解析:(1)根据几何体的三视图,得该几何体是后部为半径等于2的半球 体,前部为正方体,棱长为2;所以该几何体的表面积是S=4×22+2π·22+ 22π=16+12π.故选C. 答案:(1)C
(2)如图为某几何体的三视图,则该几何体的体积为
.
解析:(2)由三视图可知该几何体是一个组合体,上半部分是半径为 1 的球的
(D)3 倍
解析:设小球半径为 1,则大球的表面积 S 大=36π,S 小+S 中=20π, 36π = 9 . 20π 5
解得 R= 6 ;所以外接球的体积为 V = 外接球 4π ×( 6 )3=8 6 π.故选 B
答案:(1)B
3
(2)(2018·广东靖远县高一期末)在三棱锥 S-ABC 中,SA=BC= 41 ,SB=AC=5,
SC=AB= 34 ,则三棱锥 S-ABC 外接球的表面积为
.
解析:(2)将三棱锥补成一个长、宽、高分别为a,b,c的长方体,
以AB,BD和CD为棱,把三棱锥A-BCD补充为长方体, 则该长方体的外接球即为三棱锥的外接球,且长方体的对角线是外接球 的直径; 所以(2R)2=AB2+BD2+CD2=1+2+1=4,所以外接球O的表面积为4πR2=4π. 故选D. 答案:(1)D
(2)(2018·安徽六安高一期末)球内切于正方体的六个面,正方体的棱长为
(A) 9 π +12 2
(C)9π +42
(B) 9 π +18 2
(D)36π +18
解析:(1)由三视图可得这个几何体是由上面一个直径为 3 的球,下面一个底 面为正方形且边长为 3,高为 2 的长方体所构成的几何体,则其体积为: