脊柱生物力学及脊柱基本结构
- 格式:pptx
- 大小:8.20 MB
- 文档页数:40
脊柱疾病和损伤与脊柱受力的异常有明确关系,而康复治疗和预防也需要对脊柱运动的生物力学有清楚的了解。
本文旨在为临床和治疗技术人员提供相关的基础知识。
1、结构特征:脊柱是人体运动的主轴。
由多个椎体、多重关节(椎间“关节”、椎小关节)、众多肌肉和韧带紧紧围绕、生理弯曲,以满足脊柱的坚固性和可动性(柔韧性)。
其活动有三维方向(前后、左右、旋转)和六个自由度(3个平动、3个转动)。
2、位置特征:颈段支撑头颅,重心处于颈部前2/3和后1/3的交界处;胸段重心偏后(胸廓前后径的后1/4),与胸廓共同分解胸以上躯体的重量。
腰段居中,甚至前凸,以支撑体重。
3、解剖特征:(1)椎管:椎骨构成一个可褶曲的有效管腔以容纳延髓和脊髓。
(2)椎骨:由椎体、椎弓、上下关节突、棘突、横突构成。
椎体是椭圆形短扁骨,一圈致密的骨皮质包围海棉状的髓质(松质骨),上下骨皮质中有较厚的软骨板衬垫,边缘由较厚的环形衬板构成。
椎体的骨小梁除按应力线斜行交叉外;还可看到一组从椎体上面向后延伸,至椎弓根水平时呈扇形分布于下关节突与棘突,另一组则从椎体下面向后延伸到椎弓根水平时呈扇形分布于下关节突与棘突。
椎体前缘最薄弱,易于发生压缩性骨折。
横突和棘突作为脊柱肌肉的附着点,是脊柱动态稳定性的基础之一。
(3)椎间盘:内部为髓核,外部为纤维环。
髓核为半液态,由富亲水性的葡萄糖胺酸聚糖的胶状凝胶所组成。
除了下腰椎的髓核位置偏后外,髓核均位于椎间盘的正中。
纤维环为多层致密的结缔组织彼此斜行交织而成,自边缘向心分布,致密的纤维环开始是垂直的,越接近中心越倾斜,到中心接触髓核时,几乎近水平走向,并围绕髓核成椭圆形。
椎间盘受压时,髓核承受75%的压力,其余25%的压力分布到纤维环。
髓核还同时具有稳定脊柱运动的功能,在伸展运动时,上方椎体向后移位,缩减了椎间隙后缘,髓核受挤向前方偏移。
在前屈运动时,正好相反,从而使椎体获得较强的自稳性。
椎间盘总厚度约为脊柱全长的25%。
脊柱生物力学1.运动节段由于脊柱的结构和功能较为复杂,在研究脊柱的生物力学时,通常观察脊柱的某一部分,该部分由相邻两椎体及其间的软组织构成,能显示整个脊柱相似的生物力学特性的最小功能单位,其运动的叠加可构成脊柱的三维运动,称为运动节段,又称脊柱功能单位;分部:通常将其分为前后两部分:前部分由两个椎体、椎间盘和后纵韧带组成;后部分由相应的椎弓、椎间关节、横突、棘突和韧带组成;前后部承载:前部的椎间盘和后部的小关节在负重及应力分布方面存在着一种独立的、动态的关系;在侧方、前方剪应力作用、轴向压缩及屈曲运动时,前部的椎间盘是主要的负重部位;如伴有较大的位移时,后部的小关节也承受部分载荷,在后方剪应力背伸运动和轴向旋转时,小关节则是主要的负重部位;功能:①运动功能,提供椎体三维空间的运动范围;②承载功能,将载荷从颈部传到骨盆;③保护功能,保护椎管内容纳的脊髓及神经根;椎体,椎间盘及前纵韧带、后纵韧带提供脊柱的支持功能和吸收对脊柱的冲击能量;运动范围主要依靠椎间关节复合体完成;躯干及韧带保证脊柱的稳定性和维持身体姿势;2.脊柱运动学神经和肌肉的协同作用产生脊柱的运动;脊柱作为柔软性载负体,其运动形式是多样的;脊柱的运动范围较大,但组成脊柱的各个节段的运动范围却较小,节段间的运动是三维的,表现为两椎骨的角度改变和位移;脊柱的活动通常是多个运动节段的联合运动,包括沿横轴、矢状轴和纵轴的旋转和平移;限制任何部位的活动都可增加其他部位的活动;(1)运动特性:在脊柱运动中,椎体与椎间盘韧带、关节囊等组织相比,变形量极小,分析运动时可视为刚体,而椎间盘等其他物体被视为塑性物体;(2)自由度:按照刚体运动学理论,椎骨的三维运动有六个自由度即前屈/后伸、左/右侧弯和左/右旋转运动方向上的角度以及上/下、前/ 后和左/右方向的位移;其中三个为平动自由度,三个为转动自由度;3.运动范围(1)颈椎的活动度:颈椎是脊柱活动度最大的部分;颈椎活动由两个部分完成:①上颈椎枕-寰-枢复合体的联合运动;②下颈椎颈2~7的联合运动;前者以旋转运动为主,后者以屈伸运动为主;枕-寰-枢复合体是人体中轴骨中最复杂的关节;枕~颈1和颈1~颈2的关节均有伸屈运动,枕~颈1的屈伸范围为°,颈1~颈2关节约10°,二者使枕-寰-枢复合体的屈伸范围达到°;轴性旋转只发生在颈1~颈2关节,其旋转范围可达47°,相当于整个颈椎旋转度的40%~50%;枕-寰-枢复合体之间的平移度很小,枕~颈1间的轴性平移约1mm,颈1~颈2 的侧向平移一般只有在侧屈和轴性旋转时才会发生;下颈椎的屈伸活动主要发生在中段,颈5~颈6活动度最大,侧屈与旋转运动越向下越小;整个颈椎节段的联合运动,屈伸约145°,轴向旋转约180°,侧屈约90°;(2)胸椎的活动度:在矢状面上,上胸段平均每节段为4°,中段为6°,下段为12°;在冠状面上,上胸段的侧屈活动范围为6°,最下节段为9°;胸椎的轴性旋转范围自上而下逐渐减小,上胸段的活动范围为8°,下胸段只有2°左右;(3)腰椎的活动度:从腰1~腰5,屈伸范围逐渐增加,从腰1的12°增加到腰骶关节的20°;腰椎各节段的侧屈范围大致相同,但腰骶关节较小,只有2°~4°,腰5~骶1稍大,可到8°;腰椎的轴性旋转各关节基本相同,约为2°~3°,明显低于颈椎;4.椎体承载椎体主要承受压缩载荷,腰椎骨界面上的载荷比颈、胸椎要大;椎体骨密质较薄,主要由骨松质构成;骨松质的骨小梁是按纵横主应力迹线方向分布,椎体是椎骨受力的主体;椎体骨密质虽然较薄,但可承受椎体压力的45%~75%;椎体的抗压强极限约为5~7MPa;椎体的最大承载量与椎体的上下位置有很大的关系;在腰椎,压缩性载荷主要由腰椎椎体承受,只有18%的载荷由小关节承担;椎体的强度由年龄的增长而减弱,尤其是超过40岁将更加明显;5.椎间盘生物力学(1)结构特点:椎间盘由纤维环、髓核、透明软骨终板和Sharpey纤维组成;纤维环由坚韧的纤维组织环绕而成,各层纤维方向不同,彼此成30°~60°交角,增加了纤维环的抗载荷能力;髓核外观呈半透明的凝胶状,主要由软骨基质和胶原纤维组成,通过Sharpey纤维附着于椎体骺环;透明软骨终板是椎体上下软骨面,构成椎体的上下界,与相邻椎体分开,年轻人的髓核含水量约85%,其余是胶原纤维和蛋白多糖;髓核随年龄增长及椎间盘退变含水量逐渐降至70%;胶原维持椎间盘的形状和张力,蛋白多糖通过与水的相互作用维持组织刚度、抗压力和粘弹性;(2)椎间盘功能:正常椎间盘由胶冻状的髓核和纤维环组成,形成封闭的有一定压力的内环境,其功能有:保持脊柱的高度;连结椎间盘的上下两椎体,并使椎体有一定的活动度;使椎体便面承受相同的压力;对纵向负荷起缓冲作用;维持后方关节间一定的距离和高度,保持椎间孔大小;维持脊柱的生理曲度;6.小关节的生物力学(1)结构特点:脊椎节段的活动类型取决于椎间小关节的取向,而小关节面的取向,而小关节面的取向在不同的节段有一定的变化;下颈椎的小关节面与冠状面平行,与水平面成45°,允许颈椎前屈、后伸、侧弯和左右旋转;胸椎的小关节面与冠状面呈20°,与水平面呈60°,允许侧弯、旋转和一定程度上的屈伸;腰椎小关节面与冠状面呈45°,与水平面垂直,允许前屈、后伸、侧弯,限制过度的旋转运动;(2)承载能力:腰椎小关节能承受不同类型的载荷,其承受压缩载荷的作用因体位和姿势而异;当腰椎处在最大前屈位时,其小关节承受了约90%的张力但并不承受压应力;腰椎后伸至最大限度时小关节承受的压应力占33%;当腰椎承受剪切应力时,由于椎间盘的蠕变和松弛特性,可有效抵抗载荷,故小关节承受剪切应力明显加大,承载比例可达45%,与椎间盘大致相等;7.韧带生物力学(1)前纵韧带和后纵韧带:脊柱前纵韧带抗张力能力最强,其次是棘上韧带、棘间韧带和后纵韧带,前纵韧带的最大破坏载荷是后纵韧带的倍;前纵韧带刚度最大,其次是后纵韧带,棘间韧带最弱;前纵韧带和后纵韧带有较大的刚度,对于在屈伸运动时抵抗椎间盘膨隆和椎体移位有重要意义;棘上韧带变形能力最大,前纵韧带和后纵韧带变形能力最小;(2)黄韧带:呈节段性,有丰富的弹性纤维;黄韧带的抗张应力为30~50N,在脊柱韧带中范围最大;腰椎前屈时;黄韧带收到拉伸,弹力纤维被拉长,处于储能状态;当外力解除后,弹力纤维内储存的能量又会立即释放出来,使其恢复原状;腰椎后伸可使黄韧带松弛,由于预张力的作用,黄韧带不会出现皱着或弯曲凸入椎管;当腰椎间盘退变后,长期的追间距缩小,使黄韧带松弛,小血管迂曲变形,弹力纤维退行性变,黄韧带肥厚,其预张力消失,造成侧隐窝狭窄;(3)棘上韧带和棘间韧带:既起到稳定脊柱活动的作用,又能加强脊柱的外在稳定;棘上韧带位于棘突后部末端,呈狭条状,因其离脊柱伸屈轴心较远,所以,在脊柱做前屈运动时,棘间部分有较大的变形能力;8.脊髓的生物力学(1)结构特点:当脊髓无软棘膜包裹时,其特性如半流体性黏聚体,包裹软棘膜的脊髓为唯一具有特殊力学特性的结构;如除去周围的神经根、齿状韧带等组织、将脊髓悬吊起来,其长度可因自身重力而延长10%,此时若想将其继续延长,可突然出现弹性阻力;(2)位移曲线:脊髓的负荷-位移曲线有连个明显不同的阶段;第一阶段也可称初始阶段,很小的拉伸即可产生很大的位移;第二阶段,相同的牵拉只形成小的位移,造成第一阶段变化的力约,第二阶段脊髓在断裂前可承受20~30N的拉力;脊髓生物力学特性与组织特性有关,第一阶段有较大的伸缩性是脊髓折叠性形成的,可在很小的外力下折叠或展开,第二阶段脊髓展开或折叠已到极限,脊髓组织直接承受外力阻力将以10为指数而迅速增加;(3)脊柱活动与脊髓关系:椎管长度的改变总是伴有脊髓的相应改变,脊髓折叠和展开可满足脊柱从完全伸直到完全屈曲所需的70%~75%的长度变化;生理活动的极限部分由脊髓本身的弹性变形完成;脊髓在长度改变的同时,同样伴有横截面积的变化;9.神经根的生物力学(1)结构特点:与周围神经不同,脊髓神经根只在近脊神经节处才有一层神经外膜,而外周神经则有厚厚的神经外膜;脊神经由神经纤维和胞体组成,而外周神经只有神经纤维组成;(2)应力曲线:脊神经仅能被牵拉15%~23%;直腿抬高实验时脊神经可在在神经根管内滑动2~5mm;假如神经受到压迫,这种正常的神经根活动就会受到限制,在被牵拉的过程中,可产生神经的激惹和炎症,此时神经内的张力升高,在神经内可发生小范围结构上的破坏,从而造成神经根生物力学特性的改变;。
脊柱的生物力学脊柱是人体的中轴,由脊椎骨、椎间盘、椎间关节和椎旁各关节、韧带及肌肉紧密连结而成。
椎管是各脊椎的椎孔连贯而成,内容脊髓。
成人整个脊柱从正面观为一条直线,从侧面观分为四个弯曲,颈部向前凸,胸部向后凸,腰部向前凸,骶部向后凸。
这些弯曲是适应人体直立行走的姿势,在生长发育的过程中逐步形成。
脊柱的功能为:支持体重、传递重力;保护脊髓和神经根;参与形成胸腔、腹腔及骨盆腔;至此和附着四肢与躯干联系的肌肉和筋膜。
脊柱由前屈、后伸、左右侧屈及左右旋转的运动能力。
在脊柱运动时,椎间盘的髓核成为杠杆作用的支点。
由于生理弯曲存在,胸椎椎间盘髓核在中央,而颈及腰椎髓核偏后。
其髓核前方的纤维环比后侧强而厚,前纵韧带亦较后纵韧带强而有力,当仰头、伸腰时,椎间盘后方受挤压,髓核向前移动。
反之,低头、弯腰时,髓核向后推挤。
如用力过度后纵韧带和后方纤维环易发生损伤破裂而使髓核发生突出,尤其在椎间盘已有退变的基础上更容易发生椎间盘突出。
由于脊髓各段的后关节面排列方向不同,其旋转轴心亦有各异。
后关节面脊椎近似水平面,胸椎呈冠状面,而腰椎呈矢状面。
同时由于各段椎间盘中髓核位置不同,在脊柱运动时颈部和腰部旋转的轴心位于椎管后部与椎板联合处,胸部的旋转轴心在椎间盘中心。
脊柱使人体保持直立位,同时承受挤压、牵拉、弯曲、剪切和旋转应力,主要有3个基本的生物学功能,即将头和躯干的载荷传递到骨盆,提供在三维空间的生理活动和保护脊髓。
脊柱活动和脊柱的稳定性:脊柱活动通常是多个活动节段的联合动作。
由于椎间盘和后关节的存在,使脊柱能沿横轴、矢状面和纵轴活动。
正常脊柱能够前屈后伸、左右侧弯和轴向旋转。
因小关节面的排列方向不同,不同节段的活动方向和幅度也不一样。
颈椎关节面的方向接近水平,故能做较大幅度的屈伸、侧屈和旋转活动;胸椎的小关节面呈冠状位,又有胸廓的存在,使其活动受到一定的限制;腰椎的小关节面呈矢状面,与横截面呈90°,与冠状面呈45°,其伸屈活动幅度从上至下逐渐增大,而旋转、侧屈活动幅度则受限明显。
脊柱运动的解剖和生物力学基础脊柱是人体骨骼系统中的重要组成部分,它由多个椎骨组成,每个椎骨之间通过椎间盘连接。
人体脊柱分为颈椎、胸椎、腰椎、骶椎和尾椎五个部分,共有33个椎骨。
脊柱的主要功能是支撑身体的重量,保护脊髓和神经根,并提供运动的灵活性。
我们来了解脊柱的解剖结构。
每个椎骨由一个圆柱状的体和一个弓状的横突组成。
椎骨之间的椎间盘由纤维环和内核组成,纤维环具有一定的韧性和弹性,能够缓冲和吸收脊柱运动时的压力。
椎间盘的存在使得脊柱具有一定的弯曲和扭转能力。
此外,脊柱还有一系列的关节,包括椎体关节、小关节和椎弓关节,这些关节使得脊柱能够进行多方向的运动。
脊柱的生物力学基础是研究脊柱在运动中所承受的力学作用。
脊柱的运动主要包括屈曲、伸展、旋转和侧弯等。
这些运动是由脊柱的解剖结构和周围肌肉的协同作用完成的。
在运动中,脊柱受到多种力学作用,包括压力、拉力、剪切力和扭矩等。
我们来看脊柱在屈曲和伸展运动中所承受的压力和拉力。
当脊柱屈曲时,椎间盘受到压力,纤维环向后压缩,内核向前移动。
相反,当脊柱伸展时,椎间盘受到拉力,纤维环向前拉伸,内核向后移动。
这种压力和拉力的作用使得椎间盘能够缓冲和吸收脊柱运动时的冲击力。
我们来看脊柱在旋转运动中所承受的剪切力和扭矩。
旋转运动是脊柱最复杂的运动之一,它涉及到椎骨之间的小关节和椎弓关节的协同作用。
在旋转运动中,椎骨之间的小关节受到剪切力的作用,而椎骨之间的椎弓关节受到扭矩的作用。
这些力学作用使得脊柱能够进行旋转运动并保持稳定。
脊柱还承受着来自周围肌肉的力学作用。
肌肉通过肌腱与椎骨相连接,肌肉的收缩和松弛使得脊柱能够进行各种运动。
肌肉的力量和协调性对于保持脊柱的稳定性和灵活性至关重要。
脊柱的解剖结构和生物力学基础对于人体运动至关重要。
了解脊柱的解剖结构和生物力学特性可以帮助我们更好地理解脊柱的功能和运动机制。
同时,对于预防和治疗与脊柱相关的问题和疾病也具有重要的指导意义。
因此,我们应该重视脊柱的健康,保持正确的姿势和良好的运动习惯,以维持脊柱的正常结构和功能。
脊柱科普之脊柱⽣物⼒学脊柱是⼈体的中轴⽀柱,具有复杂的结构和众多功能,主要3个。
1. 在各种体检时⽀持头颅和躯⼲,并将其载重负荷传递到⾻盆。
2. 使头颅和躯⼲能够在三维空间内完成较⼤范围的⽣理活动。
3. 保护脊髓及胸、腹腔和盆腔脏器不受损伤。
脊柱⽣物⼒学模式,韧带是保持脊柱内外平衡的重要结构:1. 前纵韧节,椎体前半部及相应椎间盘纤维环为前柱。
2. 椎间盘,纤维环后纵韧带,椎体后部和椎管集于中柱。
3. 后柱为脊柱附件包括椎板,黄韧带,棘间韧带,棘上韧带和棘突。
脊柱的稳定:脊柱的作⽤是保持⼈体呈直⽴状态,将头及躯⼲的载荷传递到⾻盆,提供在三维空间的⽣理活动和保护⾻髓,因此必须要维持脊柱的内外平衡和动静⼒平衡。
内平衡:脊柱的内平衡要依靠椎间盘和韧带,椎间盘髓核内的压⼒使相邻的2个椎体分开,⽽在其外的纤维环和周围的韧带在对抗髓核分类压应⼒的情况下,使相邻的两椎体靠拢,这2种作⽤⽅向相反的⼒使脊柱得到较⼤的稳定性,脊柱上的韧带由伸缩性较⼩的胶原纤维组成,⽽连接椎⼸上的黄韧带很特殊,也由包含较多的弹性纤维构成,因此它在脊柱伸屈过程中总是能保持其张⼒从椎管内维持脊柱平衡。
外平衡:脊柱的外平衡要依靠肌⾁,如腰椎间盘变性后椎间隙变窄,周围韧节相对增长⽽导致脊柱失控,产⽣脊柱向前式向后滑脱时(即内平衡失调),可通过腰背肌、腹肌、腹横肌的锻炼(即增强外平衡)以增加脊柱的稳定性,⼀般来讲,内平衡没有外平衡重要,在内平衡失去后,脊柱失稳的变化很缓慢,⽽当外平衡破坏后,脊柱难以保持正常功能。
脊柱的动静⼒平衡理论认为,⾻骼和韧带维持关节稳定和平衡的作⽤为静⼒平衡,⽽肌⾁维持关节稳定和平衡的作⽤为动⼒平衡。
脊柱⽣物⼒学改变与临床脊柱有6个⾃由度的运动,即沿XYZ轴的平移及旋转,在颈胸腰椎⾻盆的⾻关节,椎周软组织,慢性劳损或椎间盘退⾏性改变,⾻增⽣时在⼀定的诱因条件下使脊柱的⽣物⼒学发⽣改变,⾻关节不能复位到正常的解剖位置上,间接或直接对神经根椎动静脉,脊髓或交感神经产⽣刺激式压迫,就会出现脊柱相关疾病。