总体、样本及统计量
- 格式:pptx
- 大小:77.95 KB
- 文档页数:14
基本统计方法第一章概论1•总体(Population ):根据研究目的确定的同质对象的全体(集合) ;样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。
2.参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3.统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。
第二章计量资料统计描述1.集中趋势:均数(算术、几何)、中位数、众数2.离散趋势:极差、四分位间距( QR=P75-P25)、标准差(或方差)、变异系数(CV)3.正态分布特征:①X轴上方关于X= 对称的钟形曲线;②X= 时,f(X)取得最大值;③ 有两个参数,位置参数和形态参数;④曲线下面积为1,区间土的面积为68.27% ,区间±1.96 的面积为95.00%,区间±2.58 的面积为99.00%。
4.医学参考值范围的制定方法:正态近似法:X U /2 S ;百分位数法:P2.5-P 97.5。
第三章总体均数估计和假设检验1.抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可避免,产生的根本原因是生物个体的变异性。
2.均数的标准误(Standard error of Mean, SEM):样本均数的标准差,计算公式:八n。
反映样本均数间的离散程度,说明抽样误差的大小。
3.降低抽样误差的途径有:①通过增加样本含量n;②通过设计减少S。
4.t分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度,越小,t值越分散,t分布的峰部越矮而尾部翘得越高;③当逼近a ,S X逼近X, t分布逼近u分布,故标准正态分布是t分布的特例。
5.置信区间(Con fide nee In terval , CI ):按预先给定的概率(1-)确定的包含总体参数的一个范围,计算公式:X t /2, S X或X U /2, S X。
1.简述总体与样本、参数和统计量的含义总体:我们所要研究的所有基本单位的总和。
样本:总体的一部分单位。
参数:描述总体或概率分布的数量值。
统计量:又称样本统计量,是对样本数据特征值的数量描述。
2.关于样本均值的抽样分布,中心极限定理的含义是什么?样本均值的抽样分布:当总体服从正态分布N(μ,σ2)时,在重复抽样条件下,来自该总体的容量为n的样本的均值⎺x也服从正态分布,⎺x 的数学期望为μ,方差为σ2/n。
即⎺x~N(μ,σ2/n)中心极限定理:设从均值为μ,方差为σ2的一个任意总体中重复地抽取容量为n的样本,当n充分大时(通常要求n≥30),样本均值的抽样分布近似服从均值为μ、方差为σ2/n的正态分布含义:中心极限定理就是一个抽自任意总体样本容量为n的随机样本。
当n充分大时,样本均值的抽样分布将近似于一个具有均值和标准差的正态分布。
3.什么是抽样误差?其特点是什么?抽样误差是利用样本推断总体时产生的误差。
特点:对任何一个随机样本来讲都是不可避免的;是可以计量的,并且是可以控制的;样本的容量越大,抽样误差就越小;总体的变异性越大,抽样误差也就越大。
4.简述样本容量与置信水平、总体方差、允许误差的关系样本容量与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需的样本容量也就越大;样本容量与总体方差成正比,总体的差异越大,所要求的样本容量也越大;样本容量与允许误差成反比,可以接受的允许误差越大,所需的样本容量就越小。
5.假设检验中的第一类错误和第二类错误分别是指什么?它们发生的概率大小之间存在怎样的关系?第Ⅰ类错误(弃真错误):原假设为真时拒绝原假设时所犯的错误第Ⅱ类错误(取伪错误):原假设为假时未拒绝原假设当样本容量n确定后,当α变小时,则检验的拒绝域变小,相应的接受域会变大,因此β值也就随之变大;相反,若β变小,则α又会变大.6.试解释“上组限不在内”的原则是指当相邻两组的上下限相叠时,为了“不重”(任一个单位数值只能分在其中某一组中,不能同时分在两组中),上组限数值不算在该组内。
名解01.医学统计学:运用概率论和数理统计等数学的原理、方法,研究医学资料的搜集、整理、分析和推断的一门学科。
02.总体(population):根据研究目的所确定的同质研究对象某项观察指标的全体。
03.样本(sample):根据随机化的原则从总体中抽出具有代表性的一部分观察单位。
04.参数(parameter):总体的统计指标。
05.统计量(statistic):样本的统计指标。
06.频率(f)(frequence):f=m/n=A发生的试验数/试验的总次数07.概率(P):描述随机事件发生可能性大小的数值。
08.小概率事件:P≤0.05或P≤0.01的随机事件,称作小概率事件。
09.定量资料:以定量值表达每个观察单位的某项观察指标。
10.定性资料:以定性方式表达每个观察单位的某项观察指标。
11.等级资料:以等级方式表达每个观察单位的某项观察指标。
12.变异:是指某项观察指标在其同质性观察单位之间显示的差别。
13.正偏态:指分布尾部偏向数轴正侧,又称右偏态,反之为负偏态。
14.中位数M:是指将全部观察值从小到大排列,位置居中的观察值水平。
15.百分位数Px:将全部观察值从小到大排列,将样本例数一百等分,其x等分处的变量值即第x百分位数记为Px。
16.全距R:是一组变量值中最大值与最小值之差。
17.四分位数间距:四分位数是两个特定的百分位数,第25%分位数P25,和第75% 分位数P75,分别记为Ql与Qu, 四分位数间距定义为Ql-Qu,其间包括了全部观察值的一半。
18.变异系数CV:是标准差与均数之比,其同时排除了平均水平和量纲的影响。
19.标准化目的:采用统一的标准,以消除某方面的构成不同对总率比较的影响,使标准化的数据具有可比性。
20.参考值:正常人的各种生理、生化数据,组织或排泄物中各种成分的含量。
21.参考值范围(reference interval):绝大多数正常人的测定值应该所在的范围。
1.总体:总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
2.随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
3.变异:在自然状态下,个体间测量结果的差异称为变异(variation)。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
4.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。
计数资料亦称定性资料或分类资料。
其观察值是定性的,表现为互不相容的类别或属性。
如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。
等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。
等级资料又称有序变量。
如患者的治疗结果可分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为+、++、+++等。
统计3:样本和统计量统计推断是指,在数理统计中,我们研究的随机变量,其分布是未知的,或者是不完全知道的,⼈们是通过对所研究的随机变量进⾏重复独⽴的观察,得到许多观察值,对这些数据进⾏分析,从⽽对所研究的随机变量的分布做出种种推断。
⼀,随机样本总体和个体在数理统计中,研究对象是某⼀项数量指标(例如,学⽣的⾝⾼,体重等),对这⼀项数量指标进⾏观察。
把试验的全部可能的观察值称为总体,每⼀个可能的观察值称为个体。
总体中的每⼀个个体是随机试验的⼀个观察值,因此,它是某⼀随机变量X的值。
⼀个总体就对应⼀个随机变量X,对总体的研究就是对⼀个随机变量X的研究。
样本在实际中,总体的分布⼀般是未知的,或只知道它具有某种形式⽽其中包含了未知参数。
在数理统计中,⼈们都是通过从总体中抽取⼀部分个体,根据获得的数据对总体分布做出推断,被抽出的部分个体叫做总体的⼀个样本。
所谓从总体抽取⼀个个体,就是对总体X进⾏⼀次观察并记录观察结果。
在相同的条件下对总体X进⾏n次重复的,独⽴的观察,把n次观察的结果按照试验的次序记为:X1,X2,...,Xn,由于X1,X2,...,Xn是对随机变量X观察的结果,且各次观察是在相同的条件下独⽴进⾏的,所以有理由认为X1,X2,...,Xn是相互独⽴的,且都与X具有相同分布的随机变量,把X1,X2,...,Xn 称为来⾃总体X的⼀个简单随机样本。
当n次观察⼀经完成,得到⼀组实数x1,x2,...,xn,它们依次是随机变量X1,X2,...,Xn的观察值,称为样本值。
样本定义,设X是具有分布函数F的随机变量,若 X1,X2,...,Xn 是具有同⼀分布函数F的,相互独⽴的随机变量,则称 X1,X2,...,Xn 为从分布函数F(或总体F,总体X)得到的简单随机样本,简称样本。
它们的观察值 x1,x2,...,xn称为样本值,⼜称为X的n个独⽴的观察值。
若 X1,X2,...,Xn 为总体X的⼀个样本,则X1,X2,...,Xn相互独⽴,且它们的分布函数都是F(x),所以(X1,X2,...,Xn)的分布函数是:⽩话:随机变量X1,X2,...,Xn同时发⽣的概率是单独发⽣的概率之积。