数字系统课程设计—VHDL
- 格式:ppt
- 大小:446.00 KB
- 文档页数:72
数字逻辑原理与VHDL设计课程设计一、课程设计背景数字逻辑原理与VHDL设计是数字集成电路设计专业中的一门重要基础课程,内容涵盖数字电路基础知识、组合逻辑电路设计、时序逻辑电路设计以及数字电路综合和优化等方面。
本课程设计旨在以实践为主,巩固和加深学生的理论知识,提高学生综合运用数字逻辑原理和VHDL语言进行数字电路设计的能力。
二、实验目的通过本次课程设计,要求学生对数字逻辑原理及其应用有更加深入的认识,并掌握以下专业能力:1.掌握数字逻辑电路的基本知识与方法,以及基于VHDL设计数字电路的基本步骤与方法;2.能够运用数字逻辑原理及VHDL语言进行简单数字电路的设计、仿真、综合和下载;3.能够独立进行数字电路设计并解决设计过程中遇到的问题。
三、实验设备和工具1.Xilinx Vivado软件,用于数字电路的综合和仿真;2.FPGA开发板,用于数字电路的下载和实现;3.电脑,用于Vivado软件的安装和使用。
四、实验内容和步骤实验一函数计算器的设计与实现实验目的通过设计一个函数计算器,深入理解组合逻辑电路的设计、实现和仿真过程,同时练习使用VHDL语言进行数字电路的编写、仿真和下载。
实验内容设计一个函数计算器,能够计算并显示四个前缀表达式,包括:–23 45–11 + 22 * 33–23 - 45 / 561./ 45 + 67 - 89其中,加减乘除的运算需要满足基本的优先级规则,即在没有括号的情况下,先乘除后加减。
实验步骤1.设计并编写函数计算器的VHDL代码,包括各种运算模块、数字选择器、显示器控制器等;2.在Vivado软件中进行仿真,验证函数计算器设计的正确性;3.将函数计算器设计综合成比特流文件,下载到FPGA开发板上进行实现和测试。
实验二五位计数器的设计与实现实验目的通过设计一个五位同步加法计数器,深入理解时序逻辑电路的原理、设计和实现过程,同时掌握VHDL语言对时序电路进行设计、仿真和下载的方法。
vhdl与数字系统课程设计一、课程目标知识目标:1. 学生能理解VHDL的基本语法和结构,掌握VHDL编程的基本方法。
2. 学生能运用VHDL语言设计简单的数字系统,如组合逻辑电路和时序逻辑电路。
3. 学生能理解数字系统的基本原理,掌握数字系统的设计方法和步骤。
技能目标:1. 学生能运用VHDL语言编写代码,实现特定功能的数字电路。
2. 学生能使用相关的EDA工具,如ModelSim进行VHDL代码的仿真和调试。
3. 学生能通过课程设计实践,培养解决实际问题的能力和团队协作能力。
情感态度价值观目标:1. 学生能培养对数字系统设计和VHDL编程的兴趣,激发创新思维和探索精神。
2. 学生在学习过程中,能树立正确的工程观念,注重实际应用和问题解决。
3. 学生能在团队合作中,学会互相尊重、沟通协作,培养良好的团队精神和职业素养。
课程性质分析:本课程为数字电路与系统相关专业的选修课程,旨在通过VHDL语言的学习,使学生掌握数字系统设计的基本方法和技能。
学生特点分析:学生已具备一定的电子电路基础知识,具有一定的编程能力和实践操作能力,但对VHDL语言和数字系统设计尚处于入门阶段。
教学要求:1. 结合课本内容,注重理论与实践相结合,提高学生的实际操作能力。
2. 通过课程设计,培养学生分析问题、解决问题的能力,增强学生的工程素养。
3. 注重激发学生的学习兴趣,引导学生主动探索,培养创新意识。
二、教学内容1. VHDL基础语法与结构- 数据类型与运算符- 顺序语句与并发语句- 子程序与程序包- 配置与库的运用2. 数字系统原理与设计方法- 组合逻辑电路设计- 时序逻辑电路设计- 数字系统层次化设计方法3. VHDL在数字系统设计中的应用- 代码编写规范与技巧- 仿真与调试方法- 常用数字电路的VHDL实现,如:编码器、译码器、计数器等4. 课程设计实践- 设计题目与要求- 团队协作与分工- 设计报告撰写与答辩教学大纲安排:第一周:VHDL基础语法与结构介绍第二周:数字系统原理与设计方法第三周:VHDL在数字系统设计中的应用第四周:课程设计实践与指导第五周:课程设计总结与评价教学内容关联教材:1. 《数字电路与系统》相关章节:组合逻辑电路、时序逻辑电路设计原理。
VHDL语言及其应用课程设计一、前言VHDL(VHSIC Hardware Description Language)是一种用于描述数字系统、芯片、电路板和系统级应用的硬件描述语言。
作为一种硬件描述语言,VHDL使用定义来描述设计,供计算机程序执行和仿真。
VHDL被认为是数字电子工程领域中最强大、最灵活的硬件描述语言之一。
在本次课程设计中,我们将通过VHDL语言来设计一个数字系统,从而理解和熟悉VHDL语言的应用以及数字系统的设计方法。
二、开发环境在我们进行VHDL语言开发之前,需要准备以下开发环境:•Vivado:Vivado是一款由Xilinx公司开发的集成开发环境(IDE),可用于设计数字系统的FPGA、ASIC和Soc(System on Chip)。
•VHDL仿真器:VHDL仿真器用于测试和仿真我们设计的数字系统,常用的VHDL仿真器有ModelSim等。
三、课程设计在本次课程设计中,我们将设计一个简单的数字系统,该系统可以对两个8位数字进行求和运算,并输出计算结果。
具体的设计过程如下:1.设计输入首先,我们需要定义输入信号的格式。
在本次设计中,我们需要两个8位的输入信号,因此输入信号的格式如下:entity Input_Output isport(A_In, B_In :in std_logic_vector(7downto0);Sum :out std_logic_vector(7downto0));end Input_Output;在上述代码中,我们使用标准逻辑向量来定义输入信号的格式,其中A_In和B_In是两个8位输入信号,Sum是输出结果。
2.计算过程接下来,我们需要进行计算过程的设计。
在本次设计中,我们将对输入信号进行加法运算,因此我们需要定义一个计算模块来实现这一功能。
由于VHDL是一种面向过程的语言,因此我们需要使用过程来实现计算过程:architecture Behavioral of Input_Output issignal sum_temp :unsigned(7downto0);beginadd_proc:process(A_In,B_In)beginsum_temp <=unsigned(A_In) +unsigned(B_In);end process add_proc;Sum <=std_logic_vector(sum_temp);end Behavioral;在上述代码中,我们首先定义一个sum_temp信号来存储计算结果,接下来使用一个过程来实现加法运算。
课程设计报告实践课题:VHDL与数字系统课程设计学生:XXX指导老师:XXX、XXX系别:电子信息与电气工程系专业:电子科学与技术班级:XXX学号:XXX一、设计任务用VHDL设计一个简单的处理器,并完成相关的仿真测试。
.设计要求:图1是一个处理器的原理图,它包含了一定数量的寄存器、一个复用器、一个加法/减法器(Addsub),一个计数器和一个控制单元。
图1 简单处理器的电路图数据传输实现过程:16位数据从DIN输入到系统中,可以通过复用器分配给R0~R7和A,复用器也允许数据从一个寄存器传通过Bus送到另外一个寄存器。
加法和减法的实现过程:复用器先将一个数据通过总线放到寄存器A中,然后将另一个数据放到总线上,加法/减法器对这两个数据进行运算,运算结果存入寄存器G中,G中的数据又可根据要求通过复用器转存到其他寄存器中。
1)Rx ←[Ry] :将寄存器Ry中的内容复制到Rx;2)Mvi Rx,#D :将立即数存入寄存器Rx中去。
所有指令都按9位编码(取自DIN的高9位)存储在指令存储器IR中,编编码规则为IIIXXXYYY,III表示指令,XXX表示Rx寄存器,YYY表示Ry寄存器。
立即数#D是在mvi指令存储到IR中之后,通过16位DIN输入的。
有一些指令,如加法指令和减法指令,需要在总线上多次传输数据,因此需要多个时钟周期才能完成。
控制单元使用了一个两位计数器来区分这些指令执行的每一个阶段。
当Run信号置位时,处理器开始执行DIN输时间指令T0T1T2T3(mv):I0(mvi):I1(add):I2(sub):I3IR inIR inIR inIR inRY out,RX in,DoneDIN out,RX in,DoneRX out,A inRX out,A in--------RY out,G in,AddsubRY out,G in,Addsub--------G out,RX in,DoneG out,RX in,Done二、实现功能说明2.1 mv Rx,Ry实现的功能:将寄存器Rx的值赋给寄存器Ry(以mv R0, R5为例)(1 )计数器为“00”时,指令寄存器的置位控制信号输入端IRin=1有效,将DIN输入的数据的高9位锁存。
vhdl课程设计模板一、教学目标本课程的教学目标是使学生掌握VHDL(Very High Speed Integrated Circuit Hardware Description Language)的基本语法、编程技巧和设计方法,培养学生进行数字电路设计的实践能力。
具体目标如下:1.知识目标:–理解VHDL的基本概念、语法和规则;–掌握VHDL编程技巧,包括信号声明、实体描述、架构声明、端口映射、过程声明等;–了解数字电路的设计方法和流程,包括逻辑分析、模块划分、代码编写、仿真测试等。
2.技能目标:–能够使用VHDL编写简单的数字电路模块,如加法器、乘法器、计数器等;–能够进行数字电路的仿真测试,分析电路的功能和性能;–能够进行数字电路的硬件实现,使用FPGA或ASIC器件进行电路调试和验证。
3.情感态度价值观目标:–培养学生的创新意识和团队合作精神,鼓励学生进行自主设计和协作开发;–培养学生对电子工程领域的兴趣和热情,提高学生对数字电路设计的认识和理解。
二、教学内容根据教学目标,本课程的教学内容主要包括VHDL基本语法、编程技巧和数字电路设计方法。
教学大纲如下:1.VHDL基本语法:–信号声明和实体描述;–架构声明和端口映射;–过程声明和组合逻辑设计;–循环语句和条件语句;–子程序调用和参数传递。
2.VHDL编程技巧:–编写简单的数字电路模块,如加法器、乘法器、计数器等;–使用仿真工具进行电路仿真测试,分析电路的功能和性能;–使用硬件描述语言进行数字电路的硬件实现,使用FPGA或ASIC器件进行电路调试和验证。
3.数字电路设计方法:–逻辑分析和模块划分;–代码编写和模块集成;–仿真测试和硬件实现;–电路调试和性能优化。
三、教学方法为了达到教学目标,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:教师通过讲解VHDL的基本语法、编程技巧和设计方法,引导学生掌握相关知识;2.讨论法:学生分组进行讨论,分享学习心得和设计经验,促进学生之间的交流和合作;3.案例分析法:分析典型的数字电路设计案例,让学生了解实际应用中的设计方法和技巧;4.实验法:学生动手进行数字电路设计,使用仿真工具进行电路仿真测试,提高学生的实践能力。
这次EDA课程设计虽然时间较短但是收获普丰,使得我对HDL语言的理解与应用能力得到了较大的提升,让我认识到只要深入学习,提升的空间永远是存在的。
在本次课程设计中凸显了我的不足之处,比如软件运用不太熟练,对HDL 语言语法有诸多不清楚的认识,使在课程设计中遇到诸多困难。
但是好在通过查阅资料和老师同学的帮助得以解决,使课程设计顺利完成。
用HDL硬件描述语言的形式进行数字系统的设计方便灵活,利用EDA软件进行编译优化仿真极大地减少了电路设计时间和可能发生的错误。
降低了开发成本,这种设计方法必将在未来的数字系统设计中发挥越来越重的作用。
但在设计过程中也遇到了一些问题和困难:一、我自身的编程水平和软件水平需要提高,在本项目的设计过程中我遇到了很多问题,解决这些问题花费了我大量的时间,这反映出我对于Verilog语言的语法的理解依然不够。
二、在软件层面,QUARTUS的很多功能我依然不能熟练使用,这些功能非常强大软件功能我还没有熟练的掌握,这说明我仍然需要更多的学习。
比如刚开始编程时总会出现一些无法理解的语法问题,最初设计时使用的VHDL语言,钻研了很久也没办法得到正确的仿真图,之后再改用的Verilog语言进行编写的,并成功得到正确波形。
三、语言和软件只是工具,设计思想才是至关重要的核心。
四、自上而下的开发过程要优于自下而上的开发过程,如果在项目中先去规划顶层中各个模块要实现的功能和接口的对接,再按照先前的规划去完成底层的开发是一种非常有效率的做法。
在本设计的过程中,我学习了Verilog语言的基本语法,熟悉了Quartus II 的HDL文本设计流程全过程,掌握了课题的的设计方法以及它的仿真和硬件测试。
经过多次改进,本设计实现了课题要求的的基本功能,但由于开发板的逻辑单元有限,一些功能没法实现,这些都是需要完善的地方。
在实验箱上可以实现一些基本的功能,由于实验箱的管脚不够的原因只能实现部分的功能。
该系统离实际使用也还有相当的距离,需要我进行不断地补充和完善。
实验一秒表计数器的设计实验目的:本实验通过设计四种频率可选的数字时钟系统, 以达到熟悉VHDL 语言编程语法、设计思路和熟练掌握Quartus II 开发软件的目的。
二、实验内容:该数字时钟的显示格式如下所示: HH: MM: SS, 其中HH表示时计数的两位, MM表示分计数的两位, SS表示秒计数的两位。
本系统输入信号分别为复位信号rst(高有效)、sel(两位信号, 分别可以选择2分频、4分频8分频和16分频)、clk_in(时钟信号)、8位时输出、8位分输出、8位秒输出(其中高4为表示对应的高半字节、低4位表示的低半字节, 譬如当时间为08:59:30时, 时输出为”0000_1000”,分输出为”0101_1001”,秒输出为”0011_0000”)。
该时钟系统可以通过Sel信号时钟运行的快慢。
三、实验流程:通过对实验内容的分析: 可以考虑时钟系统的可由三部分组成: 1.分频器:分频器为时序电路并且通过《数字电路》理论课程的学习可知由计数器来实现, 同学可以回想一下实验1中是如何实现计数器电路的设计), 该模块主要产生2.4.8、16分频的时钟信号;2.多路选择器:在VHDL中多路选择器为组合逻辑, 可以有多种实现方法, 在这里主要选用了case语句来实现。
该模块的作用是从分频器中根据Sel信号选择适当的时钟信号;3.时钟控制器:该模块比较复杂, 主要实现功能是实现一个24小时的计时。
当时间为00:00:59的时候下一个时钟到来时状态的跳变为00:01:00, 计时中多数计数为加1操作, 有几个特殊状态需要重点考虑:当时间产生分进数时, 譬如上例。
当时间产生时进数时, 譬如00:01:59时刻的下一个状态为00:02:00;当时间产生时进数时, 譬如00:59:59是个的下一个状态为01:00:00。
当时间产生天进数时, 譬如23:59:59的下一个状态为00:00:00。
四、仿真要求:1、本次试验的结果全部采用功能仿真分析:在结果图中能够看到让复位信号rst为有效的情况下, 所有的输出为00:00:00;2.当频率选择输出分别为”00”、”01”、”10”、”11”时秒为的进数分别包含2.4.8、16倍clk_in的时钟周期;3.可以看到完整的计时周期00:00:00->23:59:59->00:00:00。