圆与圆的位置关系教案4
- 格式:doc
- 大小:56.00 KB
- 文档页数:5
圆和圆的位置关系教学目标:1. 理解圆的定义和基本性质。
2. 掌握圆的位置关系,包括相离、相切和相交。
3. 能够运用圆的位置关系解决实际问题。
教学重点:1. 圆的定义和基本性质。
2. 圆的位置关系的理解和应用。
教学难点:1. 圆的位置关系的理解和应用。
教学准备:1. 教学PPT或黑板。
2. 圆的模型或图片。
3. 圆规和直尺。
教学过程:一、导入(5分钟)1. 引入话题:讨论日常生活中遇到的圆形物体,如硬币、轮子等。
2. 引导学生思考圆形物体的特点和性质。
二、圆的定义和基本性质(10分钟)1. 介绍圆的定义:一个平面上所有点到圆心的距离都相等的点的集合。
2. 讲解圆的基本性质:圆心到圆上任意一点的距离等于半径;圆上任意两点间的弧长相等;圆的周长和面积的计算公式。
三、圆的位置关系(10分钟)1. 介绍圆的位置关系:相离、相切和相交。
2. 讲解相离:两个圆没有任何交点。
3. 讲解相切:两个圆只有一个交点,即切点。
4. 讲解相交:两个圆有两个交点。
四、圆的位置关系的应用(10分钟)1. 举例说明圆的位置关系在实际问题中的应用,如自行车轮子与地面的关系、圆规的使用等。
2. 让学生尝试解决一些与圆的位置关系有关的实际问题。
五、总结和练习(5分钟)1. 总结本节课所学内容,强调圆的定义、基本性质和位置关系的重要性。
2. 布置一些练习题,让学生巩固所学知识。
教学反思:本节课通过讨论日常生活中遇到的圆形物体,引导学生思考圆形物体的特点和性质。
接着讲解圆的定义和基本性质,让学生了解圆的基本概念。
介绍圆的位置关系,包括相离、相切和相交,并通过实例让学生理解这些位置关系在实际问题中的应用。
进行总结和练习,帮助学生巩固所学知识。
在教学过程中,要注意引导学生积极参与讨论和思考,通过实际例子让学生更好地理解圆的位置关系。
布置适量的练习题,让学生在实践中掌握所学知识。
六、圆的方程教学目标:1. 理解圆的标准方程和一般方程。
2. 学会用圆的方程表示圆的位置和大小。
圆与圆的位置关系教案课题名称:圆与圆的位置关系教学设计一、教学目标:1. 知识与技能:学生能够掌握圆与圆的位置关系,包括相离、相切、相交、内切和外切五种情况,并且能够正确应用圆与圆的位置关系解决问题。
2. 过程与方法:通过师生互动、小组合作、讨论等形式,引导学生主动探究,培养学生的分析问题和解决问题的能力。
3. 情感态度价值观:培养学生合作学习的意识,增强学生对数学学习的兴趣,提高学生的数学思维能力。
二、教学过程:1. 导入(10分钟):导入学生对圆的基本概念的复习,通过回顾圆的定义、圆心和圆的半径的认识,为下面的教学做好铺垫。
2. 探究圆与圆的位置关系(20分钟):(1)呈现问题:小组合作思考,两个圆之间可能存在哪些位置关系?(2)学生探索:让学生通过观察和实际操作,找出圆与圆的五种位置关系:相离、相切、相交、内切和外切,并总结这五种位置关系的特点。
(3)实例讨论:随机选择一个问题,让学生运用刚才学到的知识,解决实际问题。
3. 归纳总结(10分钟):(1)学生分组展示各自的研究成果,归纳总结圆与圆的位置关系。
(2)教师对学生的总结进行点评,纠正错误,并给予肯定。
4. 深化应用(20分钟):(1)小组合作:给出两个具体的圆,要求学生根据已有的知识,判断并画出圆与圆的位置关系。
(2)讨论解答:激发学生的思考,引导学生通过讨论、解答加深对圆与圆的位置关系的理解和应用。
5. 拓展延伸(15分钟):(1)自主探究:给出几道综合性的题目,供学生自主探究与解决。
通过这个环节,旨在培养学生的自学能力和合作能力。
(2)学生展示:学生们上台依次进行题目的解答和讲解,通过学生的表现,评价学生的学习情况。
6. 课后作业(5分钟):布置作业:“5-2”教材第38页第1题。
三、教学评价:1. 课堂教学中,教师要及时给予学生们提供正确的引导和反馈,鼓励学生们敢于质疑和思考,培养学生们主动学习探究的能力。
2. 通过学生的展示和教师的点评,及时发现问题并给予指导,为学生的进一步提高提供方向。
教案:与圆有关的位置关系第一章:圆的定义与性质一、教学目标1. 了解圆的定义及基本性质。
2. 掌握圆的直径、半径和圆心等基本概念。
3. 学会用圆规和直尺画圆。
二、教学内容1. 圆的定义:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆。
2. 圆的性质:(1)圆是轴对称图形,直径所在的直线是圆的对称轴。
(2)圆是中心对称图形,圆心是对称中心。
(3)圆上任意一点到圆心的距离等于圆的半径。
三、教学活动1. 引入圆的概念,引导学生思考生活中的圆形物体。
2. 讲解圆的定义和性质,通过实物模型或图示辅助理解。
3. 示范用圆规和直尺画圆的方法,让学生动手实践。
四、作业布置1. 练习画不同大小的圆,并标注直径、半径和圆心。
2. 选择生活中的圆形物体,观察并描述其圆的性质。
第二章:圆的周长与面积一、教学目标1. 掌握圆的周长和面积的计算公式。
2. 学会用圆的周长和面积解决实际问题。
二、教学内容1. 圆的周长公式:C = 2πr 或C = πd,其中r为半径,d为直径。
2. 圆的面积公式:S = πr²,其中r为半径。
三、教学活动1. 复习圆的周长和面积的计算公式。
2. 通过实例讲解如何用圆的周长和面积解决实际问题。
四、作业布置1. 练习计算给定半径或直径的圆的周长和面积。
2. 应用圆的周长和面积公式解决实际问题,如计算圆桌的周长和面积。
第三章:圆的相交与相切一、教学目标1. 理解圆与圆的相交和相切的概念。
2. 学会判断圆与圆的位置关系。
二、教学内容1. 圆与圆的相交:两个圆在平面上有一定的交点。
2. 圆与圆的相切:两个圆在平面上只有一个交点。
三、教学活动1. 引入圆与圆的位置关系,通过实物模型或图示讲解相交和相切的概念。
2. 让学生通过实际操作,观察和判断圆与圆的位置关系。
四、作业布置1. 练习判断给定圆与圆的位置关系。
2. 画出给定圆与圆相交或相切的图形。
第四章:圆的方程一、教学目标1. 了解圆的方程及其表示方法。
数学教案圆和圆的位置关系位置对应数学教案教学目标:1.学生能够正确理解和运用圆和圆的位置关系的相关术语和概念。
2.学生能够通过观察和推理,准确描述和判断圆和圆的位置关系。
3.学生能够应用所学的知识,在解决实际问题中分析和解释圆和圆的位置关系。
教学重点:1.圆和圆的位置关系的基本概念和术语。
2.圆与圆之间的相交关系和包含关系。
教学难点:学生能够准确判断和描述圆与圆的相交关系和包含关系。
教学准备:1.教师准备多个不同大小的纸圆或圆形物体。
2.教师准备相关课件或黑板。
教学过程:引入新知识:1.教师出示几个不同大小的纸圆或圆形物体,引导学生观察并描述它们之间的位置关系。
2.教师提问学生:你们观察到了什么?这些圆之间有什么样的位置关系?请描述出来。
讲解重点概念:1.教师引导学生观察和描绘不同的圆与圆之间的位置关系,如相切、相交、内切、外切等。
2.教师讲解并板书相关概念和术语,如相切、相交、内切、外切、内含、外离等。
并解释每个术语的意义和特点。
判断与应用:1.教师给学生出示多个不同的圆,让学生分组讨论并判断圆与圆的位置关系。
2.学生通过观察和推理,准确描述和判断圆与圆的位置关系,并在小组中发表自己的观点和理由。
3.学生将自己的判断和理由呈现给全班,并与其他小组进行讨论和交流。
解决实际问题:1.教师出示一些关于圆与圆的位置关系的问题,让学生运用所学的知识,分析和解决问题。
2.学生在小组中合作,共同讨论和解决问题,并将他们的解决方法和答案呈现给全班。
拓展练习:1.学生在课后完成一些相关练习题,巩固所学的知识和技能。
2.学生可以在生活中继续观察和记录圆与圆的位置关系,并尝试解释和应用它们。
课堂总结:1.教师对本节课所学的知识进行总结,并提醒学生在实践中继续应用所学的技能和方法。
2.学生可以就本节课的学习效果和困难之处进行反馈,并提出问题和建议。
教学延伸:。
数学教案-圆和圆的位置关系篇一:圆和圆的位置关系说明圆和圆的位置关系教案说明一、课题名称本课属新人教版九年级上册第24章第二节《与原有关的位置关系》第二课之圆和圆的位置关系。
二、教学目的(一)教学知识点1.理解圆与圆之间的几种位置关系.2.理解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联络.(二)才能训练要求1. 经历探究两个圆之间位置关系的过程,训练学生的探究才能.2.通过平移实验直观地探究圆和圆的位置关系,开展学生的识图才能和动手操作才能.(三)情感与价值观要求1.通过探究圆和圆的位置关系,体验数学活动充满着探究与制造,感受数学的严谨性以及数学结论确实定性.2.经历探究图形的位置关系,丰富对现实空间及图形的认识,开展形象思维。
三、课型本课属探究课。
四、课时圆和圆的位置关系共计一课时五、教学重点探究圆与圆之间的几种位置关系,理解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联络.六、教学难点探究两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.七、教学过程教师借助多媒体讲解与学生合作交流探究法Ⅰ.创设征询题情境,引入新课Ⅱ.新课讲解(一)、想一想(二)、探究圆和圆的位置关系我总结出共有五种位置关系,如以下图:(1)外离:两个圆没有公共点,同时每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部(三)、例题讲解两个同样大小的肥皂泡黏在一起,其剖面如以下图(点O,O'是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.1、想一想如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?假设是,它的对称轴是什么?切点与对称轴有什么位置关系?假设⊙O1与⊙O2内切呢?〔如图(2)〕2、议一议投影片设两圆的半径分别为R和r.(1)当两圆外切时,两圆圆心之间的间隔(简称圆心距)d与R和r具有如何样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?(2)当两圆内切时(R>r),圆心距d与R和r具有如何样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?3、随堂练习八、作业安排习题3.9,重点检验学生对本章圆和圆的五种位置关系的掌握情况。
标题:圆与圆的位置关系教案一、引言1.1 本教案旨在帮助学生理解圆与圆之间的位置关系,并能够运用所学知识解决相关问题。
1.2 圆与圆的位置关系是几何学中的重要内容,对学生的空间想象能力和逻辑推理能力有一定的要求。
二、教学目标2.1 知识与技能目标2.1.1 了解圆与圆的位置关系的常见情况。
2.1.2 能够运用相关定理解决实际问题。
2.2 过程与方法目标2.2.1 培养学生的分析和抽象能力。
2.2.2 注重引导学生自主学习和探究,激发学生的学习兴趣。
2.3 情感态度价值观目标2.3.1 培养学生的观察和联想能力,提高他们的数学素养。
2.3.2 培养学生的合作精神和团队意识。
三、教学重点和难点3.1 教学重点3.1.1 理解并掌握圆与圆的位置关系的概念。
3.1.2 掌握相关定理和推理方法。
3.2 教学难点3.2.1 理论与实际问题相结合,引导学生灵活运用所学知识。
3.2.2 激发学生对数学的兴趣和求知欲。
四、教学内容与过程4.1 教学内容4.1.1 圆的位置关系概念与分类。
4.1.2 圆与圆的位置关系的定理及证明。
4.1.3 圆与圆的位置关系在实际问题中的应用。
4.2 教学过程4.2.1 导入:通过展示实际生活中的圆与圆的位置关系,引起学生的兴趣与思考。
4.2.2 概念讲解:介绍圆的内切、外切、相交、相离等位置关系的概念。
4.2.3 定理讲解:逐一讲解圆与圆的位置关系的定理,并举例说明。
4.2.4 练习与探究:组织学生进行相关练习和讨论,引导他们发现规律,总结归纳。
4.2.5 拓展应用:引导学生运用所学知识解决实际问题,如公园设计、圆形跑道建设等。
4.2.6 归纳总结:对所学内容进行归纳总结,强化学生对知识的记忆和理解。
五、教学手段与学时安排5.1 教学手段5.1.1 多媒体课件:辅助教师讲解,展示相关图片和动态模拟。
5.1.2 板书:重点内容进行归纳总结,帮助学生理清思路。
5.1.3 练习册:配套练习,帮助学生巩固所学知识。
圆与圆位置关系的教案5篇圆与圆位置关系的教案1教学目标:1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力.教学重点:两圆的五种位置与两圆的半径、圆心距的数量之间的关系.教学难点:两圆位置关系及判定.(一)复习、引出问题1.复习:直线和圆有几种位置关系?各是怎样定义的?(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?(二)观察、分类,得出概念1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例. (图(6))2、归纳:(1)两圆外离与内含时,两圆都无公共点.(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?结论:在同一平面内任意两圆只存在以上五种位置关系.(三)分析、研究1、相切两圆的性质.让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:如果两个圆相切,那么切点一定在连心线上.这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明2、两圆位置关系的数量特征.设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)两圆外切 d=R+r;两圆相交 R-r两圆内切两圆外离两圆内含d=R-r (R>r); d>R+r; dr);说明:注重“数形结合”思想的教学.(四)应用、练习例1:如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?解:(1)设⊙P与⊙O外切与点A,则PA=PO-OA∴PA=3cm.(2)设⊙P与⊙O内切与点B,则PB=PO+OB∴PB=1 3cm.例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.求证:⊙O与⊙B相外切.证明:连结BO,∵AC为⊙O的直径,AC=12,∴⊙O的半径,且O是AC的中点∴,∵∠C=90°且BC=8,∴,∵⊙O的半径,⊙B的半径,∴BO= ,∴⊙O与⊙B相外切.练习(P138)(五)小结知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;②以及这五种位置关系下圆心距和两圆半径的数量关系;③两圆相切时切点在连心线上的性质.能力:观察、分析、分类、数形结合等能力.思想方法:分类思想、数形结合思想.(六)作业教材P151中习题A组2,3,4题.圆与圆位置关系的教案2教学目标(一)教学知识点1.了解圆与圆之间的几种位置关系.2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.(二) 能力训练要求1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.(三)情感与价值观要求1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.教学重点探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.教学难点探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.教学方法教师讲解与学生合作交流探索法教具准备投影片三张第一张:(记作3. 6A)第二张:(记作3.6B)第三张:(记作3.6C)教学过程Ⅰ.创设问题情境,引入新课[师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.Ⅱ.新课讲解一、想一想[师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?[生]如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.[师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨论这些位置关系分别是什么.二、探索圆和圆的位置关系在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?[师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.[生]我总结出共有五种位置关系,如下图:[师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑.[生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.[师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?[生]外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点.[师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.经过大家的讨论我们可知:投影片(24.3A)(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离,相切三、例题讲解投影片(24.3B)两个同样大小的肥皂泡黏在一起,其剖面如图所示(点O,O’是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求TPN的大小.分析:因为两个圆大小相同,所以半径OP=O’P=OO’,又TP、NP分别为两圆的切线,所以PTOP,PNO’P,即OPT=O’PN=90,所以TPN等于36 0减去OPT+O’PN+OPO’即可.解:∵OP=OO’=PO’,△PO’O是一个等边三角形.OPO’=60.又∵TP与NP分别为两圆的切线,TPO =NPO’=90.TPN=360-290-60=120.四、想一想如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?〔如图(2)〕[师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.证明:假设切点T不在O1O2上.因为圆是轴对称图形,所以T关于O1O2的对称点T’也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假设不成立.则T在O1O2上.由此可知图(1)是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.在图(2)中应有同样的结论.通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心线.五、议一议投影片(24.3C)设两圆的半径分别为R和r.(1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r 满足这一关系时,这两个圆一定外切吗?(2)当两圆内切时(R>r),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?[师]如图,请大家互相交流.[生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r;反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是 B.因为切点B在连心线O1O2上,所以O1O2=O1B-O2B,即d=R-r;反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.[师]由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r.当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切 d=R-r.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:1.探索圆和圆的五种位置关系;2.讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位置关系;3. 探讨在两圆外切或内切时,圆心距d与R和r之间的关系.Ⅴ.课后作业习题24.3Ⅵ.活动与探究已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.解:连接O2O3、OO3,O2OO3=90,OO3=2R-r,O2O3=R+r,OO2=R.(R+r)2=(2R-r)2+R2.r= R.板书设计24.3 圆和圆的位置关系一、1.想一想2.探索圆和圆的位置关系3.例题讲解4.想一想5.议一议二、课堂练习三、课时小结四、课后作业圆与圆位置关系的教案3教学目标:探索圆与圆几种位置及两圆相切时两圆圆心距.半径的数量关系的过程.教学重点及教学难点:了解圆与圆的几种位置关系及两圆相切时圆心距d、半径R和r的数量关系一.创设问题情境,引入新课我们已经研究过点和圆的位置关系,还探究了直线和圆的位置关系,它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.二.新课讲解(一). 探索圆和圆的位置关系在一张透明纸上作一个⊙O.在另一张透明纸上作一个与⊙O1半径不等的⊙O2.两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?相互交流,总结出不同的位置关系. 投影片(§3.6.1)(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.?外离?外切(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离?,相切??内切.?内含(二)、例题讲解教师出示投影片(§3.6.2)(本节练习2)然后做好引导。
圆与圆位置关系的教案教案标题:探索圆与圆位置关系教学目标:1. 理解并能够描述圆与圆之间的位置关系,包括内切、外切、相交和相离。
2. 能够运用所学知识解决与圆与圆位置关系相关的问题。
3. 培养学生观察、分析和推理的能力,培养学生对几何形状的认识和理解。
教学资源:1. 教学投影仪或白板2. 圆规、直尺、铅笔和彩色笔教学过程:引入(5分钟):1. 利用投影仪或白板展示两个相交的圆,并向学生提问:“你们观察到了什么?”2. 引导学生发现两个圆的位置关系,并让他们描述这些关系。
探索与总结(20分钟):1. 将学生分成小组,每组给予一组圆规、直尺、铅笔和彩色笔。
2. 让学生在纸上绘制两个圆,并观察它们的位置关系。
3. 引导学生通过移动和调整圆规和直尺,探索圆与圆的内切、外切、相交和相离的情况。
4. 引导学生总结归纳不同位置关系的特点和判断方法。
练习与巩固(15分钟):1. 分发练习题给学生,让他们运用所学知识判断给定的圆与圆的位置关系。
2. 引导学生讨论解题思路,并给予必要的指导和帮助。
3. 收集学生的答案,并进行讲评,解释正确答案的推理过程。
拓展与应用(15分钟):1. 给学生提供更复杂的问题,引导他们运用所学知识解决。
2. 鼓励学生思考并提出自己的问题,进行探究和讨论。
3. 引导学生将所学知识应用到实际生活中,例如在建筑设计、地理测量等领域。
总结与反思(5分钟):1. 回顾本节课所学的内容,让学生总结圆与圆位置关系的要点。
2. 鼓励学生思考并分享他们在学习过程中的收获和困惑。
3. 提供反馈和指导,帮助学生进一步巩固和拓展所学知识。
课后作业:1. 布置练习题,让学生进一步巩固和应用所学知识。
2. 鼓励学生观察和发现身边的圆与圆的位置关系,并记录下来。
教学延伸:1. 引导学生研究和探索其他几何形状之间的位置关系,如直线与直线、直线与圆等。
2. 利用几何软件或在线资源,让学生进行虚拟实验,进一步巩固和应用所学知识。
圆和圆的位置关系一、教学目标1、知识与能力:了解圆和圆的位置关系,掌握圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系,并能利用圆和圆的位置关系和数量关系解题。
2、过程与方法:学生经历操作、探究、归纳、总结圆与圆的位置关系与数量关系的过程,培养学生观察、比较、概括的逻辑思维能力;学会运用数形结合的思想解决问题,发展学生数学应用意识。
3、情感、态度与价值观:在动手实践的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感。
二、教学重点、难点教学重点:教学重点:探索并了解圆和圆的位置关系。
教学难点:探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系。
三、教法学法教师引导学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略;学生小组合作、动手操作、自主探究成为学生主要的学习方式。
四、教学过程关系有( ).A.内切、相交B.外离、相交C.外切、外离D.外离、内切 3、两个半径相等的圆的位置关系有几种? 2. 探索数量关系(1)上面我们通过圆与圆的交点个数来认识了圆与圆的位置关系,那么还能通过其他的方法来判断吗? 请同学们根据两圆的位置关系图形,观察并思考如果两圆的半径分别为R 和r (R > r ),圆心距为d,当两圆外切时,d 与R 和r 有怎样的关系?反过来,当d 与R 和r 满足这样的关系时,两圆一定外切吗? 进一步,请同学们分小组利用d 与R 和r 的关系讨论两圆的位置关系,并完成下表。
①两圆外离⇔d>R+r ②圆外切⇔ ③两圆相交⇔ ④两圆内切⇔ ⑤两圆内含⇔(2)巩固训练二⊙O 1和⊙O 2的半径分别为3cm 和4cm , 则⊙O 1和⊙O 2的位置关系为:(1) O 1O 2=8cm ______ (2) O 1O 2=7cm ________ (3) O 1O 2=5cm _______ (4) O 1O 2=1cm _________ (5) O 1O 2=0.5cm ___ (6) O 1和O 2重合___活动3:拓展应用,解决问题1、例题 如图,⊙O 的半径为5cm ,点P 是⊙O 外一点,OP =8cm ,以P 为圆心做一个圆与⊙O 外切,这个圆的半径应为多少?以P 点为圆心做一个圆与⊙O 内切呢?变式训练定圆O 的半径是4cm,动圆P 的半径是1cm.(1)设⊙O 和⊙P 相切,点P 与点O 的距离是多少? (2)点P 可以在什么样的线上移动?定义的理解。
人教B 版 数学 必修2:圆与圆的位置关系(1)
一、教学目标
1、知识与技能
(1)理解直线与圆的位置的种类;
(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;
(3)会用点到直线的距离来判断直线与圆的位置关系.
2、过程与方法
设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据
有以下几点:
(1)当r d >时,直线l 与圆C 相离;
(2)当r d =时,直线l 与圆C 相切;
(3)当r d <时,直线l 与圆C 相交;
3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.
二、教学重点、难点:
重点:直线与圆的位置关系的几何图形及其判断方法.
难点:用坐标法判直线与圆的位置关系.
三、教学设想。