源消耗问题。
因此,为了减少能源消耗,节约生产成本,厂家不得不考虑对空压机进行节能改造。
本文将介绍几种空压机节能改造方案。
空压机节能改造方案方案一:更换高效节能电机空压机一般采用的是三相异步电机,如果将其更换为同等功率的高效节能电机,可以降低空压机的运行能耗,并且能够提高空压机的动力效率。
而这种节能改造的成本也比较低,节能效果明显。
方案二:装置变频控制技术另一种改进空压机的方法是通过变频控制技术来降低能源消耗。
即通过电子器件来调整电机的运行频率,以达到降低系统能耗的目的。
这种改进方法也可以减少电压波动和电流波动,延长电机和设备的使用寿命。
方案三:改进制冷系统制冷系统是一个空压机的主要部分,而其能耗也非常高,因此改进空压机的制冷系统也是一个有效的节能方法。
通过加装新型节能制冷技术,可以减少空压机的能耗,提高运行效率。
例如,可以使用新型的热能回收技术将空气从排气温度中回收能量,达到节能效果。
方案四:定期检查和维护设备空压机在长期使用过程中,会出现磨损和老化现象。
而磨损和老化会导致能源的浪费,因此定期检查和维护空压机是非常重要的。
例如,定期对空压机进行润滑和清洁,可以减少气体密封的损耗,提高系统的效率,并且能延长空压机的使用寿命。
结论以上提到的这些空压机节能改造方案,可以有效地减少设备的能源消耗和排放量,并且可以提高厂家的生产效率和经济效益。
因此,厂家在使用空压机的过程中,需要不断地对其进行检查和维护,并且时常进行节能改造,以达到更好的经济效益和社会效益。
空压机改变频方案范文空压机变频节能改造方案一、空压机工作原理介绍空压机的工作原理是:由一对相互平行齿合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,从而实现空压机的吸气、压缩和排气的全过程。
空压机的进气口和出气口分别位于壳体的两端,阴转子的槽及阳转子齿被主电机驱动而旋转。
空压机运行的具体程序为:按下启动按钮,控制系统接通启动器线圈并打开断油阀,空压机在卸载模式下启动,这时进气阀处于关闭位置,而放气阀则打开以排放油气分离器内的压力。
等降压2秒后空压机开始加载运行,系统压力开始上升。
如果系统压力上升到压力开关上限值,即起跳压力时,控制器使进气阀关闭,油气分离器放气,压缩机空载运行。
当系统压力下降至压力开关下限值,即回跳压力时,控制器使进气阀打开,油气分离器放气阀关闭,压缩机满载运行。
使空压机从空载到满载运行随着母管压力的大小而频繁切换,对电气设备和机械设备冲击比较大。
设备的磨损增大,对设备的维护量大。
缩短了压缩机的使用寿命。
二、原空压机系统工况的问题分析1、主电机虽然以星-角降压起动,但起动时的电流仍然很大,会影响低压电网的稳定及其对本身电气设备的大电流冲击。
2、主电机时常空载运行,属非经济运行,电能浪费严重。
3、主电机工频运行致使空压机运行时噪音增大。
4、主电机工频起动设备的冲击大,电机轴承的磨损大,所以对设备的维护量大。
三、空压机节能改造的必要性鉴于以上对空压机的原理说明以及目前的工况分析,认为对空压机的节能降噪改造是必要的,这样不仅能够节约大量的运行费用,降低生产成本,同时还可以降低空压机运行时产生的噪音,减少设备维护费用。
四、节能改造要求根据原工况存在的问题并结合我厂实际,空压机变频改造后系统应满足以下要求:1、电机变频运行状态保持储气罐出口压力稳定,压力波动范围不能超过±0.02Mpa2、系统应具有变频和工频两套控制回路,并且可以单独运行。
广东某公司第一事业部空压机变频节能改造方案
一、概述
空压机在工业生产中有着广泛地应用。
在各种行业中,它担负着为工厂所有气动元件,包括各种气动阀门,提供气源的职责。
因此它运行的好坏直接影响工厂生产工艺。
空压机的种类有很多,但其供气控制方式几乎都是采用加、卸载控制方式。
该供气方式虽然原理简单、操作方便,但存在耗电量高、进气阀易损坏、供气压力不稳定等问题。
随着我国经济的飞快发展,国家越来越关注高效低耗的技术,而这种技术已受到人们的关注。
在空压机供气领域能否应用变频调速技术,节省电能的同时也能改善空压机性能、提高供气品质就成为我们关心的一个话题。
二、传统空压机供气系统电能浪费分析
1.传统空压机供气系统电能浪费主要有如下几个方面:
传统空压机供气系统的工作状态主要有两种:一种是加载状态,另一种是空载状态。
(1) 加载时的电能消耗
加载状态是,在压力达到最小值后,原控制方式决定其压力会继续上升直到最大压力值。
在加压过程中,一定要向外界释放更多的热量,从而导致电能损失。
另一方面,高于压力最大值的气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样是一个耗能过程。
(2) 卸载时电能的消耗
空载状态时,当压力达到压力最大值时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。
这种调节方法要造成很大的能量浪费。
据我们测算,空压机卸载时的能耗约占空压机满载运行时的10%~25%,这还是在卸载时间所占比例不大的情况下。
换而言之,该空压机20%左右的时间处于空载状态,在作无用功。
很明显在加卸载供气控制方式下,空压机电机存在很大的节能空间。
传统空压机供气系统的压力控制是上下限控制,首先根据生产设备的最低压力要求,设定空压机输出压力的下限,也就是空压机开始加载的压力;再在最低压力上加1帕左右,作为空压机输出压力的上限,即开始卸载的压力。
空压机的
输出工作压力将在上下限之间波动。
空压机的功率消耗和输出压力成正比。
输出的压力越高消耗的功率也越大,从输出压力的下限到上限的1帕的压差将多消耗总功率的7-10%。
在传统供气空压机系统中,如果有多台空压机同时运行,每台空压机的输出压力都将随着管网的压力波动而在上下限之间波动,所以每台机都多消耗7-10%的额定功率。
传统空压机供气系统中运行参数的设定不同也会造成空压机用电量的不同,必须根据用气工况进行设定,才能达到最经济的运行效果。
传统空压机供气系统由于电机不允许频繁启动,导致在用气量少的时候电机仍然要空载运行,浪费电能。
经常卸载和加载导致整个气网压力经常变化,不能保持恒定的工作压力。
三、空压机工作原理
螺杆压缩机的工作原理可分为进气,压缩和排气三个过程。
随着转子旋转,每对相互啮合的齿相继完成相同的工作循环。
(1).进气过程:转子转动时,阴阳转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子齿沟空间与进气口的相通,因在排气时齿沟的气体被完全排出,排气完成时,齿沟处于真空状态,当转至进气口时,外界气体即被吸入,沿轴向进入阴阳转子的齿沟内。
当气体充满了整个齿沟时,转子进气侧端面转离机壳进气口,在齿沟的气体即被封闭。
(2).压缩过程:阴阳转子在吸气结束时,其阴阳转子齿尖会与机壳封闭,此时气体在齿沟内不再外流。
其啮合面逐渐向排气端移动。
啮合面与排气口之间的齿沟空间渐渐件小,齿沟内的气体被压缩压力提高。
(3).排气过程:当转子的啮合端面转到与机壳排气口相通时,被压缩的气体开始排出,直至齿尖与齿沟的啮合面移至排气端面,此时阴阳转子的啮合面与机壳排气口的齿沟空间为0,即完成排气过程,在此同时转子的啮合面与机壳进气口之间的齿沟长度又达到最长,进气过程又再进行。
从上述工作原理可以看出,螺杆压缩机是一种工作容积作回转运动的容积式气体压缩机械。
气体的压缩依靠容积的变化来实现,而容积的变化又是借助压缩机的一对转子在机壳内作回转运动来达到。
四、变频改造方案
1.原供气系统介绍
贵单位此次改造的供气系统有一台385KW空压机供一个气罐和3台150KW 空压机共供一个气罐,共两个系统。
存在问题是由于工作空压机是用工频供电运行,始终处于满负荷运行,且三台共供的系统空压机工作台数由人工操作,大部分存在气压偏高现象,加减载非常频繁,这样一方面电能浪费比较严重,另一方面频繁的加减载对压缩机和电机的使用寿命及故障率影响比较大。
2.变频恒压供气改造方案
针对贵厂空压机系统供气控制方式存在的问题,我们对三台150KW空压机采用变频调速技术进行恒压供气控制,使用二台160KW变频控制系统对该供气系统进行节能改造,对单台385KW的空压机使用一台400KW的变频控制系统对该供气系统进行节能改造,单台变频控制系统图如下:
根据厂家的使用要求设计了一套较实用的方案,单台385KW空压机采用一台400KW变频器加工变频切换,这样可以确保即使在变频器有故障的时候空压机也可以正常工作。
另三台150KW空压机采用二台160KW变频器加工变频切换,在用气量不是很多的情况下可以只开两台加装变频器的空压机,既考虑了可靠性,也考虑了经济性。
我们把空压机供气系统的管网压力作为控制对象,用压力变送器SP采集储气罐的压力P转变为电信号送给变频器内置PID,与PID的压力设定值SV作比较,并根据差值的大小按既定的PID控制模式进行运算,产生控制信号来控制变频器,通过变频器来控制电机的工作频率与转速,从而使实际压力P始终接近设定压力值SV。
通过变频器、压力传感器与内置PID构成供气闭环自动控制系统,自动调节空压机的输出压力。
使每台空压机的利用率均等,增加系统、管道压力的稳定性和可靠性,方便技术员控制和维护设备。
该供气控制系统保留原有的控制和保护系统,另外,采用该方案后,空压机电机从静止到旋转工作可由变频器来启动,实现了软启动,避免了启动冲击电流和启动给空压机带来的机械冲击。
五、系统节能改造后的节能效果
1. 空压机属于恒转矩负载,即转矩在不同速度下相同的,但所需功率也和速度成正比关系,所以当转速降低时所需功率也随之下降,从而达到节能的目的。
2. 变频空压机的压力设定可以是一点,即可以将满足生产设备要求的最低压力作为设定压力,变频空压机将根据管网压力上下波动的趋势,调节空压机转速的快慢,甚至消除了空压机的卸载运行,节约了电能。
3. 由于变频空压机使得管网上下压力稳定,可以降低甚至消除压力的波动,从而使系统中所有运行的空压机都在一个满足生产要求的较低的压力下运行,减少了压力向上波动造成的功率损失。
4. 由于压缩机不能排除在满负载状态下长时间运行的可能性,所以,只能按最大需求来决定电动机的容量,故设计容量一般偏大。
在实际运行中,轻载运行的时间所占的比例是非常高的。
如采用变频调速,可大大提高运行时的工作效率。
因此,节能潜力很大。
5. 有些调节方式(如调节阀门开度和改变叶片的角度等),即使在需求量较小的情况下,也不能减小电动机的运行功率。
采用了变频调速后,当需求量较小的情况下,可降低电动机的转速,减小电动机的运行功率,从而进一步实现节能。
6. 单电动机拖动系统大多不能根据负载的轻重连续地调节。
而采用了变频调速后,则可以十分方便地进行连续调节,能保持压力、流量、温度等参数的稳定,从而大大提高压缩机的工作性能。
7.该系统采用变频器调速整置实现恒压供气,使用方便,工作可靠,系统压力恒定,具有较好的控制效果。
最主要的是实现了高效节能。
根据贵厂空压机工况,节能效果估计可达20%左右,同时由于采用变频器对电机实行软起动,减少了设备损耗,延长了空压机的使用寿命。
六、系统的节电计算
采用该系统改造后,压缩机组的供气量与系统所需量动态匹配,压缩机电机转速会随着系统用气量的不同而进行调节,避免了电机空转以及频繁的加卸载所带来的能量损耗,电机的输入功率大大降低,节电效果显著。
对于对空气机来说,供气量Q与转速N成正比,气压F与转速N的二次方成正比,而轴功率与转速N
一般来说,对于连续用气的空压机系统,随用气量的变化,电动机运行频率在25-50HZ之间动态调节,系统的节电率可达20%左右。
按385KW空压机计算,每天开机12小时,每周6天,一年以50周计算,可省电量:
385*12*6*50*20%=277200KW/h
七、变频器的主要参数设置
八、注意事项
1.各品牌的空压机润滑及冷却方式的不尽相同,故空压机工作的下限频率应根据实际情况进行设定。
2.由于空压机连续工作时本身会散发大量的热量,因此应注意变频器箱体的温度不要超限,确保变频器工作场所的通风。
3.当储气罐内气压较高时,启动变频器时会引起堵转过流,因此不要在储气罐内压力较高时启动变频器,应卸放储气罐内的空气后启动。
也可在空压机出气口加装单向阀。
深圳市阿尔法变频技术有限公司 2010-5-14。