2014年郑州市高中毕业年级第一次质量预测理科科数学试题及答案
- 格式:doc
- 大小:600.50 KB
- 文档页数:4
2014年河南省普通高中毕业班高考适应性测试理科数学一、选择题:本大题共12小题,每小题5分。
1.复数z =43a ii ++为纯虚数,则实数a 的值为A .34B .-34C .43D .-432.命题“x ∀∈R ,x e -x +1≥0”的否定是A .x ∀∈R ,lnx +x +1<0B .x ∃∈R ,x e -x +1≥0C .x ∀∈R ,x e -x +1>0D .x ∃∈R ,x e -x +1<0 3.如右图,是一程序框图,若输出结果为511,则其中的“?”框内应填入A .11k >B .10k >C .9k ≤D .10k ≤4.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A =“第一次取到的是奇数”,B =“第二次取到的是奇数”,则()P B A =A .15B .310C .25D .125.下列函数中,既是奇函数又在定义域内单调递减的函数为A .y =1xB .y =2x x e e --C .y =sinxD .y =lgx6.已知集合A ={}210A x x ax a =--->,且集合Z ∩C R A 中只含有一个元素,则实数a 的取值范围是A .(-3,-1)B .[-2,-1)C .(-3,-2]D .[-3,-1] 7.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且(2)cos cos 0a c B b C ++=.角B 的值为A .6πB .3πC .23πD .56π8.给出下列四个结论:①二项式621()x x-的展开式中,常数项是-15;②由直线x =12,x =2,曲线y =1x及x 轴所围成的图形的面积是2 ln2;③已知随机变量ξ服从正态分布N (1,2σ),(4)0.79P ξ≤=,则(2)0.21P ξ≤-=;④设回归直线方程为2 2.5y x =-,当变量x 增加一个单位时,y 平均增加2个单位. 其中正确结论的个数为A .1B .2C .3D .49.在△ABC 中,|AB |=3,|AC |=2,AD uuu r =12AB uu u r +34AC uuur ,则直线AD 通过△ABC 的A .垂心B .外心C .重心D .内心 10.已知一个几何体的三视图及有关数据如右图所示,则该几何体的体积为 A .B.3 CD.311.已知圆22213x y a +=与双曲线2221x a b2y -=(a >0,b >0)的右支交于A ,B 两点,且直线AB 过双曲线的右焦点,则双曲线的离心率为ABC .2D . 312.已知函数0,(),0.x x f x x x ≤⎧=⎨>⎩+2,ln 若函数2()()y f x k x e =-+的零点恰有四个,则实数k 的值为A .eB .1eC .2eD .21e二、填空题:本大题共4小题,每小题5分.13.实数x ,y 满足条件40,220,00,x y x x y ≤⎧⎪≥⎨⎪≥≥⎩+--y +,则x -y 的最小值为______________14.已知数列{n a }的通项公式为n a =32,n n n n ,⎧⎨⎩-11-为偶数,为奇数.则其前10项和为____________.15.在平面直角坐标系xOy 中,F 是抛物线C :2x =2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为.则抛物线C 的方程为___________16.已知四棱锥P -ABCD 的底面是边长为a的正方形,所有侧棱长相等且等于2a ,若其外接球的半径为R ,则aR等于____________ 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }满足a 1=5,1n a +=81234n n a a --,n N *∈, n b =12n a -. (Ⅰ)求证:数列{n b }为等差数列,并求其通项公式;(Ⅱ)已知以数列{n b }的公差为周期的函数()f x =Asin (ωx +ϕ)[A >0,ω>0,ϕ∈(0,π)]在区间[0,12]上单调递减,求ϕ的取值范围.18.(本小题满分12分)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,∠ABC =60°,M ,N 分别是BC 、PC 的中点.(Ⅰ)证明:AM ⊥PD ; (Ⅱ)若H 为PD 上的动点,MH 与平面PAD 所成最大角的正M -AN -C 的余弦值. 19.(本小题满分12分)居住在同一个小区的甲、乙、丙三位教师家离学校都较远,每天早上要开车去学校上班,已知从该小区到学校有两条路线,走线路①堵车的概率为14,不堵车的概率为34;走线路②堵车的概率为p ,不堵车的概率为1-p .若甲、乙两人走线路①,丙老师因其他原因走线路②,且三人上班是否堵车相互之间没有影响.(Ⅰ)若三人中恰有一人被堵的概率为716,求走线路②堵车的概率;(Ⅱ)在(Ⅰ)的条件下,求三人中被堵的人数ξ的分布列和数学期望.20.(本小题满分12分)过点C (02221x a b2y +=(a >b >0)的离心率为12,椭圆与x 轴交于(),0A a 和(),0B a -两点,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(Ⅰ)当直线l 过椭圆的右焦点时,求线段CD 的长;(Ⅱ)当点P 异于点B 时,求证:OP uu u r ·OQ uuu r为定值.21.(本小题满分12分)函数()f x 的定义域为D ,若存在闭区间[a ,b]⊆D ,使得函数()f x 满足:(1)()f x 在[a ,b]内是单调函数;(2)()f x 在[a ,b]上的值域为[ka ,kb],则称区间[a ,b]为()y f x =的“和谐k 区间”.(Ⅰ)若函数()x f x e =存在“和谐k 区间”,求正整数k 的最小值;(Ⅱ)若函数2()(2)ln 2(0)2m g x x m x x m =-++≥存在“和谐2区间”,求实数m 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做。
2014年河南省普通高中毕业班高考适应性理科数学试题参考答案及评分标准 一、选择题题号123456789101112答案DBDBACBDBCD二、填空题 (13) (14) (15) (16) 所以数列为首项为,公差为的等差数列, ……………………………………4分………………………………………………………………………………6分的周期,所以,……………………………………8分, ……………………………………………………10分所以…………………………………………………………………12分18. 解:(Ⅰ)证明:由四边形为菱形,, 可得为正三角形.因为M为的中点,所以.…………………………………………………1分 又∥,因此.因为平面,平面,所以. ………………3分 而, 所以平面.……………………………………4分 又平面,所以…………………5分 (Ⅱ)解法一:设,为上任意一点,连接、 由(Ⅰ)可知:平面. 则为与平面所成的角.…………………………………………6分 在中, , 所以当最短时,最大,…………………………………… 7分 即当时,最大,此时 因此.又,所以,于是.……………………………8分 , ,,,, . 则,,设的中点为,由(1)知就是面的法向量,.设平面的法向量为,二面角的. 由………………………10分 二面角的余弦值.………………………………………………………………12分 (Ⅱ)解设,为上任意一点,连接、 由(Ⅰ)可知: 平面.则为与平面所成的角.……………………………………………………………6分 在中,, 所以当最短时,最大,……………………………………………………………………7分 即当时,最大,此时. 因此.又,所以,于是.………………………………8分 因为平面,平面, 所以平面平面.……………………………………………………………………………9分 过作于,则由面面垂直的性质定理可知:平面,,过作于,连接,平面则为二面角的平面角.……………………………………………………………………………………………………10分 在中,, 又是的中点,在中, 又 …………………………………………………………………………11分 在中, 即二面角的余弦值为.…………………………………………………………………12分.…………………………………………3分,则 . 答:的值为, 即走线路②堵车的概率为.………………………………………………………5分 可能的取值为0,1,2,3 …………………………………………………………………………6分 , . , …………………………………8分 的分布列为: 0123 ……………………10分 . 答:三人中被堵的人数的数学期望为.……………………………………………………………12分,,得所以,椭圆.……………………3分椭圆的右焦点为,此时直线的方程为. 由 解得 所以.……………………………………………………6分()与轴垂直时与题意不符,所以直线与轴不垂直,即直线的斜率存在. 设直线的方程为…………………………………………………7分,解得 代入直线的方程,得 所以,的坐标为…………………………………………………………9分 的方程为,因, , 所以直线的方程为 联立解得即……………………………………………………10分 的坐标为 所以. 所以为定值4. …………………………………………………………………………………12分 为上的增函数,若在上的值域为,则必有所以为方程的两个不等根,……………………………………1分,则,由知, 由知,所以函数在区间单调递减,在区间上单调递增,所以,………………………………………………………………………3分在上有两个零点,所以. 所以,又为正整数,所以k的最小值为3. ……………………………………………5分的定义域为, , 由于,所以,由知函数在区间上单调递增; 由知函数在区间上单调递减. …………………………………………………7分存在“和谐2区间” ,若,则即 两式相加得, 由于及,易知上式不成立. …………………………………………………8分,由在区间上单调递增知,为方程的两个不等根, 令,则 若,则在单调递减,不可能有两个不同零点;……………………10分,知,在上单调递增;同样,由知,在上单调递减. 函数在上有两个不同零点,又,故有 ,解之得 综上,所求实数m的取值范围为…………………………………………………12分, ∵ ,,∴,∴是⊙的切线. ………………………………4分 是直径, ∴,中, , ∵是⊙的切线, ∴. 又 ∵ ∴∽, ∴==. 设,, 又, ∴=·. 解得:, ∵ , ∴ . ∴.…………………………………………………………6分 ()得, ∴曲线的直角坐标方程为.…………………………………………………………2分 的普通方程为.…………………………………………………………………………4分 ()的参数方程代入曲线的直角坐标方程中, 得, 设两点对应的参数分别为, 则有.………………………………………………………………6分 , ∴, 即.………………………………………………………………8分 . 解之得:或 (舍去),∴的值为.……………………………………………………10分 ()时,可化为, 或. 由此可得或. 故不等式的解集为.………………………………………………5分 () 由,得,此不等式化等价于或 解之得或 因为,所以不等式组的解集为,由题设可得,故.……………………10分 由,得,此不等式化等价于, 即为不等式组 解得 因为,所以不等式组的解集为,由题设可得,故.……………………10分 D C A B y x H z y x Q P O O A B D C E。
2014年普通高等学校招生全国统一考试模拟卷(一)理科数学一、选择题:(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数521i i z +=,则它的共轭复数z 等于( )A .2i -B .2i -+C .2i +D .2i --2.命题“2cos sin ,,2>-⎥⎦⎤⎢⎣⎡∈∃x x x ππ”的否定是( )A .2cos sin ,,2<-⎥⎦⎤⎢⎣⎡∈∀x x x ππB .2cos sin ,,2≤-⎥⎦⎤⎢⎣⎡∈∀x x x ππC .2cos sin ,,2≤-⎥⎦⎤⎢⎣⎡∈∃x x x ππD .2cos sin ,,2<-⎥⎦⎤⎢⎣⎡∈∃x x x ππ 3.已知,αβ是两个不同的平面,下列四个条件中能推出//αβ的是( )①存在一条直线,,a a a αβ⊥⊥; ③存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂;②存在一个平面,,γγαγβ⊥⊥; ④存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂。
A 。
①③ B.②④ C.①④ D 。
②③ 4.已知平面向量,m n的夹角为,6π且3,2m n ==,在ABC∆中,22AB m n =+,26AC m n =-,D 为BC 中点,则AD =( )A 。
2B 。
4C 。
6D 。
85.已知sin α+错误!cos α=错误!,则tan α=( )A .错误!B .错误!C .-错误!D .-错误!6.执行如图所示的程序框图后,输出的值为4,则P 的取值范围是 ( )A . 715816P <≤ B.1516P > C .715816P ≤< D.3748P <≤ 7.在该几何体的正视图中,这条棱的投的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为( ) A。
2014郑州一测文科数学解析 郑州二中 高中伟高三文科数学解析 第 页(共13页)1正视图侧视图俯视图郑州市2014年高中毕业年级第一次质量预测数学(文科)试题解析第I 卷一、选择题:本大题共12小题,每小题5分,共60分.每小题只有一个正确答案. 1.已知集合{|2}A x x =>,{|}B x x m =<且A B R = ,那么m 的值可以是A .0B .1C .2D .3【答案】D【解析】依题意易知2m >. 2.复数1iz i+=在复平面内对应的点在 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】11iz i i+==-,其在复平面内对应点(1,1)Z -. 3. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.右图是据某地某日早 7点至晚8点甲、乙两个 2.5PM 监测点统计的数据 (单位:毫克∕立方米)列出的茎叶图,则甲、乙 两地浓度的方差较小的是A .甲B .乙C .甲乙相等D .无法确定【答案】A【解析】由茎叶图可直观看出:甲地的数据分布比较对称和集中,而乙地的数据分布不对称且比较分散.所以甲地的数据稳定性好,即方差较小. 4.如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的体积为A .B .C .D .【答案】B甲 乙2 0.04 1 23 6 9 3 0.05 9 6 2 1 0.06 2 9 3 3 1 0.07 9 64 0.08 77 0.09 2 4 6。
一.基础题组1. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】已知曲线23ln 4x y x =-的一条切线的斜率为12-,则切点的横坐标为( ) A .3 B .2 C .1 D .122. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】定积分=-⎰-dx x x 2222( ) A.5B.6C.7D.83. 【山西省太原市太远五中2014届高三12月月考】已知函数xe xx f cos )(=,则函数)(x f 在点))0(,0(f 处切线方程为 . 【答案】10x y +-= 【解析】试题分析:∵'2sin cos ()()x xx xe xe f x e --=,∴1k =-,(0)1f =,∴1y x -=-,即10x y +-=. 考点:利用导数求曲线的切线.4. 【唐山市2013-2014学年度高三年级第一学期期末考试】已知0a >,函数32f(x)x ax bx c =+++在区间[2,2]-单调递减,则4a b +的最大值为 .5. 【河北省衡水中学2014届高三上学期四调考试】设()ln af x x x x=+, 32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线的方程;(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.6. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)某地区注重生态环境建设,每年用于改造生态环境总费用为x 亿元,其中用于风景区改造为y 亿元。
该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少a 亿元,至多b 亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若1=a ,4=b ,请你分析能否采用函数模型y =31(416)100x x ++作为生态环境改造投资方案.二.能力题组1. 【河北省唐山市一中2014届高三12月月考】已知函数()f x 对于一切实数x,y 均有()()()21f x y f y x x y +-=++成立,且()()110,0,21g 2a f x f x o x ⎛⎫=∈+ ⎪⎝⎭则当,不等式< 恒成立时,实数a 的取值范围是 .2. 【山西省太原市太远五中2014届高三12月月考】由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图中的阴影部分)的面积是 .【答案】2 【解析】3. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】(本小题满分12分) 已知函数ln(1)()2x x f x x -=-.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2()23g x x x =++,证明:对任意1(1,2)(2,)x ∈+∞ ,总存在2x R ∈,使得12()()f x g x >.试题解析:(1)''2212ln(1)1[ln(1)]ln(1)1()(2)(2)x x x x x x x f x x x --+------==-- .................1分设1()2ln(1)11h x x x x =--+---, 22'22(1)2(1)1(2)()0(1)(1)x x x h x x x ---+-==≥--∴()h x 在(1,)+∞是增函数,又(2)0h = ………………3分 ∴当(1,2)x ∈时, ()0h x < ,则'()0f x <,()f x 是单调递减函数; 当(2,)x ∈+∞时, ()0h x > ,则'()0f x >,()f x 是单调递增函数. 综上知:()f x 在(1,2)单调递减函数,()f x 在(2,)+∞单调递增函数 ……………………6分三.拔高题组1. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】0.50.521log log 1(1)(7)x mx x x +>---对任意x ∈[2,4]恒成立,则m 的取值范围为 .∴当4x =时,max 45y =,∴45m >.考点:1.对数函数的单调性;2.恒成立问题;3.利用导数求函数最值.2. 【唐山市2013-2014学年度高三年级第一学期期末考试】(本题满分12分)已知函数(x)1x x e f xe =+.(1)证明:0(x)1f <≤; (2)当0x >时,21(x)1f ax >+,求a 的取值范围.试题解析:(Ⅰ)设(x)xe 1x g =+,则'(x)(x 1)e xg =+.当(,1)x ∈-∞-时,'(x)0g <,(x)g 单调递减; 当(1,)x ∈-+∞时,'(x)0g >,(x)g 单调递增. 所以1(x)g(1)1e0g -≥-=->.又0xe >,故(x)0f >.…2分'2(1e )(x)(xe 1)x x x e f -=+ 当(,0)x ∈-∞时,'(x)0f >,(x)f 单调递增; 当(0,)x ∈+∞时,'(x)0f <,(x)f 单调递减. 所以(x)f(0)1f ≤=. 综上,有0(x)1f <≤.…5分3. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)已知)0()(>-=a e x x f ax.(1)曲线y=f (x )在x=0处的切线恰与直线012=+-y x 垂直,求a 的值;(2)若x ∈[a ,2a]求f (x )的最大值; (3)若f (x 1)=f (x 2)=0(x 1<x 2),求证:.【答案】(1)13a =;(2)当ln a a a >,即a e <时,max ()()f x f a a e ==-,当ln 2a a a a ≤≤,即2e a e ≤≤时,max ()(ln )ln f x f a a a a a ==-,当2ln a a a <,即2a e >时,2max ()(2)2f x f a a e ==-;(3)证明过程详见解析. 【解析】试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、最值、切线方程以及不等式的证明等基础知识,考查分类讨论思想,综合分析和解决问题的能力.第一问,对()f x 求导,将0x =代入得到切线的斜率,由已知切线与直线210x y -+=垂直得出方程,解出a 的值;第二问,先对()f x 求导,利用导数的正负判断出函数的单调区间,再讨论已知[,2]x a a ∈和单调区间的关系来决定最值的位置;第三问,利用第二问的结论,得出max ()ln f x a a a =-,因为12()()0f x f x ==,所以数形结合,得max ()0f x >,解得a e >,数形结合得出两组点的横坐标的关系21ln x x a a a ->-,又利用12()()0f x f x ==,得出11x a x e =,22x ax e =,进行转换得到所求证的不等式.(3)由(2)知,max ()(ln )ln f x f a a a a a ==-,∵12()()0f x f x ==,∴max ()(ln )ln 0f x f a a a a a ==->, ∴ln 1a >,得a e >,∴()0f a a e =->,且(ln )0f a a >. 得21ln x x a a a ->-,又11x a x e =,22x ax e =,∴1211()(ln )12x x a a a a a x e e e x a--=<=. 考点:1.利用导数求切线的斜率;2.两条直线垂直的充要条件;3.利用导数判断函数的单调性;4.利用导数求函数的最值.4. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】(本小题满分12分)已知函数()ln f x x x =,()(1)g x k x =-.(1)若()()f x g x ≥恒成立,求实数k 的值;(2)若方程()()f x g x =有一根为11(1)x x >,方程''()()f x g x =的根为0x ,是否存在实数k ,使1x k x =?若存在,求出所有满足条件的k 值;若不存在,说明理由. 试题解析:⑴解:注意到函数()f x 的定义域为(0,)+∞, 所以()()f x g x ≥恒成立()()f xg x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x kh x x x x -'=-=, ------------2分当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数, 注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分5. 【山西省曲沃中学2014届高三上学期期中考试】已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (1)当0a =时,求函数()S t 的单调区间;(2)当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2tS t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分6. 【山西省太原市太远五中2014届高三12月月考】已知函数ln 1af x x a x =+∈+R ()(). (1)当92a =时,如果函数g x f x k =-()()仅有一个零点,求实数k 的取值范围; (2)当2a =时,试比较f x ()与1的大小; (3)求证:1111ln 135721n n +>+++++ ()n ∈*N ()一个交点,所以关键是()y f x =的图像,对()f x 求导,令'()0f x >和'()0f x <判断函数的单调性,确定函数的极值和最值所在位置,求出具体的数值,便可以描绘出函数图像,来决定k 的位置;第二问,先将2=a 代入,得到()f x 解析式,作差法比较大小,得到新函数()h x ,判断()h x 的正负即可,通过对()h x 求导,可以看出()h x 在(0,)+∞上是增函数且(1)0h =,所以分情况会出现3种大小关系;第三问,法一:利用第二问的结论,得到表达式1211ln+>+k k k ,再利用不等式的性质得到所证表达式的右边,左边是利用对数的运算性质化简,得证;法二,用数学归纳法证明,先证明当1n =时不等式成立,再假设当n k =时不等式成立,然后利用假设的结论证明当1n k =+时不等式成立即可.①当1>x 时,0)1()(=>h x h ,即1)(>x f ; ②当10<<x 时,0)1()(=<h x h ,即1)(<x f ;③当1=x 时,0)1()(==h x h ,即1)(=x f . ……………………………8分(3)(法一)根据(2)的结论,当1>x 时,112ln >++x x ,即11ln +->x x x . 令k k x 1+=,则有1211ln +>+k k k , ∑∑==+>+∴n k nk k k k 111211ln . ∑=+=+nk k k n 11ln )1ln( , 1215131)1ln(++++>+∴n n . …………………………………12分。
高中毕业年级第一次质量预测数学(理科) 参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.D3.A4.C5.B6.B7.A8.C9.D 10.C 11.A 12.B.二、填空题:本大题共4题,每小题5分,共20,把答案填在答题卷的横线上13. 2-- 14. 13;- 16.4033. 三、解答题(本大题共6分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)解: 2分所以3a =sin A ,sin 3b B =……6分(Ⅱ)8分 由余弦定理得2222cos c a b ab C =+-,即2224()3a b ab a b ab =+-=+-,又a b ab +=,所以2()340ab ab --=,解得4ab =或1ab =-(舍去).……10分所以11sin 422ABC S ab C ∆==⨯=12分 18. 解:(Ⅰ)证明:在BCA ∆中,由于∴222AB AC BC +=,故AB AC ⊥.……………2分 又SAB ABCD ⊥平面平面,SAB ABCD AB =平面平面,AC ABCD ⊂平面,SAB AC ∴⊥平面,……………4分 又AC SAC ⊂平面,故平面SAC ⊥平面SAB ……………6分(2)如图建立A xyz -空间直角坐标系,()0,0,0A ,()2,0,0,B0)(143)(24CS BC =-=-,,,,,, ()0,4,0,AC ……………8分 设平面SBC 的法向量()111,,n x y z =,00n BC n CS ⎧⋅=⎪⇒⎨⋅=⎪⎩令1111,2,3y x z ===则, n ⎛∴= ⎝⎭.…10分 设平面SCA 的法向量()222,,m x y z =,200m AC m CS ⎧⋅=⎪⇒⎨⋅=⎪⎪⎩⎩2x = (3,0,1∴=-m 219cos ,n mn m n m ⋅==⋅∴二面角--B SC A 的余弦值为……………12分 19. 解:(Ⅰ)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,…1分 从而列联表如下:……………3分因为,所以没有理由认为“围棋迷”与性别有关. ……………6分(Ⅱ)由频率分布直方图知抽到“围棋迷”的频率为0. 25,将频率视为概率,即从观众中抽取一名“围棋迷”的概率为.由题意,从而的分布列为……………10分. ……………12分22⨯113,3X B ⎛⎫ ⎪⎝⎭X ()13==3=44E X np ⨯20.(Ⅰ)设动点),(y x N ,),,(00y x A 因为x AB ⊥轴于B ,所以)0,(0x B ,……1分 设圆M 的方程为222:,+=M x y r由题意得2r ==,所以圆M 的程为22:4M x y +=.……………3分由题意, 2AB NB =,所以00(0,)2(,)y x x y -=--,所以,即00,2,=⎧⎨=⎩x x y y 将(,2)A x y 代入圆22:4M x y +=,得动点N 的轨迹方程2214x y += ,……………5分 (Ⅱ)由题意设直线0,++=y m 设直线l 与椭圆交于221,4+=x y 1122(,),(,)P x y Q x y,联立方程22,44,⎧=-⎪⎨+=⎪⎩y m x y得2213440x m ++-=, 222192413(44)16(13)0m m m ∆=-⨯-=-+>,解得213m <,1,213x -±==, 又因为点O 到直线l 的距离2md =,122213PQ x x =-= (10)分1122OPQ m S ∆=⋅⋅=≤. OPQ ∆面积的最大值为1.……………12分21. (Ⅰ)令()()(1)ln(1)F x f x x mx x x =-=-+-,(0,1)x ∈,2分时,由于(0,1)x ∈,有 于是'()F x 在(0,1)x ∈上单调递增,从而'()'(0)0F x F >=,因此()F x 在(0,1)x ∈上单调递增,即()0F x >;……………3分 ②当0m ≥时,由于(0,1)x ∈,有 于是'()F x 在(0,1)x ∈上单调递减,从而'()'(0)0F x F <=, 因此()F x 在(0,1)x ∈上单调递减,即()(0)0F x F <=不符;……………4分,当0(0,]x x ∈时, ,于是'()F x 在0(0,]x x ∈上单调递减, 从而'()'(0)0F x F <=,因此()F x 在0(0,]x x ∈上单调递减, 即()(0)0F x F <=而且仅有(0)0F =不符. 综上可知,所求实数m 的取值范围是……………6分(Ⅱ)对要证明的不等式等价变形如下:对于任意的正整数n ,不等式251(1)n e n ++<恒成立,等价变形211(1)ln(1)0n ++-<相当于(28分 上单调递减,即()(0)0F x F <=;……………10分 211(1)ln(1)05n n n++-<成立; 令得证. ……………12分 22. (本小题满分10分)选修4—4,坐标系与参数方程解:(Ⅰ)消去参数ϕ可得1C 曲线2C 的圆心的直角坐标为)3,0(,∴2C 的直角坐标方程为1)3(22=-+y x .………………4分)2(设),sin ,cos 2(ϕϕM 则222)3(sin )cos 2(||-+=ϕϕMC 9sin 6sin cos 422+-+=ϕϕϕ 13sin 6sin 32+--=ϕϕ16)1(sin 32++-=ϕ.1sin 1≤≤-ϕ,∴,2||min 2=MC ,4||max 2=MC .根据题意可得,112||min =-=MN ,,514||max =+=MN即||MN 的取值范围是[]1,5..………………10分23. (本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)因为,b a b a b x a x +=--≥-++, 所以()f x a b ≥+,当且仅当0))((<-+b x a x 时,等号成立,又0,0a b >>, 所以||a b a b +=+,所以()f x 的最小值为a b +,所以4a b +=..………………5分 (Ⅱ)由(1)知4,4a b b a +==-,分。
2014年高中毕业年级第一次质量预测数学(理科) 参考答案一、选择题ADACB DBCBB AB 二、填空题13.[1,3)-; 14.5; 15. 8π;16.12a <-. 三、解答题17.解:(1) 因为AD AC ⊥,所以sin sin()cos 2BAC BAD BAD π∠=+∠=∠,即cos 3BAD ∠=,…………………………….2分 在ABD ∆中,由余弦定理可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠, 即28150AD AD -+=,解之得5AD =或 3.AD =……………………………………………….6分由于AB AD >,所以 3.AD =…………………………………………………..7分 (2) 在ABD ∆中,由正弦定理可知sin sin BD ABBAD ADB=∠∠,又由cos BAD ∠=可知1sin 3BAD ∠=,所以sin sin AB BAD ADB BD ∠∠==, 因为2ADB DAC C C π∠=∠+∠=+∠,所以cos 3C =.……………………………………………………..12分 18.解:随机猜对问题A 的概率113P =,随机猜对问题B 的概率214P =.………… 2分⑴设参与者先回答问题A ,且恰好获得奖金a 元为事件M ,则12131()(1)344P M P P =-=⨯=, 即参与者先回答问题A ,其恰好获得奖金a 元的概率为14. ………………4分⑵参与者回答问题的顺序有两种,分别讨论如下:①先回答问题A ,再回答问题B .参与者获奖金额ξ可取0,,a a b +, 则()12013P P ξ==-=,()()12114P a P P ξ==-=,()121.12P a b PP ξ=+==②先回答问题B ,再回答问题A ,参与者获奖金额η,可取0,,b a b +,则()23014P P η==-=,()()21116P b P P η==-=,()211.12P a b P P η=+==()3110.4612124a bE b a b η=⨯+⨯++⨯=+………… 10分32.12a bE E ξη--= 于是,当23a b >,时E E ξη>,即先回答问题A ,再回答问题B ,获奖的期望值较大;当23a b =,时E E ξη=,两种顺序获奖的期望值相等;当23a b <,时E E ξη<,先回答问题B ,再回答问题A ,获奖的期望值较大.…………………………12分 19.解:(1)证明:由题意11tan tan 22AD AB ABD AB B AB BB ∠==∠==, 注意到10,2ABD AB B π<∠∠<,所以1ABD AB B ∠=∠,所以1112ABD BAB AB B BAB π∠+∠=∠+∠=,所以BD AB ⊥1,……………………3分又侧面,1.AB CO ∴⊥又与CO 交于点,所以CBD AB 面⊥1,又因为CBD BC 面⊂,所以.……………………………6分(2)如图,分别以1,,OD OB OC 所在的直线为,,x y z 轴, 以为原点,建立空间直角坐标系则(0,A,(B ,C,1B,D , 又因为12CC AD =,所以1C …………8分⊥CO 11A ABB BD O 1AB BC ⊥O xyz O -A所以(,0)33AB =-,(0,33AC =,1().633DC = 设平面ABC 的法向量为(,,)n x y z = ,则根据0,0AB n AC n ⋅=⋅=可得(1n =是平面ABC 的一个法向量,设直线1C D 与平面ABC 所成角为α,则11||sin ||||DC n DC n α⋅==………………12分20.⑴解:由题知||||||||||||2||||4||,CA CB CP CQ AP BQ CP AB AB +=+++=+=> 所以曲线M 是以,A B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点),设曲线M :22221(0,0)x y a b y a b+=>>≠,则2222||4,()32AB a b a ==-=, 所以曲线M :221(0)43x y y +=≠为所求.---------------4分 ⑵解:注意到直线BC 的斜率不为0,且过定点(1,0)B , 设1122:1,(,),(,)BC l x my C x y D x y =+,由221,3412,x my x y =+⎧⎨+=⎩消x 得22(34)690m y my ++-=,所以1,2y =, 所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩-------------------------------------8分因为1122(2,),(2,)AC my y AD my y =+=+,所以212121212222222(2)(2)(1)2()49(1)12794.343434AC AD my my y y m y y m y y m m m m m m ⋅=+++=+++++-=--+=+++注意到点A 在以CD 为直径的圆上,所以0AC AD ⋅= ,即3m =±,-----11分所以直线BC 的方程330x -=或330x -=为所求.------12分21.⑴解:注意到函数()f x 的定义域为(0,)+∞, 所以()()f x g x ≥恒成立()()f xg x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x kh x x x x -'=-=, ------------2分当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数, 注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分 当0k >时,若0x k <<,()0h x '<;若x k >,()0h x '>. 所以()h x 是(0,)k 上的减函数,是(,)k +∞上的增函数,故只需min ()()ln 10h x h k k k ==-+≥. --------6分 令()ln 1(0)u x x x x =-+>,11()1x u x x x-'=-=, 当01x <<时,()0u x '>;当1x >时,()0u x '<. 所以()u x 是(0,1)上的增函数,是(1,)+∞上的减函数. 故()(1)0u x u ≤=当且仅当1x =时等号成立.所以当且仅当1k =时,()0h x ≥成立,即1k =为所求. --------8分 ⑵解:由⑴知当0k ≤或1k =时,()()f x g x =,即()0h x =仅有唯一解1x =,不合题意; 当01k <<时,()h x 是(,)k +∞上的增函数,对1x >,有()(1)0h x h >=,所以()()f x g x =没有大于1的根,不合题意. --------10分当1k >时,由()()f x g x ''=解得10k x e -=,若存在110k x kx ke -==, 则111ln()(1)k k k keke k ke ---=-,即1ln 10k k e --+=,令1()ln 1(1)xv x x e x -=-+>,11()x x xe exv x e x xe --'=-=,令(),()x x s x e ex s x e e '=-=-,当1x >时,总有()0s x '>, 所以()s x 是(1,)+∞上的增函数,即()(1)0x s x e ex s =->=, 故()0v x '>,()v x 在(1,)+∞上是增函数,所以()(1)0v x v >=,即1ln 10k k e --+=在(1,)+∞无解.综上可知,不存在满足条件的实数k . ----------------------12分 22.解:⑴ D C B A ,,,四点共圆,∴EBF EDC ∠=∠,又AEB ∠为公共角,∴ECD ∆∽,EAB ∆∴.DC EC EDAB EA EB== ∴2111...428DC EC ED EC ED AB EA EB EB EA ⎛⎫==== ⎪⎝⎭.∴DC AB =. ……………………………………………………………… 6分⑵ FB FA EF⋅=2,∴FEFBFA EF =, 又 BFE EFA ∠=∠,∴FAE ∆∽FEB ∆, ∴EBF FEA ∠=∠,又 四点共圆,,, ∴//.EF CD .…………………………………………………… 10分23.解:⑴222212:(2)(1)1,:1.169x y C x y C ++-=+= 曲线1C 为圆心是(2,1)-,半径是1的圆.曲线2C 为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.……4分⑵曲线2C 的左顶点为(4,0)-,则直线l的参数方程为4,2,2x s y s ⎧=-+⎪⎪⎨⎪=⎪⎩(s 为参数) 将其代入曲线1C整理可得:240s -+=,设,A B 对应参数分别为12,s s ,则1212 4.s s s s +==D C B A ,,,∴EBF EDC ∠=∠∴EDC FEA ∠=∠所以12||||AB s s =-==……………………………10分24.解:⑴因为,4)()4(4-=---≥-+-a a x x a x x因为4a <,所以当且仅当4a x ≤≤时等号成立,故43,1a a -=∴=为所求.……………………4分⑵不等式x x f -≥3)(即不等式x a x x -≥-+-34)4(<a , ①当a x <时,原不等式可化为43,x a x x -+-≥- 即 1.x a ≤+所以,当a x <时,原不等式成立.②当4≤≤x a 时,原不等式可化为43.x x a x -+-≥- 即 1.x a ≥-所以,当4≤≤x a 时,原不等式成立. ③当4>x 时,原不等式可化为43.x x a x -+-≥-即7,3a x +≥由于4<a 时74.3a +> 所以,当4>x 时,原不等式成立.综合①②③可知: 不等式x x f -≥3)(的解集为R.……………………10分。
数学(理科) 参考答案一、选择题ADACB DBCBB AB二、填空题13.[1,3)-; 14.5; 15. 8π; 16.12a <-. 三、解答题17.解:(1) 因为AD AC ⊥,所以sin sin()cos 2BAC BAD BAD π∠=+∠=∠,即cos 3BAD ∠=,…………………………….2分 在ABD ∆中,由余弦定理可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠,即28150AD AD -+=,解之得5AD =或 3.AD = ……………………………………………….6分由于AB AD >,所以 3.AD =…………………………………………………..7分(2) 在ABD ∆中,由正弦定理可知sin sin BD AB BAD ADB=∠∠,又由cos 3BAD ∠=可知1sin 3BAD ∠=,所以sin sin AB BAD ADB BD ∠∠==, 因为2ADB DAC C C π∠=∠+∠=+∠,所以cos C =.……………………………………………………..12分 18.解:随机猜对问题A 的概率113P =,随机猜对问题B 的概率214P =.………… 2分 ⑴设参与者先回答问题A ,且恰好获得奖金a 元为事件M ,则12131()(1)344P M P P =-=⨯=, 即参与者先回答问题A ,其恰好获得奖金a 元的概率为14. ………………4分 ⑵参与者回答问题的顺序有两种,分别讨论如下:①先回答问题A ,再回答问题B .参与者获奖金额ξ可取0,,a a b +,则()12013P P ξ==-=,()()12114P a P P ξ==-=,()121.12P a b PP ξ=+==②先回答问题B ,再回答问题A ,参与者获奖金额η,可取0,,b a b +,则()23014P P η==-=,()()21116P b P P η==-=,()211.12P a b P P η=+== ()3110.4612124a b E b a b η=⨯+⨯++⨯=+………… 10分 32.12a b E E ξη--= 于是,当23a b >,时E E ξη>,即先回答问题A ,再回答问题B ,获奖的期望值较大; 当23a b =,时E E ξη=,两种顺序获奖的期望值相等;当23a b <,时E E ξη<,先回答问题B ,再回答问题A ,获奖的期望值较大.…………………………12分19.解:(1)证明:由题意11tan tan 22AD AB ABD AB B AB BB ∠==∠==,注意到10,2ABD AB B π<∠∠<,所以1ABD AB B ∠=∠,所以1112ABD BAB AB B BAB π∠+∠=∠+∠=,所以BD AB ⊥1, ……………………3分又⊥CO 侧面11A ABB ,1.AB CO ∴⊥又BD 与CO 交于点O ,所以CBD AB 面⊥1,又因为CBD BC 面⊂,所以1AB BC ⊥.……………………………6分(2)如图,分别以1,,OD OB OC 所在的直线为,,x y z 轴,以O 为原点,建立空间直角坐标系xyz O -则(0,A ,(B ,C ,1B ,D ,又因为12CC AD =,所以1C所以(AB = ,AC = ,1DC = 设平面ABC 的法向量为(,,)n x y z = , 则根据0,0AB n AC n ⋅=⋅= 可得(1n = 是平面ABC 的一个法向量, 设直线1C D 与平面ABC 所成角为α,则11||sin ||||DC n DC n α⋅== ………………12分 20.⑴解:由题知||||||||||||2||||4||,CA CB CP CQ AP BQ CP AB AB +=+++=+=> 所以曲线M 是以,A B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点),设曲线M :22221(0,0)x y a b y a b+=>>≠, 则2222||4,()32AB a b a ==-=, 所以曲线M :221(0)43x y y +=≠为所求.---------------4分 ⑵解:注意到直线BC 的斜率不为0,且过定点(1,0)B ,设1122:1,(,),(,)BC l x my C x y D x y =+,由221,3412,x my x y =+⎧⎨+=⎩ 消x 得22(34)690m y my ++-=,所以1,1y =, 所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩ -------------------------------------8分 因为1122(2,),(2,)AC my y AD my y =+=+ ,所以 212121212222222(2)(2)(1)2()49(1)12794.343434AC AD my my y y m y y m y y m m m m m m ⋅=+++=+++++-=--+=+++注意到点A 在以CD 为直径的圆上,所以0AC AD ⋅= ,即m =,-----11分所以直线BC 的方程330x -=或330x -=为所求.------12分21.⑴解:注意到函数()f x 的定义域为(0,)+∞,所以()()f x g x ≥恒成立()()f x g x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x k h x x x x -'=-=, ------------2分 当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数,注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分 当0k >时,若0x k <<,()0h x '<;若x k >,()0h x '>.所以()h x 是(0,)k 上的减函数,是(,)k +∞上的增函数,故只需min ()()ln 10h x h k k k ==-+≥. --------6分 令()ln 1(0)u x x x x =-+>, 11()1x u x x x-'=-=, 当01x <<时,()0u x '>; 当1x >时,()0u x '<.所以()u x 是(0,1)上的增函数,是(1,)+∞上的减函数.故()(1)0u x u ≤=当且仅当1x =时等号成立.所以当且仅当1k =时,()0h x ≥成立,即1k =为所求. --------8分 ⑵解:由⑴知当0k ≤或1k =时,()()f x g x =,即()0h x =仅有唯一解1x =,不合题意; 当01k <<时, ()h x 是(,)k +∞上的增函数,对1x >,有()(1)0h x h >=,所以()()f x g x =没有大于1的根,不合题意. ---------8分当1k >时,由()()f x g x ''=解得10k x e -=,若存在110k x kx ke -==, 则111ln()(1)k k k ke ke k ke ---=-,即1ln 10k k e --+=,令1()ln 1(1)x v x x e x -=-+>,11()x x xe ex v x e x xe --'=-=, 令(),()x x s x e ex s x e e '=-=-,当1x >时,总有()0s x '>,所以()s x 是(1,)+∞上的增函数,即()(1)0x s x e ex s =->=,故()0v x '>,()v x 在(1,)+∞上是增函数,所以()(1)0v x v >=,即1ln 10k k e --+=在(1,)+∞无解.综上可知,不存在满足条件的实数k . ----------------------12分22.解:⑴ D C B A ,,,四点共圆,∴EBF EDC ∠=∠,又AEB ∠为公共角,∴ECD ∆∽,EAB ∆ ∴.DC EC ED AB EA EB == ∴2111...428DC EC ED EC ED AB EA EB EB EA ⎛⎫==== ⎪⎝⎭.∴DC AB =. ……………………………………………………………… 6分 ⑵ FB FA EF ⋅=2, ∴FEFB FA EF =, 又 BFE EFA ∠=∠, ∴FAE ∆∽FEB ∆,∴EBF FEA ∠=∠,又 D C B A ,,,四点共圆,∴EBF EDC ∠=∠,∴EDC FEA ∠=∠, ∴//.EF CD .…………………………………………………… 10分23.解:⑴222212:(2)(1)1,: 1.169x y C x y C ++-=+=曲线1C 为圆心是(2,1)-,半径是1的圆.曲线2C 为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.……4分⑵曲线2C 的左顶点为(4,0)-,则直线l的参数方程为4,2,x s y s ⎧=-+⎪⎪⎨⎪=⎪⎩(s 为参数) 将其代入曲线1C整理可得:240s -+=,设,A B 对应参数分别为12,s s ,则1212 4.s s s s +==所以12||||AB s s =-==. ……………………………10分24.解:⑴因为,4)()4(4-=---≥-+-a a x x a x x因为4a <,所以当且仅当4a x ≤≤时等号成立,故43,1a a -=∴=为所求.……………………4分⑵不等式x x f -≥3)(即不等式x a x x -≥-+-34)4(<a , ①当a x <时,原不等式可化为43,x a x x -+-≥-即 1.x a ≤+ 所以,当a x <时,原不等式成立.②当4≤≤x a 时,原不等式可化为43.x x a x -+-≥- 即 1.x a ≥-所以,当4≤≤x a 时,原不等式成立.③当4>x 时,原不等式可化为43.x x a x -+-≥- 即7,3a x +≥ 由于4<a 时74.3a +>所以,当4>x 时,原不等式成立.综合①②③可知: 不等式x x f -≥3)(的解集为R.……………………10分。