离散数学-- 集合代数
- 格式:ppt
- 大小:369.00 KB
- 文档页数:43
离散数学中的集合与运算离散数学是数学中的一个分支,主要研究离散的结构和不连续的对象。
集合与运算是离散数学中的基本概念和操作,它们在离散数学中具有重要的地位和应用。
本文将介绍离散数学中的集合与运算的概念与性质,并举例说明其在现实生活中的应用。
一、集合的定义和表示方法在离散数学中,集合是由一些确定的、互异的对象所构成的整体。
这些对象称为集合的元素,可以是任何事物,如数字、字母、人、物体等。
集合用大写字母表示,元素用小写字母表示。
集合中的元素是无序的,没有重复的。
集合可以通过三种方式来表示:1. 列举法:直接列举出集合中的元素,用大括号{}括起来,元素之间用逗号隔开。
例如,集合A={1, 2, 3, 4}。
2. 描述法:给出一个判断条件,符合条件的元素组成集合。
例如,集合B={x | x是正整数,且x<5},表示所有小于5的正整数构成的集合。
3. 元素特征法:根据元素的特征来表示集合。
例如,集合C={奇数},表示所有奇数构成的集合。
二、集合的运算离散数学中,集合有四种基本运算:并集、交集、差集和补集,下面将对每种运算进行介绍。
1. 并集:集合A和集合B的并集,表示为A∪B,是包含所有属于集合A或集合B的元素的集合。
例如,A={1, 2},B={2, 3},则A∪B={1, 2, 3}。
2. 交集:集合A和集合B的交集,表示为A∩B,是包含所有属于集合A且属于集合B的元素的集合。
例如,A={1, 2},B={2, 3},则A∩B={2}。
3. 差集:集合A和集合B的差集,表示为A-B,是包含所有属于集合A但不属于集合B的元素的集合。
例如,A={1, 2},B={2, 3},则A-B={1}。
4. 补集:对于给定集合U,集合A在U中的补集,表示为A',是指所有属于U但不属于A的元素构成的集合。
例如,在全集U={1, 2, 3, 4}中,集合A={2, 3},则A'={1, 4}。
三、集合与运算的应用举例集合与运算在离散数学中的应用非常广泛,下面将举几个例子来说明。
绪论研究对象:离散量研究方法:解的存在性解的能行性研究内容:数理逻辑集合代数系统图论离散概率组合数学例题1、A、B、C、D四人参加四次长跑,问:“A在B前三次,B在C前三次,C在D前三次,D在A前三次”是否有解,若有求出,否则说明理由。
方法一: A A B C D n个元素的环形排列可拆成n个元素的B C D A 线性排列D B C D A BD A B CC方法二:集合Sa={X|A在B前} Sa∩Sb∩Sc={A B C D}Sb={X|B在C前} Sa∩Sb∩Sd={D A B C}Sc={X|C在D前} Sa∩Sc∩Sd={C D A B}Sd={X|D在A前} Sb∩Sc∩Sd={B C D A}例题2:在边长为1的正方形中任取五个点,则至少有两个点的距离≤√2/2。
“中点分隔”将边长为1的正方形分成四个边长为1/2的小正方形,从中任取五个小点,必有两个小点来自一个小正方形。
例题3:“布鲁英序列”----应用旋转鼓的设计,设旋转鼓有8个区域,旋转一圈可识别三位二进制数,如何确定磁粉位置。
(阴影0,非阴影1)0—1—1—1 000 0010001 0—1—1—1 010 0111 0 100 1011 110 1111思考题:四位二进制a1 a2 a3 a4例题4:有五位小姐排成一排,所有小姐姓不同,穿的衣服颜色不同,喝不同的饮料,养不同的宠物,吃不同的水果,已知:1.钱小姐穿红衣服2.翁小姐养了一只狗3.陈小姐喝茶4.穿绿衣服的小姐在穿白色衣服小姐的左边,穿绿衣服的小姐在喝咖啡5.吃西瓜的小姐养鸟6.穿黄衣服的小姐吃梨7.站中间的小姐喝牛奶8.赵小姐站最左边9.吃桔子的小姐站在养猫的小姐旁边10.养鱼的小姐旁边小姐吃梨11.吃苹果的小姐喝香槟12.江小姐吃香蕉13.赵小姐站在穿蓝色衣服小姐旁边14.喝开水的小姐站在吃桔子的小姐旁边问每位小姐怎么站,她们分别养什么宠物,吃什么水果,喝什么饮料,穿什么颜色衣服,姓什么。
离散数学结构第6章集合代数第六章集合代数1. 集合,相等,(真)包含,⼦集,空集,全集,幂集2. 交,并,(相对和绝对)补,对称差,⼴义交,⼴义并3. ⽂⽒图,有穷集计数问题4. 集合恒等式(等幂律,交换律,结合律,分配律,德·摩根律,吸收律,零律,同⼀律,排中律,⽭盾律,余补律,双重否定律,补交转换律等)学习要求1. 熟练掌握集合的⼦集、相等、空集、全集、幂集等概念及其符号化表⽰2. 熟练掌握集合的交、并、(相对和绝对)补、对称差、⼴义交、⼴义并的定义及其性质3. 掌握集合的⽂⽒图的画法及利⽤⽂⽒图解决有限集的计数问题的⽅法4. 牢记基本的集合恒等式(等幂律、交换律、结合律、分配律、德·摩根律、收律、零律、同⼀律、排中律、⽭盾律、余补律、双重否定律、补交转换律)5. 准确地⽤逻辑演算或利⽤已知的集合恒等式或包含式证明新的等式或包含式6.1 集合的基本概念⼀.集合的表⽰集合是不能精确定义的基本概念。
直观地说,把⼀些事物汇集到⼀起组成⼀个整体就叫集合,⽽这些事物就是这个集合的元素或成员。
例如:⽅程x2-1=0的实数解集合;26个英⽂字母的集合;坐标平⾯上所有点的集合;……集合通常⽤⼤写的英⽂字母来标记,例如⾃然数集合N(在离散数学中认为0也是⾃然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表⽰⼀个集合的⽅法有两种:列元素法和谓词表⽰法,前⼀种⽅法是列出集合的所有元素,元素之间⽤逗号隔开,并把它们⽤花括号括起来。
例如A={a,b,c,…,z}Z={0,±1,±2,…}都是合法的表⽰。
谓词表⽰法是⽤谓词来概括集合中元素的属性,例如集合B={x|x∈R∧x2-1=0}表⽰⽅程x2-1=0的实数解集。
许多集合可以⽤两种⽅法来表⽰,如B也可以写成{-1,1}。
但是有些集合不可以⽤列元素法表⽰,如实数集合。
集合的元素是彼此不同的,如果同⼀个元素在集合中多次出现应该认为是⼀个元素,如{1,1,2,2,3}={1,2,3}集合的元素是⽆序的,如{1,2,3}={3,1,2}在本书所采⽤的体系中规定集合的元素都是集合。
第六章集合代数§1 集合的基本概念集合用大写英文字母标记,A,B,C,…特别地,分别用N、Z、Q、R、C标记全体自然数的集合、全体整数的集合、全体有理数的集合、全体实数的集合、全体复数的集合。
元素用小写英文字母标记,a,b,c,…x∈A:x是A的元素,称x属于A。
x∉A:x不是A的元素,称x不属于A。
列元素法:{a1, a2, …, a n, …}谓词表示法:{x| F(x)}注①集合中的元素每个只写一次②集合中的元素不计排列次序A⊆B:A是B的子集,称A被B包含A B:A不是B的子集,称A不被B包含A=B ⇔A⊆B∧B⊆A:A与B相等A⊂B ⇔A⊆B∧A≠B:A是B的真子集N⊆Z⊆Q⊆R⊆C空集:是任意集合的子集,记为∅。
有限集,无限集n元集,k元子集n元集有2n个子集集合A的幂集P(A)(或2A)全集:E§2 集合的运算并:A∪B ={x| x∈A∨x∈B}交:A∩B ={x| x∈A∧x∈B}差(B对A的相对补集):A-B ={x| x∈A∧x∉B} 对称差:A⊕B=(A-B)(∪B-A)=(A∪B)-(A∩B)绝对补集(简称A的补集):∼A=A=E-A,文氏图:大矩形表示全集E,内部的圆表示不同集合。
例已知24人中,会英语的有13人,会日语的有5人,会德语的有10人,会法语的有9人。
其中,同时会英语和日语的有2人,同时会英语和德语、同时会英语和法语、同时会德语和法语的各有4人;此外,会日语的人不会德语和法语。
求只会英语、日语、德语、法语中一种语言的人数和同时会三种语言的人数。
解:设同时会三种 语言有x 人,只会只会 英语、法语、德语中一 种语言的人数分别为y 1、y 2、y 3人,则根据文氏图可得1231232(4)2132(4)92(4)103(4)24519y x x y x x y x x y y y x x +−++=⎧⎪+−+=⎪⎨+−+=⎪⎪+++−+=−=⎩解出x =1,y 1=4,y 2=2,y 3=3。
离散数学课本定义和定理第1章集合1.1 集合的基本概念1. 集合、元(元素)、有限集、⽆限集、空集2. 表⽰集合的⽅法:列举法、描述法3. 定义1.1.1(⼦集):给定集合A和B,如果集合A的任何⼀个元都是集合B中的元,则称集合A包含于B或B包含A,记为或,并称A为B的⼀个⼦集。
如果集合A和B满⾜,但B中有元不属于A,则称集合A真包含于B,记为,并且称A为B的⼀个真⼦集。
4. 定义1.1.2(幂集):给定集合A,以A的所有⼦集为元构成的⼀个集合,这个集合称为A 的幂集,记为或1.2 集合的运算定义1.2.1(并集):设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B的并集,记为.定义1.2.2(交集):A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B的交集,记为.定义1.2.3(不相交):A和B是两个集合,如果它们满⾜,则称集合A和B是不相交的。
定义1.2.4(差集):A和B是两个集合,属于A⽽不属于B的所有元构成集合,称为A和B 的差集,记为.定义1.2.5(补集):若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为.定义1.2.6(对称差):A和B是两个集合,则定义A和B的对称差为1.3 包含排斥原理定理1.3.1设为有限集,其元素个数分别为,则定理 1.3.2设为有限集,其元素个数分别为,则定理1.3.3设为有限集,则重要例题P11 例1.3.1第2章⼆元关系2.1 关系定义2.1.1(序偶):若和是两个元,将它们按前后顺序排列,记为,则成为⼀个序偶。
※对于序偶和,当且仅当并且时,才称和相等,记为定义2.1.2(有序元组):若是个元,将它们按前后顺序排列,记为,则成为⼀个有序元组(简称元组)。
定义2.1.3(直接积):和是两个集合,则所有序偶的集合,称为和的直接积(或笛卡尔积),记为. 定义2.1.4(直接积):设是个集合,,则所有元组的集合,称为的笛卡尔积(或直接积),记为.定义2.1.5(⼆元关系)若和是两个集合,则的任何⼦集都定义了⼀个⼆元关系,称为上的⼆元关系。
离散数学代数结构部分离散数学是数学的一个分支,主要研究离散的、分离的、离散化的对象和结构。
其中代数结构是离散数学的一个重要部分,涉及到一些常见的代数结构,如群、环和域等。
下面将从群、环和域三个方面展开,对离散数学中的代数结构进行详细介绍。
一、群群是离散数学中的一个基本代数结构,它由三个主要部分组成:集合、运算和满足一定性质的公理。
具体地,一个群G是一个非空集合,也即G={a,b,c,...},其中的元素a、b、c等叫做群的元素。
除此之外,群还具有一个二元运算,记作"·",满足以下四个公理:1.封闭性公理:对于群的任意两个元素a、b,它们的乘积c=a·b仍然属于G,即c∈G。
2.结合律公理:对于群的任意三个元素a、b、c,(a·b)·c=a·(b·c)。
3.单位元公理:群中存在一个特殊的元素e,称为单位元,满足对于任意元素a,有a·e=e·a=a。
4.逆元公理:对于群中任意元素a,存在一个元素b,使得a·b=b·a=e,其中e是群的单位元。
群结构的研究对于解决各类数学问题具有重要意义。
例如,在密码学中,通信双方使用群的运算来实现加密和解密的功能。
二、环环是另一个重要的代数结构,在离散数学中有广泛的应用。
一个环R由一个非空集合以及两个满足一定条件的二元运算分别组成。
对于一个环R={G,+,·},其中G是一个非空集合,"+"和"·"分别是R上的两个二元运算,满足以下四个公理:1.集合G关于"+"构成一个阿贝尔群,即对于任意的a、b、c∈G,满足以下性质:(a+b)+c=a+(b+c),存在单位元0,对于任意元素a,有a+0=0+a=a,对于任意元素a,存在一个元素-b,使得a+(-b)=-b+a=0,且满足交换律性质:a+b=b+a。
离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、数理逻辑等领域都有着广泛的应用。
下面就来对离散数学的一些重要知识点进行整理。
一、集合论集合是离散数学中最基本的概念之一。
集合是由一些确定的、彼此不同的对象所组成的整体。
集合的表示方法有列举法和描述法。
列举法就是将集合中的元素一一列举出来,用花括号括起来。
描述法是通过描述元素所具有的性质来确定集合。
集合之间的关系包括子集、真子集、相等。
如果集合 A 的所有元素都属于集合 B,那么 A 是 B 的子集;如果 A 是 B 的子集且 A 不等于 B,那么 A 是 B 的真子集;如果集合 A 和集合 B 的元素完全相同,那么 A 和 B 相等。
集合的运算有并集、交集、差集和补集。
并集是将两个集合中的所有元素合并在一起组成的新集合;交集是两个集合中共同的元素组成的新集合;差集是从一个集合中去掉另一个集合中的元素所得到的新集合;补集是在给定的全集 U 中,去掉集合 A 中的元素所得到的新集合。
二、关系关系是集合论中的一个重要概念,它描述了两个集合元素之间的某种联系。
关系可以用关系矩阵和关系图来表示。
关系矩阵是一个二维矩阵,用于表示两个有限集合之间的关系;关系图则是用顶点和边来表示关系。
关系的性质包括自反性、反自反性、对称性、反对称性和传递性。
自反性是指集合中的每个元素都与自身有关系;反自反性则是集合中的每个元素都与自身没有关系;对称性是如果 a 与 b 有关系,那么 b 与 a 也有关系;反对称性是如果 a 与 b 有关系且 b 与 a 有关系,那么 a 等于 b;传递性是如果 a 与 b 有关系,b 与 c 有关系,那么 a 与 c 有关系。
等价关系是一种具有自反性、对称性和传递性的关系,它可以将集合划分为等价类。
偏序关系是一种具有自反性、反对称性和传递性的关系,它可以引出偏序集的概念。
三、函数函数是一种特殊的关系,它对于定义域中的每个元素,在值域中都有唯一的元素与之对应。