人教版数学八年级上册积的乘方
- 格式:ppt
- 大小:1.19 MB
- 文档页数:21
八年级上册人教版数学积的乘方一、积的乘方的定义。
1. 文字表述。
- 积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘。
2. 公式表示。
- 对于(ab)^n(n为正整数),根据积的乘方的定义有(ab)^n = a^n× b^n。
- 这个公式可以推广到多个因数的积的乘方,例如(abc)^n=a^n× b^n× c^n(n 为正整数)。
二、积的乘方公式的推导。
1. 以(ab)^n为例(n为正整数)- 根据乘方的意义(ab)^n=⏟(ab)×(ab)×·s×(ab)_n个(ab)。
- 再根据乘法的交换律和结合律,可以将上式改写为⏟(a× a×·s× a)_n个a×⏟(b×b×·s× b)_n个b。
- 而⏟(a× a×·s× a)_n个a=a^n,⏟(b× b×·s× b)_n个b=b^n,所以(ab)^n = a^n×b^n。
三、积的乘方的应用。
(一)计算。
1. 简单计算示例。
- 计算(2x)^3。
- 根据积的乘方公式(ab)^n=a^n× b^n,这里a = 2,b=x,n = 3。
- 则(2x)^3=2^3× x^3=8x^3。
2. 多个因数积的乘方计算示例。
- 计算( - 3a^2b)^2。
- 这里a=-3,b = a^2b,n = 2。
- 根据公式(abc)^n=a^n× b^n× c^n,则( - 3a^2b)^2=( - 3)^2×(a^2)^2× b^2。
- 因为(-3)^2 = 9,(a^2)^2=a^2×2=a^4,所以( - 3a^2b)^2 = 9a^4b^2。
《积的乘方》教学设计一、课题名称积的乘方二、课程课时1课时三、教材内容分析本节课是人教版八年级上册数学第十五章《整式的乘除与因式分解》中的内容。
积的乘方是整式乘法运算中的重要组成部分,它是在学习了同底数幂的乘法和幂的乘方之后进行的。
教材通过具体的实例引导学生观察、分析、归纳出积的乘方的运算法则,让学生体会从特殊到一般的数学思想方法。
四、课标目标1.理解积的乘方的运算法则。
2.能运用积的乘方的运算法则进行计算。
五、教学重点、难点1.教学重点积的乘方运算法则的推导过程。
运用积的乘方运算法则进行计算。
2.教学难点对积的乘方运算法则的理解。
法则中指数的运算及符号的确定。
六、课的类型及主要教学方法1.课的类型:新授课。
2.主要教学方法:讲授法、探究法、练习法。
七、教学过程1.导入新课教学环节:复习旧知。
教师活动:同学们,我们之前学习了同底数幂的乘法和幂的乘方,谁能来分别说一说它们的运算法则?学生活动:学生回答同底数幂的乘法法则是aᵐ×aⁿ=aᵐ⁺ⁿ(m、n都是正整数);幂的乘方法则是(aᵐ)ⁿ=aᵐⁿ(m、n都是正整数)。
设计意图:通过复习旧知,为学习积的乘方做铺垫。
目标达成预测:学生能够准确回答同底数幂的乘法和幂的乘方的运算法则。
2.讲授新课探索积的乘方运算法则教学环节:计算式子。
教师活动:现在我们来计算一下(ab)²和(2x)³,看看结果是多少?并观察式子的特点。
学生活动:(ab)²=ab×ab=a×a×b×b=a²b²;(2x)³=2x×2x×2x=2×2×2×x×x×x=8x³。
学生观察到式子是积的乘方形式。
设计意图:通过具体的计算,让学生初步感受积的乘方的特点。
目标达成预测:学生能够正确计算式子的结果,并观察到式子的特点。
《积的乘方》教案一、教学目标:1.理解积的乘方的意义,掌握积的乘方的运算法则,并能运用法则进行熟练计算。
2.学会观察、分析、归纳和概括,通过具体实例体验数学化的过程。
3.培养学生对所学知识的归纳、概括和演绎的能力,以及应用意识和解决问题的能力。
二、教学重点:积的乘方的运算法则及其应用。
三、教学难点:灵活运用积的乘方的运算法则进行计算,解决实际问题。
四、教学准备:教师准备多媒体课件、小黑板;学生准备计算器、纸张等。
五、教学过程:1.导入新课:通过复习旧知,引出新课题。
2.新课学习:通过具体实例,引导学生探究积的乘方的意义和运算法则,并尝试用符号语言表示。
然后通过例题讲解和练习,让学生掌握法则的运用。
3.课堂练习:通过练习题,让学生巩固所学知识,加深对积的乘方的理解。
4.归纳小结:总结积的乘方的意义和运算法则,强调运算法则的关键是确定指数,并注意符号问题。
同时提醒学生注意计算过程中符号的变化规律。
5.布置作业:根据学生的实际情况,布置适当的课后练习题,并要求学生在规定的时间内完成。
同时可以安排一些拓展性的任务,如让学生自己设计一个与积的乘方相关的题目等。
6.教学反思:根据学生的学习情况,对教学方法和过程进行反思和总结,发现问题并及时改进。
同时可以引导学生思考积的乘方在现实生活中的应用和价值,培养学生的数学应用意识。
六、板书设计:积的乘方定义:几个数相乘,每个数都提到一个相同的幂次。
法则:a×b^n=a×b×…×b(n个b)。
运算顺序:先乘后指数化。