国外某油田开发方案设计研究内容(英文)
- 格式:doc
- 大小:129.50 KB
- 文档页数:8
1、地质储量original oil in place在地层原始状态下,油(气)藏中油(气)的总储藏量。
地质储量按开采价值划分为表内储量和表外储量。
表内储量是指在现有技术经济条件下具有工业开采价值并能获得经济效益的地质储量。
表外储量是在现有技术经济条件下开采不能获得经济效益的地质储量,但当原油(气)价格提高、工艺技术改进后,某些表外储量可以转为表内储量。
2、探明储量proved reserve探明储量是在油(气)田评价钻探阶段完成或基本完成后计算的地质储量,在现代技术和经济条件下可提供开采并能获得经济效益的可靠储量。
探明储量是编制油田开发方案、进行油(气)田开发建设投资决策和油(气)田开发分析的依据。
3、动用储量draw up on reserves已钻采油井投入开采的地质储量。
4、水驱储量 water flooding reserves能受到天然边底水或人工注入水驱动效果的地质储量。
5、损失储量loss reserves在目前确定的注采系统条件下,只存在注水井或采油井暂未射孔的那部分地质储量。
6、单井控制储量controllable reserves per well采油井单井控制面积内的地质储量。
7、可采储量recoverable reserves在现有技术和经济条件下能从储油(气)层中采出的那一部分油(气)储量。
8、剩余可采储量remaining recoverable reserves油(气)田投入开发后,可采储量与累积采油(气)量之差。
9、经济可采储量economically recoverable reserves是指在一定技术经济条件下,出现经营亏损前的累积产油量。
经济可采储量可以定义为油田的累计现金流达到最大、年现金流为零时的油田全部累积产油量;在数值上,应等于目前的累积产油量和剩余经济可采储量之和。
10、油藏驱动类型flooding type是指油藏开采时,驱使油(气)流向井底的主要动力来源和方式。
中石油境外投资油田开发项目可行性研究报告编制规定
1.引言:介绍编制此报告的目的和重要性,说明中石油在境外投资油
田开发项目的背景和意义。
2.项目背景:简要介绍中石油在境外投资油田开发项目的背景资料,
包括投资规模、投资目标、所在国家情况等。
3.项目可行性研究方法:详细描述进行项目可行性研究的方法和步骤,包括信息收集、数据分析、市场调研、技术评估等。
4.市场分析:对所投资国家的油田开发市场进行深入分析,包括市场
规模、市场需求、主要竞争对手等方面。
同时分析所投资国家的政策环境
和法律法规对油田开发项目的影响。
5.技术评估:对所投资油田开发项目的技术可行性进行评估,包括资
源储量评估、开发技术难度评估、环境保护评估等。
6.经济评估:对所投资油田开发项目的经济可行性进行评估,包括投
资回报率、成本效益分析、盈利预测等。
7.风险评估:对所投资油田开发项目的风险进行评估,包括市场风险、技术风险、政策风险等。
同时提出相应的应对措施和风险管理计划。
8.可行性结论:综合之前的分析和评估,得出项目的可行性结论,说
明该项目的投资价值和发展前景。
油藏工程方案英文1. IntroductionThe development of an oil field is a complex and challenging task that requires careful planning and execution. Reservoir engineering plays a crucial role in the development of an oil field as it involves the optimization of production rates, recovery factors, and overall field management. In this report, we will outline a reservoir engineering plan for the development of an oil field, taking into consideration the geological, geophysical, and engineering aspects of the field.2. Reservoir characterizationThe first step in the development of an oil field is to characterize the reservoir in terms of its geological and petrophysical properties. This involves the analysis of core samples, well logs, and seismic data to determine the reservoir's porosity, permeability, fluid properties, and potential hydrocarbon reserves. This information is crucial for the design of the production and reservoir management strategies.3. Well placement and drillingThe next step in the reservoir engineering plan is to determine the optimal well placement and drilling strategy. This involves the identification of potential drilling locations based on the reservoir characteristics and the subsurface geology. The well design and drilling plan should take into consideration the reservoir's heterogeneity, fluid viscosity, and pressure regime to maximize production rates and recovery factors.4. Reservoir simulationOnce the well placement and drilling strategy are determined, a reservoir simulation study is conducted to predict the reservoir's behavior under different production scenarios. This involves the construction of a reservoir model based on the geological and engineering data, and the simulation of fluid flow, pressure distribution, and production rates. The reservoir simulation study is essential for optimizing the field development plan, and for forecasting the field's production and recovery over time.5. Enhanced oil recovery (EOR)In many mature oil fields, enhanced oil recovery (EOR) techniques are employed to improve the recovery factor and increase the overall production rates. EOR techniques such as water flooding, gas injection, and chemical flooding are designed and implemented based on the reservoir's characteristics and the production challenges. The selection of the EOR method is often based on reservoir simulation and field tests to determine the most effective technique for the field.6. Field development and infrastructureThe final step in the reservoir engineering plan is the design and implementation of the field development and infrastructure. This involves the construction of production facilities, well pads, gathering systems, and transportation pipelines to bring the produced oil to market. The field development plan should be designed to optimize production, minimize operational costs, and adhere to environmental regulations and safety standards.ConclusionsIn conclusion, the development of an oil field requires a comprehensive reservoir engineering plan that takes into consideration the geological, geophysical, and engineering aspects of the field. The reservoir engineering plan outlined in this report involves reservoir characterization, well placement and drilling, reservoir simulation, enhanced oil recovery, and field development. By carefully planning and executing the reservoir engineering plan, an oil field can be developed to optimize production and recovery, and to maximize the field's economic value.。
七、国外油田开发新技术国外油藏管理技术最新进展近年来,油藏管理技术的发展得到了世界各国油田的重视,这项技术发展也很快,相继出现了利用多学科综合方法提高油田管理水平,利用复杂井的资料改善油藏管理,以及利用油藏特性表征技术改善油藏管理水平等,通过提高油藏管理水平不但可以降低原油开采成本,而且可以提高油田的采收率。
有关多学科综合方法在油藏管理中应用的情况以往已有过报道,这里主要介绍利用复杂井的资料改善油藏管理以及利用油藏特性表征技术改善油藏管理水平的技术和应用实例。
一、利用丛式井、蛇形井、三维井和分支井等复杂井眼结构改进油藏管理经过20多年的研究和试验,水平井油田开发中已得到广泛的应用,利用水平井不但可以提高油井产能,而且可以减少开发成本、减缓水锥或气锥。
随着水平井、丛式井和大位移井钻井技术的发展,提高了对油田的管理水平和评价技术。
利用这些复杂的描述,从而进一步油藏管理水平。
垂直平面蛇形井:蛇形是指井眼在二维平面内其井眼轨迹似蛇形,对于存在页岩夹层和砂岩透晶体的非均质油藏来说,研究表明,蛇形井的泄油范围以及蛇形井与砂岩透晶体的连通范围要比水平井大。
另外,与斜井相比,在薄层中,当水平渗透率与垂直渗透之比大于30时,一口蛇形井的产能要比相同长度的斜高。
三维井:本维井是指井眼轨迹偏离了垂直平面、分布在三维空间中,对于地质条件复杂的油田来说,三维井的应用前景是非常好的,据了解挪威北海的Gullfaks油田在二次开发过程中就采用了三维井,使吉眼达到最佳目标,不但提高了产量,还使采收率有所提高。
垂直平面碱分水平井:这类吉是在同一口直井中沿同一方向侧钻三口水平分支井,对于厚油层和多层油藏来说,可以利用多分支水平井进行分层开采,在每一层侧钻一口分支井。
据报道,联合太平洋资源公司在美国奥斯汀白垩地层已钻了几十口三分支水平井,以开采三个不同的相邻油藏。
丛式井:丛式井是指由同一个垂直井眼沿不同方向侧钻多口斜井或水平井,对于非均质油藏来说,由于油藏描述比较困难,很难准确确定水平井眼的方位,在这种情况下,利用丛式井要比水平井的效果好。
Introduction介绍The development and implementation of the Intelligent Field (I-Field) initiative is one of Saudi Aramco’s key strategic imperatives aimed at optimizing field development and operation strategies. Saudi Aramco’s I-Field objectives include:•Enhancing recoverable HC through in-time intervention and full-field optimization •Enhancing Health, Safety and Environment (HSE) through remote monitoring and intervention•Reducing operation cost by reducing manual supervision and intervention智能油田(一号油田)方案的制定和实施是沙特阿拉伯国家石油公司重要的战略需要之一,旨在优化油田开发和经营策略。
沙特阿拉伯国家石油公司油田的目标包括:•通过及时的干预和全方位的优化,提高油气的回收;•通过远程监控和干预,加强健康,安全和环境;•通过减少人工监督和干预来降低运营成本。
To achieve these objectives, the I-Field initiative is being implemented on two parallel paths, one is of installing in new and old fields fit-for-purpose permanent downhole, well head and surface sensors, and actuators. The objective of this path is to evaluate exploit and drive available intelligent field technologies to address company objectives (Afaleg 2005; Al-Arnaout 2007; Mubarak 2007; Salamy 2007; Saleri 2006). The second path is a structured development approach that captures the challenges, lessons learned and integrates required systems, specifications, processes and procedures for an over all solution that lays out an architecture for large scale implementation and a company-wide role out. This paper will focus on of the later path and specifically on the details of the surveillance layer development; the back bone of the I-Field.为了实现这些目标,一号油田的方案正通过两条并行途径实施,一种是安装在新老油田的井下,井口,地面传感器和调节器。
海外油气资产评估模板(开发项目)——海外油气资产评估(开发类)一、基本信息收集1.解决方案名称:Oil&Gas Asset Evaluation 油气资产评估2.解决方案描述:流程化海外资产(开发类)评估工作,并推荐相关主流软件,提供相应的软件应用和技术报告模板,减少工程师数据准备、图表制作的时间,提高工作效率。
3.解决方案所用到的软件3.1构造解释软件(SMT或Discovery)构造解释及成图3.2岩心分析及测井解释软件(IP或Teclog)油藏储层特征分析3.3地质成图软件(双狐或Geomap或Carbon)层位顶面构造图储层厚度等值图储层物性等值图油藏剖面图3.4生产特征分析软件生产曲线含水生产与采出程度曲线递减曲线开采现状如(泡泡图和油水饼状图)4.简单数据统计和文档编辑:Excel、Word二、流程及节点说明1油藏特征分析●区域石油地质盆地或区域的生储盖组合描述,简单描述成藏模式等。
目标区所处的具体的位置和生储盖组合情况(如是否是有利位置)。
●构造特征构造解释和构造要素特征描述——根据资料情况,如果对方提供地震资料,那我们有必要重新进行构造解释(相关软件LandMark R2003、Discovery、SMT、GeoFrame)。
如果对方不提供地震资料只提供解释结果,那只能采用其结果,但要说明可能存在构造风险。
●储层特征(IP或其他相关软件)a)储层类型:岩性、储积空间、储层厚度b)储层物性:孔隙度、饱和度、渗透率等c)储层质量:非均质性、润湿性、黏土矿物、敏感性等●油藏流体特征:密度、粘度、气油比等等●试油试采情况——Excela)求取液性、并与测井解释进行验证b)分析产能c)求取压力和地层参数d)确定流体界面位置单井试油情况统计表●油气水系统:是否带底水、是否带气顶●温度压力系统:目的层温度/温度梯度、压力/压力梯度●油气藏类型:据油藏的主要特征,确定该油藏类型。
2地质储量评估——地质绘图软件(GPTmap、石文软件)、测井分析软件IP或Farword●储层物性参数下限确定——IP 3.5软件孔隙度、渗透率、饱和度、有效厚度●气油水界面确定:取芯、测井、试油、RFT压力测试等●含油(气)面积确定:构造等值图●平均有效厚度确定:厚度等值图●容积法地质储量计算(如果是新区则建议采用蒙特卡洛法)蒙特卡洛法储量计算(软件)————参数选取、参数值、随机分布规律(正态分布。
内部资料注意保存境外投资油田开发项目可行性研究报告编制规定(2014 版)2014北京说明 (1)1总论 (2)1.1项目背景和投资必要性 (2)1.2项目概况 (2)1.3编制依据和范围 (3)1.4 结论和认识 (3)2资源国投资环境 (4)2.1资源国概况 (4)2.2石油工业概况 (4)2.3对外油气合作历史及现状 (4)2.4对外油气合作相关法规及条款 (4)2.5投资环境对本项目的影响 (5)3合同要求及相关规定 (5)3.1商务条款 (5)3.2主要法律条款及优惠政策 (5)3.3方案报批及作业相关要求 (5)3.4对项目的主要影响及对策 (5)4勘探潜力分析及勘探部署 (5)4.1勘探现状 (5)4.2区块和圈闭评价 (5)4.3勘探部署 (6)4.4小结 (6)5油田开发方案 (6)5.1油田地质特征 (6)5.2开发现状及特征 (7)5.3开发技术政策 (8)5.4开发方案设计 (8)5.5小结 (9)6钻井工程方案 (9)6.1钻井工程现状及适应性评价 (9)6.2钻井工程方案设计 (9)6.3小结 (10)7采油工程方案 (11)7.1采油工程现状及适应性评价 (11)7.2采油工程方案设计 (11)7.4小结 (12)8地面工程方案 (12)8.1地面工程现状及评价 (12)8.2设计规模及总体布局 (13)8.3主体工程方案 (13)8.4配套工程方案 (13)8.5 外围配套工程及要求 (14)8.6小结 (14)9产品市场分析 (15)9.1市场现状 (15)9.2目标市场 (15)9.3市场竞争力分析 (15)10环保与安全 (15)10.1环境保护 (15)10.2工程安全 (15)10.3社会安全 (16)10.4社区适应性 (16)11管控方式及人员 (16)11.1项目运行架构 (16)11.2组织机构 (16)11.3中国石油人员构成及配置 (16)12投资估算及资金筹措 (16)12.1投资估算 (16)12.2资金来源与融资方案 (18)13经济评价 (18)13.1经济评价的范围、依据和基础数据 (18)13.2生产成本费用估算 (19)13.3盈利能力分析 (19)13.4不确定性分析 (19)13.5经济评价结论及建议 (19)14风险分析及应对措施 (20)14.1外部风险分析 (20)14.2项目风险分析 (20)14.3对策分析 (20)15结论与建议 (20)附图 (22)附表 (22)附文 (45)1为加强境外投资油田开发项目前期管理工作,规范并提高境外投资油田开发项目可行性研究报告的编制水平和质量,保证投资决策的科学性,特制定《境外投资油田开发项目可行性研究报告编制规定》(以下简称“本规定”)。
FDP Study contents of XXXX FieldThe scope of work shall include, but not limited to the following:BACKGROUNDCluster is located in the northern corner of Block-4, it lies about 16 Km NW of Neem FPF and 6 oil-bearing blocks in Great XXXX Custer, includes Hilba, XXXX E, XXXX N, XXXX C, XXXX NE and XXXX NW. The first oil discovery was by Hilba-01 well in 2003. XXXX Cluster is a field of multiple structures, multi-reservoirs & highly faulted. The depth of reservoir varies from 850m to 2300m. Heavy oil in Aradeiba, Zarqa, Ghazal and Amal formation mainly, especially thick heavy oil in Amal of XXXX NE and XXXX NW Blocks, API range is 10–28 ºAPI. According to the well test of six wells, the cold production is very low in Amal and a ll the wells isn’t tested by steam injection. Detailed OOIP (2P) data of XXXX Cluster from GNPOC information which finished in 2014 is listed in the following table:XXXX Cluster crude oil is heavy with high viscosity at reservoir conditions (µo=50000cp) at Amal formation. Following is a summary for reservoir parameters:At the end of Oct. 2014, there are 4 drilled wells in block XXXX E(XXXX E-1,2,3,4), the other block 1 well separately(XXXX N-1, XXXX NE-1, XXXX NW-1, XXXX C-1, Hilba-1,), and none of wells hasn’t been produced.●Study HistoryNo FDP since 2003.●Available Data✓Geological reports and drilling reports(9 wells).✓Mud logging data and Wireline logging data(3 wells).✓Well test data(6 wells).✓DST and pressure survey, well test reports.✓Completion data.●Main Challenges:✓Heavy viscous and low API crude oil✓Multiple structures, multi-reservoirs & highly faulted✓Wellbore lifting technology✓Technique of gathering process2.1 Geophysics●Regional the areal structure, the stratigraphic sequence and the traps●QC/review the current data and the result of interpretation●Making synthetic records of all wells●Tie-in Boreholes to seismic surfaces, using VSP data●Re-interpret horizon/fault to 4*4 CDP, including top of Nayil, Amal, Baraka,Ghazal, Zarqa, Aradeiba and Bentiu●Use Variance time slice and other techniques to identify concealed faults●Establish the model of velocity field basing on veriable speed and analysis thevelocity●Conduct the time-depth conversion of all interpreted horizon●Make up TWT and Depth maps of all interpreted horizon●Reservoirs inversion using Jason, to study the distribution of sand body●Predict the new structural trap and evaluate the potention2.2 Petrophysics2.2.1 Core Data Review & Analysis●QC of core data2.2.2 QC of Log Data & Data Preparation●QC of Log Data●depth match, splice las file if require for all available data●Normalization and filtering of the curves●Reconcile deviation survey data and define Measured vs. TVD depth conversions2.2.3 Parameters Modelling & Petrophysics Interpretation●Build litho-porosity model to calculate clay/shale volume and total porosity●Calculate water saturation using suitable saturation equation (model)●Determine permeability profile as a function of porosity and/or water saturation●Calibrate evaluation results to core permeability using cross-plots●Logic, clay volume, lithology model, saturation model, hydrocarbon corrections toporosity, porosity calibrations to core and permeability transforms●Cutoff determination; Perform cut-off sensitivity analysis on volume for porosity,clay/shale and water saturation●Analyze formation pressure (FMT/RFT) for fluid contact and fluid typeidentification●Determine the initial oil water contacts & the current fluid contacts Confirmation offluid type and current and initial fluid contact from RFT/ MDT Pressure plot, DSTResults, and logs data●Final results in single final well composite per well incorporating coreresults/descriptions, DST, FMT.Reservoirs and net pay flags on the interpretationplots●Interpretation results, data, tables saved in las or lis format2.3 Geological Study2.3.1 Static database●Data reviewing and sorting, and quality control●Establish geological database with different data formats.2.3.2 Stratigraphic Correlation Identify key beds.●Identify key beds.●Establish stratigraphic column of target bed.●Conduct stratigraphic correlation and subdivision for wells drilled in 3Dseismic area.2.3.4 Sedimentary facies study●Analyze core facies and logging facies analysis, establish relationship between corefacies and logging facies.Propagate geological facies from cored to non-cored wells.●Draw profile of single well facies, and generate facies correlation panels.●Based on geological facies from the wells and seismic inversion lithologyresults, study the depositional environment in the field and construct the plane distribution at all oil bearing blocks.2.3.5 Reservoir characteristics study●Sand body development: subdivide sedimentary units, describe reservoir sandsdistribution, draw up sand isopachs by subunits and general sands isopachs●Interlayer study: define lithological and physical standards of interlayer,study the thickness and distribution of interlayers in main blocks.2.3.6 Distribution of oil, gas and water, and type of reservoir●Characteristics of lateral distribution of reservoirs: Based on the result of secondaryinterpretation, draw up reservoir isopach maps and reservoir profile, define lateraland vertical distribution of reservoirs●Oil-water contact (OGC, GWC): Define oil-water contact (OGC, GWC) based onthe results of coring, logging, testing and geological study.●Type of reservoir: Based on petrophysics and oil-gas-water relation as wellas geological study, define the type of reservoir.2.3.7 OOIP Calculation●Calculate OOIP by using volumetric methods●Calculate 3P reserves, which include three types as follows.P1 reserve is calculated according to OWC or ODT.P2 reserve is calculated by half way from ODT to WUT or spill point.P3 reserve is calculated by spill point or WUT.OWC is derived from logging and/or pressure data.●Calculate OOIP by using volumetric methods●Calculation cells are determined according to lateral and vertical distribution ofreservoirs.●According to reservoir type, determine GOC, OWC or GWC for all the reservoirs,and delineate the oil-bearing area of P1, P2 and P3 geological reserves on the topstructure maps of oil layers.●Net pay maps are drawn according to the reservoir thickness given by well logginginterpretation. Effective thickness of calculation cells is calculated with areaweighted method.●Average porosity of calculation cells is calculated according to the porosity given bywell logging interpretation.●The average oil saturation of calculation cells is calculated according to the oilsaturation given by well logging interpretation.●Crude oil volume factor is determined by PVT●Add up all EV Values to get most probable STOIIP. To use standard SPE definitionfor EV derived from P1, P2 and P3 resource classification.2.3.8 3D geological modeling●Structure model—construct fault model of XXXX oilfield based on seismicinterpretation and structure study, and structure model with well correlation study.●Gridding—choose suitable grid density based on the size of work area●Facies modeling—facies models required for stochastic pixel based algorithm.These SIS Modeling generated facies model will be constrained by seismic attributes/inversion to produce reasonable geobody.●Porosity modeling—to generate porosity models based on SGS (SequentialGaussian Simulation) constrained to corresponding facies model.●Permeability modeling—build up permeability model based on porositypermeability relationship or secondary logging interpretation.●Saturation model—Build up saturation model based on logging interpretation or Jfunction.●Reserves matching—calculate STOIIP in the model, compared with that ofvolumetric method controlled within allowance.●Scale up —make contrast between the coarse model and fine model, conductquality control.●Reservoir maps—Net sand distribution, net to gross, net oil pay, porositydistribution, saturation distribution, permeability distribution for each reservoirlayer.2.4 Reservoir Engineering2.4.1 Lab experimentsGWDC won't conduct Lab experiments,but all necessary data obtain from follow Lab experiments must be Provide by GNPOC.(我们不承担室内实验研究,甲方必须提供从以下实验获得的必要数据)。