行列式测试题 有答案
- 格式:docx
- 大小:55.64 KB
- 文档页数:5
内容提要:一、行列式的定义1、2阶和3阶行列式2112221122211211a a a a a a a a D -==312312322113332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a ---2、排列与逆序定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义定义 称∑-==nn n p p p np p p p p p nnn n nn a a a a a a a a a a a a D21212121)(212222111211)1(τ )det(ij a =为n 阶行列式,记作D 或n D .也记作)det(ij a .4、三角形行列式:主对角线元素的乘积。
二、行列式的性质 性质1 D D ='.性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零.性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式.推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.性质4 nnn n in i i nnnn n in i i n nnn n in in i i i i n a a a a a a a a a a a a a a a a a a21211121121211121121221111211βββαααβαβαβα+=+++性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变.三、行列式的展开定理定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M .ij j i ij M A +-=)1( ——ij a 的代数余子式定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解D D x 11=,D Dx 22=,……,DD x n n =.推论 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (01=x ,02=x ,……,0=n x 显然是方程组的解,称为零解)1)0≠D ⇒仅有零解. 2)有非零解⇒0=D .《线性代数》单元自测题答案第一章 行列式一、填空题:1.设j i a a a a a 54435231是五阶行列式中带有负号的项,则i =________;j =_________。
第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。
2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。
解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。
第一章习题1-1.计算下列行列式(1)713501163.(2)4321651005311021.(3)222111ab c a b c . (4)2010411063143211111.(5)49362516362516925169416941.1-2.计算行列式abcdb a dc cd a b d c b a.1-3.计算n 阶行列式(1)n321332122211111.(2)14321432113213121321n nnn nn n n---.(3)21111121111211112------. 1-4. 证明:(1)2221112222221111112c b a c b a c b a b a a c c b b a a c c b b a a c cb =+++++++++.(2)321321321332321332321332321c c c b b b a a a c mc c lc kc c b mb b lb kb b a ma a la ka a =+++++++++.(3)222244441111a b c d a b c d a b c d ()()()()()()()b a c a d a c b d b d c a b c d =------+++.1-5.计算行列式xyy x y x y x 0000000000.1-6.计算4阶行列式112233440000000a b a b b a b a . 1-7. 如果行列式∆=nnn n nna a a a a a a a a212222111211,试用∆表示行列式nnn n n nn a a a a a a a a a a a a 11211213323122221的值. 1-8.利用克莱姆法则解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+067452296385243214324214321x x x x x x x x x x x x x x . 1-9. 问λ取何值时,齐次线性方程组可能有非零解?12120x x x x λλ+=⎧⎨+=⎩ 1-10.已知()413571200=10301004ij D a =,求11121314A A A A +++.第一章习题解答1-1.计算下列行列式(1)713501163(2)4321651005311021(3)2010411063143211111(4)49362516362516925169416941(5)222111a b c a b c .(1)解一 由三阶行列式定义得71350116330765311110335161709010154234.=⨯⨯+⨯⨯+⨯⨯-⨯⨯-⨯⨯-⨯⨯=++---=解二2331123361105105105361056317317018r r r r r r --↔==--23325105105018018340560034r r r r ↔-=-=-=-.(2)解213241120112011201135001510151015601560007123400330033r r r r r r -----==34120101512100330007r r ↔-==.(3)解43433232211111111111111234012301231361001360013141020014100014r r r r r r r r r r -----==4311110123100130001r r -==.(4)解43433232211491614916149164916253579357909162536579112222162536497911132222r r r r r r r r r r -----===.(5)解 222111()()()ab c c b c a b a a b c =---. 1-2.计算行列式abcdb a dc cd a b d c b a.解12341111()r r r r ab c d b a d c b a d c a b c d c d a b c d a bdcba dcba+++=+++41322110()c c c c c c b a bd a c b a b c d c d c a d b c dc db ca d------=+++------()a b d ac b a b cd d c a db c c db ca d---=+++------ 3221()000r r r r a b d a c b a b c d a b c da b c da b c d++---=+++--++--+--21()()(1)d a c b a b c d a b c d a b c da b c d+--=+++--+-+--+--[]()()()()()()()()().a b c d a b c d a b c d d a c b a b c d a b c d a b c d a b c d =-+++--++-----=+++--++---+-1-3.计算n 阶行列式(1)n321332122211111.(2)143214321132********n nn n nn n n---.(3)21111121111211112------.(1)解 1122111111111122201111123300111230001n n n n r r r r r r n------==. (2)解12123112312131113123111311(1)22341134123411341nc c c n n n n n n n n n n n n n n n n n n+++------+=2131112310100001200(1)2112001111n r r r r r r n n n n n n------+=--10001200(1)113021111n n n--+=--1(1)!(1).2n n -+=-(3)解 21111111112111021111211012111111210112n D +--+==---+-----+--, 按第一列展开成两个行列式得111111111211021111210121111112112n D -=+--------213111111032200320003n nr r r r r r n D +++-=+ 112122122333333n n n n n n n D D D -------=+=++=++++12212221333333512n n n n ----=++++=++++-12213313333111132n n n n ---+=++++++=+=-.1-4. 证明:(1)2221112222221111112c b a c b a c b a b a a c c b b a a c c b b a a c cb =+++++++++.证11111111111111112222222222222222b cc a a b b c a a b c c a a b b c c a a b b c a a b c c a a b b c c a a b b c a a b c c a a b ++++++++++=++++++++++++左= 1111111122222222b c a a c a a b b c a a c a a b b c a a c a a b ++=+++++111111222222bc a c a b b c a c a b b c a c a b =+1112222a b c a b c a b c ==右. (2)321321321332321332321332321c c c b b b a a a c mc c lc kc c b mb b lb kb b a ma a la ka a =+++++++++. 证 1323123233122312323312231232331223c lc c mc a ka la a ma a a ka a a b kb lb b mb b b kb b b c kc lc c mc c c kc c c --+++++++=+++++左=12123123123c kc a a a b b b c c c -==右. (3)222244441111a b c d abcda b c d ()()()()()()()b a c a d a c b d b d c a b c d =------+++.证 243322122224444222222222111111110=()()()0()()()r a r r ar r ar a b c d b a c a d a a b c d b b a c c a d d a a b c d b b a c c a d d a ------=------左222222222()()()()()()b ac ad a b b a c c a d d a b b a c c a d d a ---=------222111()()()()()()b ac ad a bcdb b ac c ad d a =---+++21222111()()()()()()r ar b a c a d a b ac ad ab b ac c ad d a +=---++++++23121()2222111()()()00()()()()r b r r b a r b a c a d a c bd bc b c ad b d a --+=------+-+2222()()()()()()()c bd bb ac ad a c b c a d b d a --=----+-+[]222211()()()()()()()()()()()()()()()()()()()()()()()()()()()()(b a c a d a c b d b c b c a d b d a b a c a d a c b d b d b d a c b c a b a c a d a c b d b d ad bd ab c ac bc ab b a c a d a c b d b d ad bd c ac bc b a =-----++++=-----++-++⎡⎤=-----+++----⎣⎦⎡⎤=-----++---⎣⎦=-)()()()()()()c a d a c b d b d c a b c d -----+++=右.1-5.计算行列式xyy x y x y x 0000000000.解 记000000000n x y x y D x y y x=,当1n =时,1D x =;当2n ≥时,按第1列展开得000000000000000n x y x y x y xyD x x y xyx==100000(1)0000n y x y y y xy++-1(1)n n n x y +=+-.1-6.计算4阶行列式1122334400000000a b a b b a b a . 解11222222111413313333444400000(1)0(1)000a b a b a b a b a b a b b a b a a b b a ++=-+- 2222333114143333(1)(1)a b a b a a b b b a b a ++=⨯--⨯-()()142323142323a a a a b b bb a a b b =---14142323()()a a b b a a b b =--.1-7. 如果行列式∆=nnn n nna a a a a a a a a212222111211,试用∆表示行列式nnn n n nn a a a a a a a a a a a a 11211213323122221的值.解112212122211121313232122211121211121(1)(1)n n n n r r n r r n n r r n n n n n nn n n nnna a a a a a a a a a a a a a a a a a a a a ---↔↔↔--=-=-∆.1-8.利用克莱姆法则解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+067452296385243214324214321x x x x x x x x x x x x x x .解 方程组的系数行列式2151130627002121476D ---==≠--,181********52120476D ---==---,2285119061080512176D --==----,321811396270252146D --==--,4215813092702151470D --==---,方程组的解为12343,4,1,1x x x x ==-=-=.1-9. 问λ取何值时,齐次线性方程组可能有非零解?12120x x x x λλ+=⎧⎨+=⎩解 方程组的系数行列式211(1)(1)1D λλλλλ==-=+-,当1λ=或1λ=-时,0D =,方程组可能有非零解.1-10. 已知()413571200=10301004ij D a =,求11121314A A A A +++.解 1234411122341112131411111111112000200==103000301004004k c c c c k A A A A =----+++∑=-2.。
行列式 练习题一、判断题1. 行列式的行数和列数可以相同也可以不同。
( )2. n 阶行列式共有2n 个元素,展开后共有n !项。
( )3. n 阶行列式展开后的n !项中,带正号的项和带负号的项各占一半。
( )4. 行列式D 中元素ij a 的余子式ij M 与其代数余子式ij A 符号相反。
( )5. 上(下)三角形行列式的值等于主对角线上元素的乘积。
( )6. 行列式与它的转置行列式符号相反。
( )7. 行列式中有一行的元素全部是零则行列式的值为零。
( )8. 行列式中有两行元素相同,行列式的值为零。
( )9. 行列式中有两行元素成比例,行列式的值为零。
( ) 10.互换行列式的两行,行列式的值不变。
( ) 11. 行列式中某一行的公因子k 可以提到行列式符号之外。
( ) 12. 行列式中若所有元素均相同,则行列式的值为零。
( ) 13. 行列式的值等于它的任一行(列)的元素与其对应的代数余子式乘积。
( )14. 行列式某一行(列)的元素与另一行(列)的对应的元素的代数余子式乘积之和为零。
( ) 15. 齐次线性方程组的系数行列式0D ≠,则它仅有零解。
( )二、填空题1.=______x yyx -。
2.sin cos =______cos sin θθθθ-。
3. 123246=______345。
4.2-20310=______450。
5.=______a x xx b x x x c。
6. 211123=0______49x x x =,则。
7.222031,005D =-已知111213=______M M M -+则。
8.=______x y x y y x y x x y x y+++。
9.100110=______011001a b c d---。
10.222=______a b c a b c b c c a a b+++。
11. 已知21341023,15211152D =-则1323432=______A A A ++。
第九讲队列式单元测试题评论一、填空题(每题2 分,满分 20 分)1.全体 3 阶摆列一共有 6 个,它们是 123,132,213,231,312,321;2. 奇摆列经过奇数次对调变成偶摆列,奇摆列经过偶数次对调变成 奇 摆列;3. 队列式 D 和它的转置队列式D 相关系式 DD ;4. 互换一个队列式的两行(或两列) ,队列式 的值改变符号 ;5. 假如一个队列式有两行(或两列)的对应元素成比率,则这个队列式等于零 ;6. 一个队列式中某一行(列)全部元素的公因子能够提到队列式符号的外边;7. 把队列式的某一行 (列)的元素乘以同一数后加到另一行 (列)的对应元素上,队列式 的值不变 ;8. 队列式的某一行(列)的元素与另一行(列)的对应元素的代数余子式的乘积之和等于零 ;a11a 12La 1n0 a22La2na 11a 22 K a nn ;9. MMMMLann10.当 k= 214kk2时,45。
2k二、判断题(每题 3 分,满分 24 分)1. 若(i1i2i n )k,则 (i 2 i1i 3 i n ) k 1(∨)a11a12a1n2.设D a21a22a2n , 则D的一般项 a ij a i j2ai j的符号1 12n nan1an2ann是( 1)( j1 j2j n ).(×)3.若 n(n>2)阶队列式 D=0,则 D 有两行(列)元素同样 . (×) 4.若 n 阶队列式 D 恰有 n 个元素非 0,则 D≠0.(×) 5.关于线性方程组,只需方程个数等于未知数个数,就能够直接使用克莱姆法例求解。
(×)6.若队列式 D 的同样元素多于n2n 个,则D=0.(× )a11a12a13a13a23a337.a21a22a23a12a22a23(× )a31a32a33a11a21a31阶队列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。
ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。
高中数学行列式试题2 .下列以行列式表达的结果中,与 sin (a- 3)相等的是(316|3 .三阶行列式3 5 7中,元素9的代数余子式的值为4 g 2I6.定义行列式运算:f (x )的图象,只需将 y=2cos2x 的图象(2兀A.向左平移上“个单位, 2兀IC.向右平移己一个单位'J七口百e -sine .口 A =()sino cosA . cos2 0B. sin2 04.定义行列式运算次]a 2a4=a t a 4-a 2a 3,将函数 f (x) = V3式回 1 CDEx|的图象向左平移A. 38B. - 38C. 360D. - 360n(n>0)个单位,所得图象关于 y 轴对称,则n 的最小值为(7VC.2KD.5.行列式 元素7的代数余子式的值为()A. - 15B. - 3C. 3D. 12若复数z 满足 =l+2i ,则z 等于(-i iA. 1 + iB. 1 - iC. 3+iD. 3- i)B.向左平移三个单位 D,向右平移胃个单位*L JC. 1D. - 1.选择题(共12小题)1.定义:= a1a 4-a 2a 3,函数 f (x)则要得到函数9.设直线l i 与12的方程分别为 a i x+b i y+c i = 0与a 2x+b 2y+c 2= 0,则“"l1 // l2” 的(-bI③ a 1b 2c 3+a 2b 3c 1+a 3b 1c 2 — a 1b 3c2 — a 2b 1c 3 — a 3b 2c 1 ;c3al a 2 a311.展开式为ad - bc 的行列式是(A. {x|x< - 2 或 x>1} C. {x|-2<x< 1}二.填空题(共23小题)14.已知 1147 "11488.定义运算 =ad-bci -1 =2的复数2为()A. 1 - 2iB. - 1 - iC. — 1 + iD. 1 - iA.a. bB.C.a .D.12.若规定a. b =ad - bc 则不等式 n-2-2 x13.若<:osu2eos JC 1=0,则锐角x = =0”是A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.下列四个算式: alc2 c 3b3c3 b] b 2C1 c2a2 a3其中运算结果与行列式A. 1个 1 bl♦ b口B, 2个 c2 的运算结果相同的算式有(C. 3个D, 4个B. {x|- 2<x<1} D.15.已知行列式中的元素an+j (j = 1, 2, 3,…,9) 是等比数列{a n }的第n+j 项,则此行列式的值是 16.若行列式 17.把 2 sr 5 8 1 4 3 7x9 18.若行列式中(xw 1),元素1的代数余子式大于 0,则x 满足的条件是 3t 2 y2 sin( H 2 TT cns(~37T 表示成一个三阶行列式是 的第1行第2列的元素1的代数余子式-1,则实数 x 的取值集合为 19.行列式sim 3 5 的最大值为 20.行列式 行列式 22. 行列式23.24. 25. 26. 4 2k -3 5 4 -1 1 «: 的元素-3的代数余子式的值为10,则十(k. B )的模为 1 4 -1 2 7 1 -1x5 中x 的系数是 2019 7T 三阶行列式 若行列式 49 sin 日 <DS 日.7T 7T sirry^ cos^ 1 -3 0 4 0-2 -12 3三阶行列式 若行列式 的元素冗的代数余子式的值等于 中,元素1的代数余子式的值为 =0,则m 的值是中,元素4的代数余子式的值为-2-1 a 3 0 1的展开式的绝对值小于6的解集为(-1,2),则实数a 等27.函数f ㈤二cosz sinx sinx cosx的最小正周期T=28.已知矩阵A = -2y 0 -y 11-2x;r3 -3N 1,且 A+B=C,贝U x+y 的值为 COSK sinx29.方程 的增广矩阵是30.方程组二^xC (3, 4)实数解x 为31.若行列式2 4 = 0,则x=1 232.对于下列四个命题①若向量显,b,满足彳则a与b的夹角为钝角;②已知集合A=正四棱柱,8 =长方体,则AAB=B;③ 在直角坐标平面内,点M (|a|, |a - 3|)与N (cosa, sin a)在直线x+y-2=0的异侧;④对2X2数表定义平方运算如下:卜°)2工叫.卜1Cab+bd],则〔cd 【cdj〔cd/ ^ac+cdbc+d2J [1。
.第1 章行列式( 作业1)一、填空题1.设自然数从小到大为标准次序,则排列13⋯(2n1)24⋯(2n)的逆序数为,排列13⋯(2n1)(2n)(2n2)⋯2的逆序数为.2.在6阶行列式中,a23a42a31a56a14a65这项的符号为.3.所有n元排列中,奇排列的个数共个.二、选择题00010002001.由定义计算行列式=().n100000000nn(n1)(n1)(n2)(A)n!(B)(1)2n!(C)(1)2x x102.在函数1x23f(x)3x中,x3的系数是(22n!(D)(1)n(n1)n!).112x(A)1 (B)-1 (C)2 (D)33.四阶行列式的展开式中含有因子a32的项,共有()个.(A)4;(B)2;(C)6;(D)8.三、请按下列不同要求准确写出n阶行列式D det()定义式:aij1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n阶行列式中,等于零的元素个数大于n2n,则此行列式的值等于多少?说明理由.......第1 章行列式( 作业2) 一、填空题a11a12a134a112a113a12a13 1.若D=a21a22a231,则D14a212a213a22a23_____.a31a32a334a312a313a32a3311232.方程12x223的根为___________. 231=052319x2二、计算题2134a1001.419162 .1b10 3015456001c1 11718001da b bb a b3.D nb b a......x a1a2a n11a1x a2an114.a1a2x a n11D n1a1a2a3x1a1a2a3a n1x11x12x1nx21x22x2n(n2)。
5.计算n阶行列式D nxn1xn2xn n ......第1 章行列式(作业3)一、填空题0a12a13a1na120a23a2n1.当n为奇数时,行列式a13a230a3n=_________.a1n a2n a3n0x y0000x y002.行列式.000x yy000x二、选择题1.设D是n阶行列式,则下列各式中正确的是( ).[ A ij是D中a ij的代数余子式].(A)n(B)naijAij0,j1,2,,n;aijAij D,j1,2,,n; i1i1(C)n(D)na1jA2j D;aijAij0,i1,2,,n. j1j12.行列式结果等于(ba)(c a)(d a)(c b)(d b)(d c)的行列式是().111111111aa2a31000(A)abc d;(B)0bacad a;(C)1bb2b3;(D)1babb2 a2b2c2d20b c d1cc2c31cacc2a4b4c4d40b3c3d31dd2d31dadd2三、计算题15131.设A 1134A41A42A43A44,其中A(j1,2,3,4)是A中元素a的代,计算11234j4j 2234数余子式.......x10000x1002.a n 3.D n1 4.D2n00x1an1an2a2xa1a n(a1)n(an)na n1(a1)n1(an)n1a a1an111a nb na1b100c1d1c nd n第1章行列式( 作业4) 一、填空题......a1x1a2x2a3x3d11.已知关于变量x i(i1,3)的线性方程组b1x1b2x2b3x3d2,由克莱姆法则,当满足c1x1c2x2c3x3d3条件时,方程组有唯一解,且x3. a11x1a12x2a1n x n02.齐次线性方程组a21x1a22x2a2nxn0的系数行列式为D,那么D 0是该行列式有an1x1an2x2annxn0非零解的条件.二、求解下列行列式0123n11012n21.Dn2101n33210n4n1n2n3n40......1a111111a2, 其中a1a2a n0.2.D n111a n(1)x12x24x30三、问取何值时,齐次线性方程组2x1(3)x2x30有非零解?x1x2(1)x30......第1 章行列式 (检测题)一、填空题1.若排列i 1i 2i n 的逆序数为k ,则排列i n i n1 i 1的逆序数为. a 1 a 2 0 0 0 a 3a 4 0 0 0 2.Dc 1c 2 2 31. c 3 c 4 0 1 4 c 5c 6 4 5 0a1na2nan1nanna1n1 a2n2 an1n10 3.n 阶行列式=. a12 a22 0 0a110 0 1 2 2223 4.11 1 1=.1 4 42 4 31 5 5253二、选择题1 a 1 a2 an11 a1 x1 a2an11.设P(x) 1 a 1 a 2x2an1,其中a 1,a 2,,a n1是互不相同得实1a1a2 an1 xn1数,则方程P (x )=0()。
行列式习题及答案行列式是线性代数中的重要概念,它在矩阵运算和方程组求解中起着重要的作用。
本文将介绍一些行列式的习题及其答案,帮助读者更好地理解和掌握这一概念。
1. 习题一:计算行列式的值已知行列式A = |2 3||4 5|求解行列式A的值。
答案:根据行列式的定义,可以得到A的值为:2*5 - 3*4 = 10 - 12 = -2。
2. 习题二:行列式的性质已知行列式B = |a b||c d|如果行列式B的值为0,是否可以得出a、b、c、d中至少有一个为0的结论?答案:是的,如果行列式B的值为0,根据行列式的性质,可以得出至少存在一组a、b、c、d中的一个为0的情况。
这是因为行列式的值为0意味着矩阵的行向量或列向量线性相关,即存在线性关系式使得行向量或列向量之间存在依赖关系。
3. 习题三:行列式的展开已知行列式C = |1 2 3||4 5 6||7 8 9|求解行列式C的值。
答案:根据行列式的展开定理,可以选择第一行或第一列展开计算。
选择第一行展开,可以得到C的值为:1 * (-1)^(1+1) * |5 6| - 2 * (-1)^(1+2) * |4 6| + 3 * (-1)^(1+3) * |4 5||8 9| |7 9| |7 8|= 1 * (5*9 - 6*8) - 2 * (4*9 - 6*7) + 3 * (4*8 - 5*7)= 1 * (-3) - 2 * (-6) + 3 * (-3)= -3 + 12 - 9= 04. 习题四:行列式的性质已知行列式D = |a b||c d|如果行列式D的值为1,是否可以得出a、b、c、d中至少有一个为1的结论?答案:不可以。
行列式的值为1并不能直接得出a、b、c、d中至少有一个为1的结论。
因为行列式的值为1并不代表矩阵的元素本身就是1,行列式的值只是表示了矩阵的行向量和列向量之间的线性关系。
5. 习题五:行列式的性质已知行列式E = |1 2||3 4|如果行列式E的值为k,是否可以得出a、b、c、d中的元素之和等于k的结论?答案:是的。
(完整版)行列式练习题及答案一、填空题1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共个. 二、选择题1.由定义计算行列式nn 00000010020001000ΛΛΛΛΛΛΛΛΛΛ-= (). (A )!n(B )!)1(2)1(n n n --(C )!)1(2)2)(1(n n n --- (D )!)1()1(n n n --2.在函数xx x x xx f 21123232101)(=中,3x 的系数是().(A )1 (B )-1 (C )2 (D )33.四阶行列式的展开式中含有因子32a 的项,共有()个. (A )4;(B )2;(C )6;(D )8.三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式:1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.一、填空题1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则2.方程229132513232213211x x --=0的根为___________ .二、计算题 1. 8171160451530169144312----- 2.dc b a100110011001---3.abbb a b b b a D n ΛΛΛΛΛΛΛ=4.111113213211211211211nn n n n a a a a x a a a a x a a a a x a a a a x D ΛΛΛΛΛΛΛΛΛΛΛ---+=5.计算n 阶行列式)2(212121222111≥+++++++++=n nx x x n x x x n x x x D n n n n ΛΛΛΛΛΛΛ。
第九讲
行列式单元测试题点评
一、填空题(每小题2分,满分20分)
1.全体3阶排列一共有 6 个,它们是123,132,213,231,312,321;
2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次对换
变为奇排列;
3. 行列式D和它的转置行列式D'有关系式D D'
=;
4. 交换一个行列式的两行(或两列),行列式的值改变符号;
5. 如果一个行列式有两行(或两列)的对应元素成比例,则这个行列
式等于零;
6. 一个行列式中某一行(列)所有元素的公因子可以提到行
列式符号的外边;
7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的
对应元素上,行列式的值不变;
8. 行列式的某一行(列)的元素与另一行(列)的对应元素的代数余
子式的乘积之和等于零;
9.
11121
222
1122
; 00
n
n
nn
nn
a a a
a a
a a a
a
=
L
L
K
M M M M
L
10.当
k=
2
2
±
时,5
42
k k
k
=。
二、判断题(每小题3分,满分24分)
1.1)(,)(31221±==k i i i i k i i i n n ΛΛππ则若 (∨)
的符号
的一般项则设n n j i j i j i nn
n n n
n
a a a a a a a a a a a a D ΛΛ
M
M M M ΛΛ2211D ,.221
2222111211=
.)
1()
(21n j j j Λπ-是 (×)
3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。
(×) 6.若行列式D 的相同元素多于2n n -个,则D=0. (×)
7.
11
121313233321222312
222331
32
33
11
21
31
a a a a a a a a a a a a a a a a a a = (×)
8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。
(×) 三、单项选择题(每小题4分,满分20分)
1.位于n 级排列12111k k n i i i i i -+L L 中的数1与其余数形成的反序个数为( A )
(A )k-1 (B) n-k-1 (C) k n C (D) 2
n C k -
2.设12n i i i L 是奇排列,则121n n i i i i -L 是(C ) (A )奇排列; (B ) 偶排列;
(C )奇偶性不能仅由n 的奇偶性确定的排列;
(D )奇偶性仅由n 的奇偶性确定的排列。
3.一个不等于0的n 阶行列式中非零元素个数至少为(D ); 4.以下数集作成数环的是( C )
(1) S={}
Z ∈; (2) S={}
0a a Q ≠∈;
(3) S={},a b Z +∈; (4)
S={}
,a a b Q +∈.
(A )(1)、(3) (B )(2)、(4) (C )(3)、(4) (D )(1)、(4)
5.行列式000
000
a e b
f g
c h d
中元素f 的代数余子式是( C ) 四、计算下列各题(每小题5分,满分20分)
1.计算(
)πL (2k)1(2k-1)2(k+1)k ; 3.计算行列式
D=
2223
3
3
4
4
4
3453453
4
5
345的值。
4.计算行列式 1
2
3
11100
0220
000011n n
n n
--=---L
L
L
M M M M M L n D 的值。
五、证明下列各题(满分16分)
1212,F F F F I 1.设均为数域,证明也是数域。
(5分)
2.已知a,b,c均不为0,证明
ay bx c
cx az b
bz cy a
+=
⎧
⎪
+=
⎨
⎪+=
⎩
有唯一解。
(5分)
证明因为方程组的系数行列式
所以有克莱姆法则知,方程组有唯一解。
3.设a,b,c是一个三角形的三边,证明0
0.
a b c
a c b
b c a
c b a
<(6分)证明
(因为a,b,c是三角形的三边)本讲作业:
(一)解答下列各题
1.计算行列式
123
113
121
1231
n
x n D x n
x
+
=+
+
L
L
L
M M M O M
L
2.计算n阶行列式
51000
65100
06500
00051
00065 D=
L
L
L
M M M O M M
L
L
22222
2222
222
2
2
2
2
12312(1)(1)1(2)2341n n n n n n ---L L L M M M L M L
说明:此行列式称为循环行列式,以后见到以下类型的行列式计算,可直接利用这一结果。
例如计算行列式 D=(二)
阅读教材P49-60,并回答什么是矩阵、矩阵的相等?矩阵有哪些运算和性质?有哪些特殊矩阵和特殊性质?。