最大熵值法
- 格式:ppt
- 大小:262.50 KB
- 文档页数:20
熵值法1.算法简介熵值法是一种客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重。
设有m 个待评方案,n 项评价指标,形成原始指标数据矩阵n m ij x X ⨯=)(,对于某项指标j x ,指标值ij X 的差距越大,则该指标在综合评价中所起的作用越大;如果某项指标的指标值全部相等,则该指标在综合评价中不起作用。
在信息论中,熵是对不确定性的一种度量。
信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个方案的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大!因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据!2.算法实现过程2.1 数据矩阵mn nm n m X X X X A ⨯⎪⎪⎪⎭⎫ ⎝⎛= 1111其中ij X 为第i 个方案第j 个指标的数值2.2 数据的非负数化处理由于熵值法计算采用的是各个方案某一指标占同一指标值总与的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理!此外,为了避免求熵值时对数的无意义,需要进行数据平移:对于越大越好的指标:m j n i X X X X X X X X X X X nj j j nj j j nj j j ij ij ,,2,1;,,2,1,1),,,min(),,,max(),,,min(212121' ==+--=对于越小越好的指标:m j n i X X X X X X X X X X X nj j j nj j j ijnj j j ij ,,2,1;,,2,1,1),,,min(),,,max(),,,max(212121' ==+--=为了方便起见,仍记非负化处理后的数据为ij X2.3 计算第j 项指标下第i 个方案占该指标的比重2.4 计算第j 项指标的熵值1e 0,ln 10ln ,0,)log(*1≤≤=≥>-=∑=则一般令有关,与样本数。
熵值法综合评价熵值法是一种用来综合评价多个指标的方法,它通过对数函数将原始数据转换成熵值,消除了量纲和单位的限制,同时能够体现指标之间的差异度和权重。
因此,熵值法被广泛应用于各个领域的决策、评价和排名。
本文将介绍熵值法的基本原理、计算过程和应用场景,并且提供一些实用的指南,帮助读者更好地理解和运用熵值法。
一、基本原理熵是信息科学中的一个概念,指的是一个系统的混乱程度或不确定性。
而熵值法是借鉴了熵的概念,将每个指标的取值范围进行归一化处理,然后通过对数函数求出熵值,最后计算出每个指标的权重。
熵值法的基本思想是在综合考虑多个指标时,对于每个指标的实际取值,都应该与这个指标可能的最大取值进行比较,以此反映出各个指标之间的相对重要性。
而在计算熵值时,要求每个指标的取值在 [0,1] 范围内,这个过程称为标准化。
最后,将所有指标的熵值乘以对应的权重,得出每个指标的得分,最终进行综合评价。
二、计算过程熵值法的计算过程可以分为以下几个步骤:1. 标准化处理将每个指标的取值范围进行归一化处理,使得取值在 [0,1] 范围内。
常见的标准化方法包括极差法、标准差法和正态分布等。
2. 求出熵值通过对数函数计算每个指标的熵值,以此反映出各个指标之间的差异性。
3. 计算权重根据每个指标的熵值和权重计算公式,求出对应的权重系数。
4. 计算得分将每个指标的熵值乘以对应的权重系数,得出每个指标的得分。
最后进行综合评价。
三、应用场景熵值法广泛应用于各个领域的决策、评价和排名。
例如,在企业管理中,可以利用熵值法对各个业务指标进行综合评估,找出影响效益最大的业务,从而优化业务流程。
在环境评价中,也可以使用熵值法对不同污染指标进行权重分配,较为全面、合理地反映出污染物的危害程度和环境安全等级。
此外,在科学研究、教育评估、项目管理等领域也有着广泛的应用。
总之,熵值法作为一种有效可靠的综合评价方法,具有广阔的应用前景。
四、实用指南在运用熵值法进行综合评价时,有一些实用的指南可以帮助我们更好地应用熵值法。
熵值法的综合指数计算公式熵值法是一种多指标综合评价方法,它通过计算各指标的熵值来确定各指标的权重,从而得到综合评价结果。
在实际应用中,熵值法被广泛应用于环境评价、经济评价、企业绩效评价等领域。
本文将介绍熵值法的综合指数计算公式及其应用。
首先,我们来看看熵值法的基本原理。
熵值法是基于信息论的一种多指标综合评价方法,它利用信息熵的概念来衡量各指标的不确定性程度,从而确定各指标的权重。
在熵值法中,各指标的信息熵越大,说明其不确定性程度越高,对综合评价结果的影响也越大。
因此,信息熵越大的指标在综合评价中所占的权重也越大。
熵值法的综合指数计算公式如下:\[E_j = -\frac{1}{\ln(n)}\sum_{i=1}^{n}p_{ij}\ln(p_{ij})\]其中,\(E_j\)表示指标j的熵值,n表示评价对象的指标数,\(p_{ij}\)表示评价对象在指标j下的占比。
在实际应用中,我们通常将各指标的熵值标准化处理,得到各指标的权重,然后利用权重对各指标进行加权求和,得到综合评价结果。
具体步骤如下:1. 计算各指标的熵值,根据上述公式,计算各指标的熵值。
2. 熵值标准化,将各指标的熵值除以其最大可能熵值,得到各指标的权重。
3. 加权求和,利用各指标的权重对各指标进行加权求和,得到综合评价结果。
熵值法的综合指数计算公式能够很好地反映各指标的重要性,因此在实际应用中得到了广泛的应用。
下面我们将以环境评价为例,介绍熵值法的应用。
环境评价是指对某一区域或项目对环境的影响进行全面评价,以确定其对环境的适应性和可持续性。
在环境评价中,往往涉及多个指标,如大气污染、水质污染、土壤污染等。
利用熵值法可以很好地确定各指标的权重,从而得到综合评价结果。
以某个工业项目的环境评价为例,假设涉及大气污染、水质污染和土壤污染三个指标。
首先,我们需要收集各指标的数据,并计算各指标的熵值。
然后,对各指标的熵值进行标准化处理,得到各指标的权重。
最大熵算法笔记最大熵,就是要保留全部的不确定性,将风险降到最小,从信息论的角度讲,就是保留了最大的不确定性。
最大熵原理指出,当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。
在这种情况下,概率分布最均匀,预测的风险最小。
因为这时概率分布的信息熵最大,所以人们称这种模型叫" 最大熵模型" 。
匈牙利著名数学家、信息论最高奖香农奖得主希萨(Csiszar)证明,对任何一组不自相矛盾的信息,这个最大熵模型不仅存在,而且是唯一的。
而且它们都有同一个非常简单的形式-- 指数函数。
我们已经知道所有的最大熵模型都是指数函数的形式,现在只需要确定指数函数的参数就可以了,这个过程称为模型的训练。
最原始的最大熵模型的训练方法是一种称为通用迭代算法GIS (generalized iterative scaling)的迭代算法。
GIS 的原理并不复杂,大致可以概括为以下几个步骤:1. 假定第零次迭代的初始模型为等概率的均匀分布。
2. 用第N 次迭代的模型来估算每种信息特征在训练数据中的分布,如果超过了实际的,就把相应的模型参数变小;否则,将它们便大。
3. 重复步骤2 直到收敛。
GIS 最早是由Darroch 和Ratcliff 在七十年代提出的。
但是,这两人没有能对这种算法的物理含义进行很好地解释。
后来是由数学家希萨(Csiszar)解释清楚的,因此,人们在谈到这个算法时,总是同时引用Darroch 和Ratcliff 以及希萨的两篇论文。
GIS 算法每次迭代的时间都很长,需要迭代很多次才能收敛,而且不太稳定,即使在64 位计算机上都会出现溢出。
因此,在实际应用中很少有人真正使用GIS 。
大家只是通过它来了解最大熵模型的算法。
八十年代,很有天才的孪生兄弟的达拉皮垂(Della Pietra) 在IBM 对GIS 算法进行了两方面的改进,提出了改进迭代算法IIS ( improved iterative scaling )。
熵值法1.算法简介熵值法是一种客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重。
设有m 个待评方案,n 项评价指标,形成原始指标数据矩阵n m ij x X ⨯=)(,对于某项指标j x ,指标值ij X 的差距越大,则该指标在综合评价中所起的作用越大;如果某项指标的指标值全部相等,则该指标在综合评价中不起作用。
在信息论中,熵是对不确定性的一种度量。
信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个方案的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大!因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据!2.算法实现过程2.1 数据矩阵mn nm n m X X X X A ⨯⎪⎪⎪⎭⎫ ⎝⎛=1111其中ij X 为第i 个方案第j 个指标的数值 2.2 数据的非负数化处理由于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理!此外,为了避免求熵值时对数的无意义,需要进行数据平移:对于越大越好的指标:m j n i X X X X X X X X X X X nj j j nj j j nj j j ij ij ,,2,1;,,2,1,1),,,min(),,,max(),,,min(212121' ==+--=对于越小越好的指标:m j n i X X X X X X X X X X X nj j j nj j j ijnj j j ij ,,2,1;,,2,1,1),,,min(),,,max(),,,max(212121' ==+--=为了方便起见,仍记非负化处理后的数据为ij X2.3 计算第j 项指标下第i 个方案占该指标的比重),2,1(1m j XX P n i ijij ij ==∑= 2.4 计算第j 项指标的熵值1e 0,ln 10ln ,0,)log(*1≤≤=≥>-=∑=则一般令有关,与样本数。