数学北师版八年级上第一章1 探索勾股定理
- 格式:doc
- 大小:8.21 MB
- 文档页数:6
第一章勾股定理1探索勾股定理第2课时勾股定理的证明及应用教学目标教学反思1.经历运用拼图的方法说明勾股定理是正确的过程,在教学活动中发展学生的探究意识和合作交流的习惯.2.通过对勾股定理的探索,在探索实践中理解并掌握勾股定理并且会运用勾股定理.教学重难点重点:会验证勾股定理,并能应用勾股定理解决一些实际问题.难点:经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.教学过程导入新课教师提出问题:1.勾股定理的内容是什么?(指名学生回答)2.上节课我们仅仅是通过测量和数格子,对具体的直角三角形进行探索发现了勾股定理,对一般的直角三角形勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?教师:事实上,现在已经有数百种勾股定理的验证方法,这节课我们就来验证一下勾股定理.设计意图:回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度,介绍世界上一些验证方法,激发学生的学习兴趣.探究新知一、预习新知让学生自主预习课本第5页.提出问题:如下图,分别以直角三角形的三条边为边向外作正方形,你能利用这幅图说明勾股定理的正确性吗?验证,并让学生发表自己的见解,再小组讨论勾股定理是否正确.设计意图:通过让学生自己动手作图、验证不仅能锻炼学生的动手能力,还能加深对勾股定理的理解.二、合作探究验证勾股定理为了计算上图中大正方形的面积,小明对这个大正方形进行了适当割补后得到了下面两个图.问题1:你可以利用两种方法来表示图1中的大正方形的面积吗? 学生先独立思考,再小组交流得到答案(a +b )2和2ab +c 2. 问题2:你可以得到怎样的等式?从而能得到什么? 学生:(a +b )2 = 2ab +c 2,化简后得到a 2+b 2 = c 2. 从而利用图1验证了勾股定理,此方法称为毕达哥拉斯法.教师:我们利用拼图的方法,将形的问题与数的问题结合起来,利用整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?问题3:图2中小正方形的边长是多少?问题4:你可以利用两种方法来表示图2中的大正方形的面积吗? 问题5:你可以得到怎样的等式?从而能得到什么? 提出几个问题让学生根据问题独立探究,再小组交流,最后请一位同学上台讲解利用图2验证勾股定理.图2中小正方形边长是b -a ,(b -a)2和c 2-2ab 都可以表示图2中小正方形的面积,根据同一图形面积相等得到(b -a)2= c 2-2ab ,化简后得到a 2+b 2 = c 2.从而利用图2也验证了勾股定理,图2我们又称为赵爽弦图. 设计意图:教师层层设问引导学生来完成勾股定理的验证,通过两个图形让学生体会数形结合的思想并体会成功的快乐,学生先拼图从形上感知,再利用面积验证,比较容易掌握本节课的重点内容.前面已经讨论了直角三角形的三边长满足的关系,那么锐角三角形和钝角三角形是否也满足这一关系呢?观察下图,利用数格子的方法判断图中三角形的三边长是否满足a 2+b 2 2如果一个三角形不是直角三角形,那么它的三边长a ,b ,c 不满足a 2+b 2 = c 2,通过这个结论,学生将对直角三角形的三边关系有进一步认识.巩固练习证明:∵ S 梯形ABCD = S △ABE +S △BCE +S △EDA ,教学反思又∵ S 梯形ABCD =12(a +b )2,S △BCE = S △EDA = 12ab ,S △ABE = 12c 2,∴ 12(a +b )2 = 2×12ab +12c 2,∴ a 2+b 2= c 2,即勾股定理得证. 典型例题 【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a ,b ,斜边长为c ,再作三个边长分别为a ,b ,c 的正方形,将它们如下图所示拼成两个正方形.222.a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a +b , ∴ 它们的面积相等.左边大正方形面积可表示为a 2+b 2+12ab ×4, 右边大正方形面积可表示为c 2+12ab ×4. ∵ a 2+b 2+12ab ×4 = c 2+12ab ×4,∴ a 2+b 2 = c 2.【总结】根据拼图,通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.典型例题【例2】如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M ,O ,Q 三城市的沿江高速公路,已知沿江高速公路的建设成本为5 000万元/km ,该沿江高速公路的造价预计是多少?【问题探索】总造价计算公式是解决此题目的关键,总造价 = 每千米造价×千米数.【解】在Rt △OMN 中,根据勾股定理得 MN 2+ON 2 = OM 2, ∴ 302+402 = OM 2, ∴ OM = 50 km. 同理O Q = 130 km ,∴ 造价为(50+130)×5 000 = 900 000(万元). 答:造价预计是900 000万元. 【总结】解答本题的关键是先利用勾股定理求出高速公路的长度,再求总造价.教学反思课堂练习1.若等腰三角形的腰长为13 cm,底边长为10 cm,则它的面积为()A.30 cm2B.130 cm2C.120 cm2D.60 cm22.放学以后,小丽和小红从学校出发,分别沿东南方向和西南方向回家.若小丽和小红行走的速度都是40 m/min,小丽走了15 min回到家,小红走了20 min回到家,则小丽家和小红家间的距离为()A.600 m B.800 mC.1 000 m D.不确定3.直角三角形两直角边长分别为8 cm,15cm,则斜边上的高为______.4.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现在需要在相对的顶点间用一块木板加固,则这块木板的长为______.5.如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1 = 2 km,BB1 = 4 km,A1B1 = 8 km.现要在高速公路上A1,B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离之和.参考答案1.D2.C3.12017cm 4.2.5 m5.解:如图作点B关于MN的对称点B′,连接AB′交A1B1于点P,连接BP.则AP+BP = AP+PB′ = AB′,易知点P即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE = A1B1 = 8 km,B′E = AA1+BB1 = 2+4 = 6( km).由勾股定理,得B′A2 = AE 2+B′E 2 = 82+62,∴AB′ = 10 km,即AP+BP = AB′ = 10 km.故出口P到A,B两村庄的最短距离之和是10 km.课堂小结(学生总结,老师点评)勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方.验证方法:两种证法.布置作业1.(必做题)习题1.2第1,3题2.(选做题)第4题板书设计1 探索勾股定理教学反思第2课时勾股定理的证明及应用1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.两种证明方法.。
勾股定理第一节 探索勾股定理●应知 基础知识1、勾股定理(1)勾股定理的内容:在直角三角形中,两直角边的 等于 的平方.(2)勾股定理的表示方法:如果直角三角形的两直角边分别为,a b ,斜边为c ,那么有 。
2、理解(1)勾股定理存在和运用的前提条件是在直角三角形中,如果不是直角三角形,那么三边之间不存在这种关系。
(2)勾股定理把“图形”与“数量”有机地结合起来,即把直角三角形的“形”与三边关系的“数”结合起来,是数形结合思想的典型代表之一。
(3)利用勾股定理,可以在直角三角形中已知两边长的情况下,求出未知的第三边长。
一般情况下,用,a b 表示直角边,c 表示斜边,则有:222222222a b c b c a a c b +==-=- 在运用勾股定理求第三边时,首先应确定是求直角边还是求斜边,在选择利用勾股定理的原形公式还是变形公式。
【例1】在ABC ∆中,90C ︒∠=, (1)若3,4,a b ==则c = ; (2)若6,10a c ==,则b = ;(3)若:3:4,15a b c ==,则a = ,b = 。
【例2】已知直角三角形的两边长分别是3和4,如果这个三角形是直角三角形,求以第三边为边长的正方形的面积。
3、勾股定理的验证至少掌握勾股定理的三种验证方法,并从中体会到这种验证方法所体现的数学思想。
【例3】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾 股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所 示).如果大正方形的面积是13,小正方形的面积是1,直角三角形较短直角边为a ,较长 直角边为b ,那么2()a b 的值为( ).A .13B .19C .25D .169 ●应会 基本方法1、如何利用勾股定理求长度利用勾股定理求长度,关键是找出直角三角形或构造直角三角形,把实际问题转化为直 角三角形问题。
在已知两边求第三边时,关键是弄清已知什么边,要求什么边,用平方和还 是平方差。
1 探索勾股定理1.勾股定理的探索如图,在单位长度为1的方格纸中画一等腰直角三角形,然后向外作三个外正方形:观察图形可知:(1)各正方形的面积:正方形①的面积S1为1,正方形②的面积S2为1,正方形③的面积S3为2;(2)各正方形面积之间的关系:S1+S2=S3;(3)由此得到等腰直角三角形两直角边与斜边之间的关系是:两直角边的平方和等于斜边的平方.【例1】如图,Rt△ABC在单位长度为1的正方形网格中,它的外围是以它的三条边为边长的正方形.回答下列问题:(1)a2=__________,b2=__________,c2=__________;(2)a,b,c之间有什么关系?(用关系式表示)分析:a2等于以BC为边长的正方形的面积16,b2等于以AC为边长的正方形的面积9,c2等于以AB为边长的正方形的面积25.解:(1)16925(2)a2+b2=c2.释疑点网格中求正方形的面积求以AB为边长的正方形的面积时,可把它放到以正方形格点为顶点的正方形CDEF(如图)中去,它的面积等于正方形CDEF的面积减去它外围的4个小直角三角形的面积.2.勾股定理(1)勾股定理的有关概念:如图所示,我们用勾(a)和股(b)分别表示直角三角形的两条直角边,用弦(c)来表示斜边.(2)勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方.即:勾2+股2=弦2.(3)勾股定理的表示方法:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,则a2+b2=c2.辨误区应用勾股定理的几个误区(1)勾股定理的前提是直角三角形,对于非直角三角形的三边之间则不存在此种关系.(2)利用勾股定理时,必须分清谁是直角边,谁是斜边.尤其在记忆a2+b2=c2时,此关系式只有当c是斜边时才成立.若b是斜边,则关系式是a2+c2=b2;若a是斜边,则关系式是b2+c2=a2.(3)勾股定理有许多变形,如c是斜边时,由a2+b2=c2,得a2=c2-b2,b2=c2-a2等.熟练掌握这些变形对我们解决问题有很大的帮助.【例2-1】在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若a∶b=3∶4,c=5,则a=__________,b=__________.解析:因为在△ABC中,∠C=90°,所以有关系式a2+b2=c2.在此关系式中,涉及到三个量,利用方程的思想,可“知二求一”.(1)c2=a2+b2=32+42=52,则c=5;(2)b2=c2-a2=102-62=82,则b=8;(3)若a∶b=3∶4,可设a=3x,b=4x,于是(3x)2+(4x)2=52.化简,得9x2+16x2=25,即25x2=25,x2=1,x=1(x>0).因此a=3x=3,b=4x=4.答案:(1)5(2)8(3)3 4谈重点用勾股定理求边长这是一组关于勾股定理应用的计算题,由勾股定理可知,在直角三角形中只要已知两边长,就可以求出直角三角形第三边的长.【例2-2】有一飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4 000 m 处,过了20 s,飞机距离这个男孩头顶5 000 m,那么飞机每时飞行多少千米?分析:根据题意,可以先画出图形.如图,在△ABC中,∠C=90°,AC=4 000 m,AB=5 000 m.欲求飞机每时飞行多少千米,就须知道其20 s时间里飞行的路程,即图中CB的长.由于△ABC的斜边AB=5 000 m,AC=4 000 m,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:如图,AB=5 000 m=5 km,AC=4 000 m=4 km,故由勾股定理得BC 2=AB 2-AC 2=52-42=9, 即BC =3 km.因为飞机20 s 飞行3 km ,所以它每小时飞行的距离为3 60020×3=540(km). 3.勾股定理的验证方法1:用四个相同的直角三角形(直角边为a ,b ,斜边为c )构成如图所示的正方形.由“大正方形的面积=小正方形的面积+4个直角三角形的面积”,得(a +b )2=c 2+4×12ab .化简可得:a 2+b 2=c 2.方法2:用四个相同的直角三角形(直角边为a ,b ,斜边为c )构成如图所示的正方形.由“大正方形的面积=小正方形的面积+4个直角三角形的面积”,得c 2=(b -a )2+4×12ab .化简可得:a 2+b 2=c 2.方法3:用两个完全相同的直角三角形(直角边为a ,b ,斜边为c )构成如图所示的梯形. 由“梯形面积等于三个直角三角形面积之和”可得: 12(a +b )(a +b )=2×12ab +12c 2. 化简可得:a 2+b 2=c 2.说明:勾股定理的验证还有很多方法.我明白了!在一些几何问题中,利用图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变.对啊! 利用拼图来验证勾股定理,就是根据同一种图形(或两个全等的图形)面积的不同表示方法列出等式,从而推导出勾股定理.【例3】 在北京召开的第24届国际数学家大会的会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a +b )2的值为( ).A .169B .144C .100D .25解析:根据图形面积的和差关系,4个直角三角形的面积=大正方形面积-小正方形面积=13-1=12,可知4×12ab =12,即2ab =12,由勾股定理得a 2+b 2=13,所以(a +b )2=a 2+b 2+2ab =13+12=25. 答案:D4.利用勾股定理求长度 利用勾股定理求长度,关键是找出直角三角形或构造直角三角形,把实际问题转化为直角三角形的问题.常见的方法有:(1)利用高(作垂线)构造直角三角形; (2)利用已知直角构造直角三角形; (3)利用勾股定理构造直角三角形.已知直角三角形的两边,求第三边,关键是弄清已知什么边,求什么边,用平方和还是用平方差.【例4】 如图①,校园内有两棵树,相距12 m ,一棵树高13 m ,另一棵树高8 m ,一只小鸟从一棵树的顶端飞到另一棵树的顶端,至少要飞多少米?图①分析:分别用AB ,CD 表示两棵树,如图②,得到梯形ABCD ,过D 作AB 的垂线,垂足为E ,可构造出Rt △AED ,利用勾股定理解决.解:如图②,作DE ⊥AB 于点E ,图②∵AB =13 m ,CD =8 m , ∴AE =5 m.由BC =12 m ,得DE =12 m.∵在Rt △ADE 中,AD 2=AE 2+DE 2, ∴AD =13 m.∴小鸟从一棵树的顶端飞到另一棵树的顶端,至少要飞13 m . 5.利用勾股定理求面积(1)利用勾股定理求面积,关键是注意转化思想的应用.把所求的面积转化到已知的数量关系中去.如求图中阴影部分的面积,可转化为中间正方形的面积,而中间正方形的面积等于右侧直角三角形短直角边的平方,借助于右侧的直角三角形,利用勾股定理解答即可.(2)利用勾股定理求面积,还要注意整体思想的应用.【例5】如图,小李准备建一个蔬菜大棚,棚宽4 m,高3 m,长20 m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.分析:要求阳光透过的最大面积即塑料薄膜的面积,需要求出它的另一边AB的长是多少,可以借助勾股定理求出.解:在Rt△ABC中,由勾股定理,得AB2=AC2+BC2=32+42=52,即AB=5(m).故矩形塑料薄膜的面积是5×20=100(m2).点评:勾股定理是以直角三角形存在(或添加辅助线可以构造的)为基础的;表示直角三角形边长的a,b,c并非是一成不变的,c并不一定就是斜边的长.6.勾股定理与方程相结合的应用(1)在进行直角三角形的有关计算时,一般要运用勾股定理,在运用过程中,有时直接运用,有时是通过勾股定理来列方程求解.具体问题如下:①已知直角三角形的两边,求第三边的长;②说明线段的平方关系;③判断三角形的形状或求角的大小;④解决实际问题.(2)利用勾股定理解决生活中的实际问题时,关键是利用转化的思想把实际问题转化为数学模型(直角三角形),利用列方程或方程组来解决.(3)勾股定理与代数中的平方差公式相结合,解决此类问题可以先根据勾股定理列出关于两直角边的数量关系式,再通过恒等变形巧妙求解.【例6】如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5 m,顶端A 在AC上运动,量得滑杆下端B距C点的距离为1.5 m,当端点B向右移动0.5 m时,求滑杆顶端A下滑了多少米?分析:注意滑杆AB在滑动过程中长度保持不变,同时注意∠ACB为直角这一条件.在Rt△ABC中,应用勾股定理求得AC;在Rt△ECD中,应用勾股定理求得EC,两者之差即为所求.解:设AE的长为x m,由题意,得CE=(AC-x) m.∵AB=DE=2.5 m,BC=1.5 m,∠C=90°,∴AC2=AB2-BC2=2.52-1.52=22.∴AC=2 m.∵BD=0.5 m,∴CD=CB+BD=1.5+0.5=2 m. 在Rt△ECD中,CE2=DE2-CD2=2.52-(1.5+0.5)2=1.52.∴2-x=1.5 m,x=0.5 m,即AE=0.5 m.∴滑杆顶端A下滑了0.5 m.。