多孔陶瓷的烧结工艺
- 格式:doc
- 大小:11.90 KB
- 文档页数:1
多孔陶瓷材料一.概述多孔陶瓷是一类经高温烧结,内部具有大量彼此连通孔或闭孔的新型陶瓷材料。
随着制备方法的逐渐成熟和控制孔隙方法的不断改进,多孔陶瓷独特的性质越来越受到人们的重视,并已经在不同领域得到应用:冶金方面作为过滤器可除去液态金属中的杂质;石化应用方面,因其优良的化学稳定性可作为催化剂载体;汽车行业用来吸收发动机排放的有害气体;医学领域,可作为骨移植材料等。
多孔陶瓷还可以作为吸音材料、隔热材料、敏感元件等。
对于多孔陶瓷的研究,国内外学者已经进行了大量的工作,包括多孔陶瓷材料的概念研究、制备、基本性能与表征、应用领域等各个方面。
二.制备原理多孔陶瓷是一种新型陶瓷材料,也称之为气孔功能陶瓷,它是一种利用物理表面的新型材料。
多孔材料具有如下特点:巨大的气孔率,气孔表面积;可调节的气孔形状,孔径及其分布;气孔在三维空间的分布,连接可调;具有一般陶瓷基体性能的同时,具有与其巨大的比表面积相匹配的优良热,电,磁,光,化学等功能。
目前新兴多孔陶瓷,如多孔陶瓷载体,多孔吸声材料,多孔过滤渗透材料,多孔陶瓷敏感元件,生物医学多孔材料,多孔性光学材料,蓄热储能多孔性陶瓷材料,蜂窝式红外多孔陶瓷板等,不断涌现,使其应用范围更为广泛。
1.多孔材料的种类多孔陶瓷的种类很多,按所用的骨料可分为刚玉质材料,碳化硅质材料,铝酸硅盐材料,石英质材料,玻璃质材料及其他。
按孔径分为粗孔制品(0.1mm 以上),介孔材料(50nm~20um),微孔材料(50nm以下)。
2.多孔陶瓷的制备陶瓷中的孔包括封闭气孔(与外部不相连通的气孔)和开口气孔(与外部相连通的气孔)。
多孔陶瓷中孔的形成方法包括添加成孔剂工艺,有机泡沫浸渍工艺,发泡工艺,溶胶—凝胶工艺,利用纤维制得多孔结构,腐蚀法产生微孔,中孔,利用分子键构成气孔等,以上不同方法的组合还能赋予多孔陶瓷材料其他性能,尤其是骨架性能。
3.多孔陶瓷的配方设计(1)骨料:为多孔陶瓷的重要原料,在整个配方中占70%~80%的比重,在胚体中起到骨架的作用,一般选择强度高,弹性模量大的材料。
多孔陶瓷制备工艺1. 多孔陶瓷概述多孔陶瓷又被称为微孔陶瓷、泡沫陶瓷,是一种新型陶瓷材料,是由骨料、粘结剂和增孔剂等组分经过高温烧成的,具有三维立体网络骨架结构的陶瓷体。
多孔陶瓷是近30年来受到广泛关注的一种新型陶瓷材料,因其基体孔隙结构可实现多种功能特性,所以又称为气孔功能材料。
多孔陶瓷不仅具有良好的化学稳定性及热稳定性.而且还具有优异的透过性、高比表面积、极低的电导率及热导率等性能。
可用作过滤材料、催化剂载体、保温隔热材料、生物功能材料等,目前已经广泛应用于化工、能源、冶金、生物医药、环境保护、航空航天等诸多领域。
多孔陶瓷一般可按孔径大小分为3类:微孔陶瓷(孔径小于2nm)、介孔陶瓷(孔径为2~50nm)及宏孔陶瓷(孔径大于50nm)。
若按孔形结构及制备方法,其又可分为蜂窝陶瓷和泡沫陶瓷两类,后者有闭孔型、开孔型及半开孔型3种基本类型。
根据陶瓷基体材料种类,将其分为氧化铝基、氧化锆基、碳化硅基及二氧化硅基等。
需要指出的是,多孔陶瓷种类繁多,可以基于不同角度进行分类。
2. 多孔陶瓷的制备方法多孔陶瓷是由美国于1978年首先研制成功的。
他们利用氧化铝、高岭土等陶瓷材料制成多孔陶瓷用于铝合金铸造中的过滤,可以显著提高铸件质量,降低废品率,并在1980年4月美国铸造年会上发表了他们的研究成果。
此后,英、俄、德、日等国竞相开展了对多孔陶瓷的研究,已研制出多种材质、适合不同用途的多孔陶瓷,技术装备和生产工艺日益先进,产品已系列化和标准化,形成为一个新兴产业。
我国从20世纪80年代初开始研制多孔陶瓷。
多孔陶瓷首要特征是其多孔特性,制备的关键和难点是形成多孔结构。
根据使用目的和对材料性能的要求不同,近年逐渐开发出许多不同的制备技术。
其中应用比较成功,研究比较活跃的有:添加造孔剂工艺,颗粒堆积成型工艺,发泡工艺,有机泡沫浸渍工艺等传统制备工艺及孔梯度制备方法、离子交换法等新制备工艺。
2.1 多孔陶瓷的传统制备工艺2.1.1 添加造孔剂工艺该工艺通过在陶瓷配料中添加造孔剂,利用造孔剂在坯体中占据一定的空间,然后经过烧结,造孔剂离开基体而成气孔来制备多孔陶瓷。
多孔氧化物陶瓷的可控烧结制备及性能研究一、本文概述随着材料科学的快速发展,多孔氧化物陶瓷因其独特的孔结构和优异的物理化学性能,在众多领域如催化剂载体、能源存储与转换、环境保护等方面展现出广阔的应用前景。
然而,多孔氧化物陶瓷的制备过程复杂,其孔结构、孔径分布和性能受多种因素影响,如原料性质、烧结工艺等。
因此,研究多孔氧化物陶瓷的可控烧结制备技术,探索其性能调控机制,对于推动多孔氧化物陶瓷的实际应用具有重要意义。
本文旨在探讨多孔氧化物陶瓷的可控烧结制备技术,并分析其性能与微观结构之间的关系。
我们将概述多孔氧化物陶瓷的基本性质和应用领域,然后详细介绍可控烧结制备的原理和方法,包括原料选择、配方设计、成型工艺和烧结过程控制等。
接着,我们将通过实验手段研究不同制备条件下多孔氧化物陶瓷的孔结构、微观形貌和性能变化,揭示其性能调控机制。
我们将总结多孔氧化物陶瓷的可控烧结制备技术及其对性能的影响,并展望未来的研究方向和应用前景。
本文的研究结果将为多孔氧化物陶瓷的可控制备提供理论依据和技术指导,有助于推动多孔氧化物陶瓷在各个领域的应用发展。
二、多孔氧化物陶瓷的制备技术多孔氧化物陶瓷的制备技术主要包括模板法、溶胶-凝胶法、泡沫法、添加造孔剂法等。
这些方法各有其特点,可根据所需的孔结构、孔径大小以及孔隙率等特性进行选择。
模板法是一种通过利用具有特定孔结构的物质作为模板,再填充陶瓷前驱体,经过煅烧后去除模板,从而得到具有特定孔结构的多孔氧化物陶瓷的方法。
模板法可以制备出具有高度有序孔结构的多孔陶瓷,但其制备过程相对复杂,成本较高。
溶胶-凝胶法则是通过将金属醇盐或无机盐等原料在溶液中进行水解、缩聚反应,形成溶胶,再经过老化、凝胶化、干燥和烧结等过程,得到多孔氧化物陶瓷。
溶胶-凝胶法可以制备出孔径小、孔径分布均匀的多孔陶瓷,但制备过程中需要控制的因素较多,如溶液浓度、pH值、温度等。
泡沫法是一种利用气体发泡原理制备多孔陶瓷的方法。
多孔陶瓷骨修复材料的制备和骨组织工程中的应用随着人口老龄化的加剧和骨损伤等骨相关疾病的增加,对于骨修复材料的需求越来越高。
多孔陶瓷骨修复材料在骨组织工程中具有很大的潜力,逐渐成为骨修复领域的热点研究方向。
本文将介绍多孔陶瓷骨修复材料的制备方法以及在骨组织工程中的应用前景。
多孔陶瓷骨修复材料的制备主要包括原料选择、制备工艺、孔隙结构的控制等环节。
原料选择是多孔陶瓷骨修复材料制备的首要步骤。
通常选择的材料包括氧化锆(ZrO2)、羟基磷灰石(HA)、β-三磷酸钙(β-TCP)等。
这些材料具有良好的生物相容性和生物活性,能够促进骨组织再生。
制备工艺主要有烧结法、凝胶注模法、切割法等。
其中,烧结法制备的多孔陶瓷骨修复材料具有较高的力学性能和生物相容性,但孔隙结构不易调控;凝胶注模法制备的多孔陶瓷骨修复材料孔隙结构可控制性强,但力学性能相对较差。
因此,制备过程中需要根据具体需求选择合适的制备工艺,并通过后续的表面处理、改性等方法进一步优化材料性能。
多孔陶瓷骨修复材料在骨组织工程中具有广阔的应用前景。
首先,在骨缺损修复方面,多孔陶瓷骨修复材料能够提供良好的骨结合性和骨再生能力,促进骨组织的生长。
其孔隙结构可以提供生长因子的载体,有利于生长因子的控制释放,进而促进骨细胞的增殖和分化。
其次,多孔陶瓷骨修复材料还可以用于人工关节的替代。
通过与骨组织的无缝连接,可以实现生物力学功能的恢复。
此外,在口腔修复和植入材料领域,多孔陶瓷骨修复材料也得到了广泛应用。
其生物相容性和生物活性能够减少植入材料与机体之间的反应和排斥,提高植入材料的稳定性和生物学效应。
然而,多孔陶瓷骨修复材料仍然存在一些挑战和问题。
首先,材料的力学性能和孔隙结构之间存在矛盾。
孔隙结构越大,更有利于细胞的生长和骨成生,但相应地,材料的力学性能会降低。
因此,如何在兼顾力学性能的同时保持良好的孔隙结构成为需要解决的难题。
其次,多孔陶瓷骨修复材料的生物降解性也需要进一步研究。
多孔陶瓷的烧结工艺
多孔陶瓷的烧结工艺是将陶瓷粉末通过烧结工艺形成多孔结构的过程。
该工艺包括原料的选择、粉末的混合、成型、干燥和烧结等步骤。
其中,原料的选择和粉末的混合直接影响到烧结后多孔陶瓷的物理和化学性能。
成型可以通过压制、注塑、挤压等方法实现。
干燥的目的是去除水分,使陶瓷粉末紧密结合。
最后,将成型坯体置于高温下进行烧结,使粉末颗粒间的结合更加牢固。
多孔陶瓷的烧结工艺在制备陶瓷过滤器、陶瓷膜等领域具有广泛应用。
- 1 -。